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This paper discusses two cases where small divisors play an important role in the third integral. The
Hamiltonian used is H =3} (X2-+ Y2+ A2+ By?) — exy*=4h. In the first case the two unperturbed frequencies
are nearly equal. If eis very small and we set B=A4 4 Ke* we find resonance phenomena when K is in the
range (—5k/3A42,10k/342%).For larger or smaller values of K all the orbits are boxes. This range is divided into
four parts by the values K= —2k/342 K =5k/6A% and K ="Th/3A2. The forms of the invariant curves are
different in the four intervals. The corresponding orbits are either box type, or similar to the orbits of the
resonance case A = B, except for the D-type orbits, which appear only in the third and fourth intervals.

In the second case one unperturbed frequency is almost the double of the other. If we set 4B=A4 ¢k we
find resonance phenomena when —4(2k/4)% <k <4(2h/A)}. The boundaries of the orbits are approximately

arcs of three parabolas, as in the resonance case.

1. CASE A™~B. INVARIANT CURVES

HIS paper is a continuation of paper II (Con-
toupoulos 1965). We consider the Hamiltonian

H=3(X*4 Y+ A2’ By*) —exy?, 1)
which corresponds to the potential
V=3(4x>+By*)—exy?,

on the plane of symmetry of a nonaxisymmetric
galaxy. Here x, y are coordinates with origin the
““center” of the galaxy, X V the corresponding veloci-
ties, and 4, B, e are constants, where e is small.

In Secs.I and II we consider the case when B is
near, but not equal to 4. Then the third integral of
the general case (4%/Bi=irrational) can be written
(Contopoulos 1960)

&1 =0+ Pyt EProt-- - -, 1)
where
2810= X2+ A2,
&1=[1/(4B—A)][(A—2B)xy*—2xV2+42XyV ],

(4—B)d, E
—_— k= (XA —————
2 (34+4ek)

€

(BA+5ek)a2V? (34— ek) X2y

[(A+2ek)wy’+20V2— 2XyV |+

1 [y, QA+BXV? (24—5B)2Y?
- ]

Pyo=— T T
4B—AL2 ' 24B(4—B)  2B(4—B)
(44— B)X?y? | 3Ba%y? ' 6nyY]
24(4—B) 2(4—B)  4-B.
etc.

When B is near 4 a small divisor appears in ®q5. In
order to avoid this small divisor we multiply ®; by
(4—B).

We have seen in paper II that in the resonance case
A = B we have another zero-order integral

Co=X2V2— A2V — A X2+ A2+ 44 5 XyY
which is equal to the limit

Co=lim (—3B) (4B—4) (4~ B)d1.

Therefore if we set
B=A-+¢k 2

we can write

(34+ k) X272

— eky'+
A(A+ek)

|

(A+ek)

'T3(A—|-ek)x2y2+12nyY:|+ e (3

and if £— O this integral becomes eCo/24%2+---. In order to find the integral (e/242)(po+epi+---) of the
resonance case [Eq. (22) of paper II7] for £— 0 we add the terms (e/24%)[—%(2®10)*+1% (2®20)%] in Eq. (3),
where 2®59= V24 By?. If we omit all terms of order higher than the second in € we find

2= Bt crt E@r= k(X4 Ax2)+ (¢/242) (X2V— A22V?— A X224 A%+ A A5 Xy Y — 3 (2010)+ 15 (25a0)?)
— (ek/34) (Axy?+2xY2—2XyYV)— (£/943) (4 A%y '+ 4 A23y*+ 2A 3V + 22452 X yV — 204 2 X292+ 145 X2 V2
— 14X}V +13A XYY — TaV A+ T Xy Vi— 9432V ?)+ (h/6A) (— 6 X2V 2+ 242V 2+ 54 X2y — A%aty?
— A% *—164xXyY )+ (2¢2k?/9A4%) (— Axy?+4xY2—4XyY) = $.0= Bo,0+ €Br,0+ €320, (4)
687
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where the subscript 0 after the semicolon indicates the
initial point.

The invariant curves are found if we set y=y,=0 and
V2=24—X?—Ax* in Eq. (4):

Jolw, X2)+efu(,X7) -
= fo(xo,X®)+ef1(xo, XM+ -+, (5)
where
Jolx, X3 =3k (X?+A42?) (6)
and

f1(x,X2) = — (1/244?) (15X*—2X2(10h— 34 2?)
— 0423287 A 0% — (2kx/34) Qh—a2— Ax2).  (7)

If & is of order 1 and e is a small quantity the in-
variant curves are distorted ellipses around a point
near the center (Contopoulos 1965).

If % is of order ¢, namely

k=eK, hence B=A+4¢€K, ©)
then the invariant curves are given by the equation

8(A22 X?)=15X*—2X2(10h— 3422+ 6K 42)
— 942442452 (14h— 6K A2)
— 15X ¢*+2X ¢ (10h— 34 2>+ 6K 42)
9423 — 2452 (14h— 6K A2).  (9)

The discussion of this equation is made in the same
way as that of Eq. (31) of paper II. The inequality
(32) is replaced by

J(Ax?)=144A42x*— 244 x*(20h— 6K A?)+- 10042+ 225X ¢*
—30X?(10h—3A4Ax?+6K A?) — 1354 % +-420hA4 2
— 180K A%x?+120K A%h+36K2442>0, (10)

and Eqgs. (33) and (34) are replaced by

8(A32,0) = — 942+ 24 2 (14h— 6K A2)
—15X ¢+ 2X 2(10h— 342+ 6K A?)
+94% ¢ — 2452 (14h— 6K A7), (11)

and

(A2, 2h— Aa?)= (10h+ 15X 2—9Ax2— 12K A) V2
=0(0,2). (12)

We consider first the case
(1) 10A4+15X2—94x2—12KA2>0. 13)

Then 6(0,2%) >0 and we have two real roots x2 of Eq. (9)
smaller than 2k—Ax?if §(Ax*)>0 and

(10h— 34 22+6K A%) /15 < 2h. (14)

The last inequality is verified for every positive Ax? if

KA2<10k/3. If, however, KA2>104/3 the inequality
(13) is not verified inside the limiting curve

X+ Axi=2h. 15)
In fact the hyperbola
15X —94x=12KA*— 10k (16)

intersects the X, axis at two points [ (12K A2—10k)/
157% inside the limiting curve if 104/3>KA2>5k/6.
If KA42>10k/3 it is outside the limiting curve. If
KA?=5h/6 the curve (16) is reduced to two straight
lines through the origin. If 54/6>KA4%*>—2h/3 the
hyperbola (16) intersects the Adx, axis at the points
+[(10h—12KA4?)/9]. If KA®*<—2h/3 then the hy-
perbola is outside the limiting curve, and all initial
positions inside the limiting curve satisfy inequality
13).

Equation (10) has two real roots A x,2 and A x2( > A x.2)
if inequality (13) is satisfied. It is proved, as in the
resonance case, that we must have 4x2< 4«2 in order
to have g(44?)>0 and that Ax.2 is between the roots
Ax?, Ax? (22 < x2) of 0(A422,0)=0, which are

14h— 6K 4?

Axp2= :(:%{[14h—9(X02+Ax02)—6KA2]2

+216X 2 (2h— Xo— Ax@)}t (17)

If Ax?=A4x.2 we have a double root X2=0 for
Ax?=Ax2.

Equation (9) has two positive roots if (4 x20)>0 and
10h—3A4x*4+6KA2>0, no positive root if §(4x%0)>0
and 104—34x?4+6KA%*<0 and one positive root is
6(A4%0)<0. Therefore if Ax*<Ax® we have one
acceptable root, and if Ax2<A4a?<Ax,? we have two
acceptable roots if we have also 4x?<3%(10k46K A?)
and no acceptable root if Ax2>%(10h+6KA2).

Let us assume first that 0< Ax2<3(10k+6KA4%).
Then if Ax2>0 we have invariant curves of type A
[Fig. 1(a); one root for X? if 0<4s2<Ax? and two
roots if AxP<Ax*<Ax2]. If Ax?<0 we have in-
variant curves of type B (two real roots for X?), which
surround one of the invariant points Pi,Pe{x=0,
X =4[ (10h+6KA2)/15), [if 24> (10h+6KA?)/15
>0]. In fact g(0)=25(2h—3XE—Axi+6KA2/5)?
4204202 (26h—3X *—8Ax— 6K A%). This cannot be-
come negative if inequality (13) is satisfied inside the
limiting curve; therefore it cannot be Ax.?<0, if
KA2<10/3.

If Ax2=0 we must have Ax?=0 and X¢&= (102
+6K A2)/15.

If KA%— 10//3 the points P;, Py tend to the limiting
curve. If K4?— —5i/3 the points P;, P; tend to
coincide at the origin.
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Fie. 1. Invariant curves in the cases: (a) 4=0.1, ¢e—0,
£=0.00765, k=—h/A?=—0.765. (b) A=0.1, e — 0, £=0.00765,
k=h/A2=0.765. (c) A=0.1, e = 0, h=0.00765, k=8h/34*=2.04.

The separation between type A and type B invariant
curves is the curve with 4x2=0, i.e.,

6(0,0)= —15X¢*+2X * (10h— 34 xe*+6K A?)

+94%'— 24 x? (14h— 6K A?). (18)

The branch of this curve going through the origin inter-
sects the X axis at the point Xo==[(2044+12K4%)/
157# if #> (10h+6K.A%)/15>0.

If 54/6>KA*>—5h/3 this curve is a figure eight;
the B-type curves are inside it [6(0,0)>0] and the
A-type curves outside [6(0,0)<0].

If KA?< —5h/3 the whole curve shrinks to the origin.

If KA%2=5h/6 we have

6(0,0)= (2h—X¢—Ax?) (15X —94#)=0,

i.e., this curve is composed of the limiting curve and
the two straight lines, to which is reduced then the

ITI 689

curve (16). For KA2>5h/6 this curve takes the form
of the symbol o, but it is outside the region defined
by inequality (13) [Fig. 1(b)]. Therefore if KA4*>5k/6
there are no invariant curves of type A.

Let us consider now the case (104+6KA2%) <Axq.
We have

IJL3(107+6K A2 ]= 50 (A2, X )

=—150[3(102+6KA4%),0], (19)
where
o (Ax?, X %)
=—302h—X¢—Ax®) (10h+15X ?—9A4x>— 12K A?)
+20(2h+3K A2 (20)

Therefore if $(102+6K A2)= Ax.?, then Ax?=Ax2 If
1(10r+6K A%< Ax2, then o(Ax?,X?)>0 and from
Eq. (19) we find that §(10%4-6K 4?) is outside the inter-
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val (Ax:%, Ax.?). Further 3 (1024 6K 42) <% (10h—3K 4?),
hence KA?<—2h, and 3(10h+6K A42) <§(14h—6K 42),
i.e., 3(10A+6K A%) < Az

In this case we have one acceptable (positive) root
for X2if 0 < Ax?* < Ax,? and no positive root if 4x,2 < A«2.
The invariant curves are then simple closed curves
(distorted ellipses). They correspond to box-type orbits
of the general nonresonance case.

Such orbits appear if KA?<—%k. The box and
A-type invariant curves are separated by the curve

o (Axd, X&) =0. (21)

If KA2<—2h/3, the inequality (13) is satisfied for
all points inside the limiting curve; hence the curve
(21) is inside the limiting curve. It intersects the A¥x
axis at the points A¥xo=[3(1024+6KA42%)J* and the X
axis at the points

Xo=t ({1074 6K A2+12[ — K A2(10h+ 6K A2) ]} /15)3,

which are at a distance smaller than (2k)* from the
origin if —2k/3>KA*>—5h/3.

When KA?— —2h these points tend to the limiting
curve. For KA?=—2%h the curve (21) coincides with
the limiting curve.

When K A2 — —5k/3 it can be proved that the whole
curve (21) shrinks to the origin.

When KA*<—>5k/3 this curve becomes imaginary.
Then all orbits are boxes as in the general nonresonance
case.

We consider now the case

(i) 10+15X2—94x2—12KA42<0.  (22)

Then we have one acceptable solution X? whenever
6(422,0)20.
But

0(4x20)=9(Ax2— Ax2) (Ax2— Axs?). (23)

The roots (17) coincide only if X@=0 and Axg
=31(14h—6KA?). Therefore we have two invariant
points Ps;, P, {Alx=4[$(14h—6KA%)]}, X=0} if
0<3(14h—6K A% <2k, or Th/3>KA*>—21/3. These
invariant points are in the region (22) if KA2>—24/3.

When KA2— —2k/3 the points Ps, P, tend to the
limiting curve and when KA?— 7h/3 they tend to
coincide at the origin.

If the hyperbola (16) intersects the A¥x axis, i.e., if
21> K A*> —2h, then the invariant curves in the region
(22) are closed curves surrounding the points Ps or Py
(Fig. 1 of paper II). In fact, then the roots Ax:?, Ax,?
are between 1 (10h—12K 42) and 2k, because

0[3(10h—12K 42),0]=6(24,0) <0;
it is also 6(4x%,0) >0 for

Ax2< A< Ax?, (24)

G. CONTOPOULOS AND M. MOUTSOULAS

and Ax2< 3 (14h—6K A?) < Ax,?. These invariant curves
are of type C.

If the hyperbola (16) intersects the X axis, i.e., if
10%/3> K A*>5hk/6, then we may have invariant curves
surrounding both points Pj, P,, which are like the A-
type invariant curves rotated by 90° [type §; Fig.
1(b)]. The maximum values of X? are X, and they are
larger than the value X?=X;? for x=0. The C- and
8-type invariant curves are separated by the curve (18).
The C-type invariant curves are inside it [6(0,0)<0]
and the 8-type invariant curves outside it [6(0,0)>0].
This curve intersects the A%x axis at the points A,
=4[3(28h—12KA%) ¢ if A>§(14h—06KA4%)>0, i.e,
Th/3>KA*>5h/6. These points tend to the limiting
curve if KA?— 5k/6 and to the origin if KA?— 7h/3.
If KA2>7h/3 the curve (18) is reduced to the point 0.

A discussion of Eq. (9) considered as a function of
Ax? gives a distinction between the invariant curves
of types C and 6 in the same way as we distinguished
above between the invariant curves of types B and A.
If 10/3>KA2>7h/3 the points P3, P, do not exist any
more. Then we have near the origin invariant curves
for which the maximum X? occurs at ¥=0. They are
simple invariant curves (distorted ellipses) similar to
the invariant curves of the box-type orbits [Fig. 1(c)].
These invariant curves are separated from the d-type
invariant curves by the curve

&(Ax02,X02)
= (2h—X 32— Ax?) (10k+15X 2 —94x2— 12K 4?)

+(20h—6K 42)2=0, (25)

which is analogous to the curve (21). In fact we prove
that simple invariant curves occur if ¥(—14%+46KA?)
> X2, where X is the smaller root of the equation
6(0,X%)=0. Then it is proved that %(—14k+6KA?)
> X2, where X2 is the smaller root of J(X?), i.e., the
discriminant of Eq. (9). In fact we see that

600, —3(14h+6K A7) ]= ¢ (A2, X )
=59[—3(14h+6K4%)]

and we proceed in the same way as above.

When KA%— 7h/3 the whole curve (25) shrinks to
the origin and for KA2<7k/3 it becomes imaginary.
That is, there are no simple invariant curves then near
the origin. If 10k/3>KA*>7h/3 we have simple
invariant curves near the origin [Fig. 1(c)]. When
KA?— 10k/3 the curve (25) tends to the limiting
curve. For KA?>10k/3 all invariant curves are simple.

The conclusion is that the resonance phenomena
occur when KA? is in the interval (—5k/3, 104/3).
This interval is divided into the intervals (—S5k/3,
—2h/3), (—2h/3, 5k/6), (5k/6,Th/3), and (Th/3,10k/3).
The corresponding sets of invariant curves are given in
Figs. 1(a), Fig. 1 of paper II, 1(b), 1(c).

These considerations are valid when e is very small,
tending to zero. If e is finite the invariant curves and
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F1c. 2. Invariant curves in the cases: (a) 4=0.1, ¢=0.05,
h=0.00765, k=—)/42=—0.765. (b) A =0.1, e=0.05, /,=0.00765, ,
k=h/A42=0.765 (c) A =0.1,e=0.05, h=0.00765, k =8%/342=2.04.

the subdivisions of the resonance region are somewhat
altered. However the main features of the classification
remain the same. This is seen in Figs. 2(a)-(c), which
correspond to the Figs. 1(a)-(c), but have e=0.05. The
invariant curves are given in first-order approximation
in e. Higher-order approximations of the invariant
curves corresponding to Fig. 1 of paper II (for £=0),
have been considered in paper II. When ¢=0.05 the
first-order theoretical invariant curves are very near
the observed invariant curves, which are found by
numerical integration of orbits.

II. BOUNDARIES OF ORBITS (A~~B)

In order to find the boundary of an orbit we eliminate
X, Y between Eq. (4) and the equations

X2 V24 Aa?+ By — Qexy? =2k (26)

S

-——1T -
N
B B

>
x

and
J=(0¢/dX)Y—(3¢/3Y)X=0, 27)

which is written

X V[ —6kA2+e(20h—12402— 3412 — 8k Ax)— 15¢V2]
=ded (k+32)y(2V2—2h+ A2+ Ay?), (28)

if only terms up to the first order in e are included.
Therefore XV is of order e and the boundaries are near
the lines x= = (2®y,0/A)? and y= = (2&,,o/ B)%.
If £o=1yo=0 we find, in first-order approximation the
boundaries

(29)

X e(Y2—Ay)T7 eV 2—A49?)
x== l:l—i— J—i—

3 kA2 342

Az

and

Y() 2ex €
y= :I:—I:I-l-——l———(sz—Xo?):l. (30)
B} 34 kA2
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These formulas differ from those of the general
irrational case (Contopoulos 1960) by the terms that
have % in the denominator.

It is evident that these formulas are not valid if %
is very small.

If x9=coe (small) and X,=0, the boundary that
intersects the x axis perpendicularly is found if we set
X =Xe, x=ce. Then Egs. (28) and (4) become

XV=—2ey(2h— Ay /34 31)
and
ek ek
—[x2+A4 (—c®) ]——[Acy*+2¢(2h— Ay*) —dhcy
2 34
2 a1 o, )
+—02h— - =0, (32
34 ’ 643
or
X2=442(2h— Ay?) /942 33)
and
2 2 (4h— A9?) z+8hc° 4 (8h—Ay%)=0, (34)
2——(4h— c—ct+————(8h— =0,
342 YT o 4
hence ) 8hi— Ay
y _
C1=Co——, c2=—co} (35)
342
We have a periodic orbit if
xo=4he/3A2. (36)

The solutions (35), (36) are the same as in the general
irrational case (Contopoulos 1965, Appendix A).
If k=K we have in zero order:

(i) The energy integral

X?=C—Y?, 37
where
C1=2h— A (2>++?). (38)
(ii) The third integral [Eq. (4)] then becomes
48 AxyX YV =15V*—2C,Y>4Cs, (39)
where
Co=20h—34 (4x>+y?) — 6K A2, (40)
C3=16/1248hAy*—3A4%9%(8x2+3y?)
+1200,0+12KA2(Ay2— V— Ayed), (41)
and
©0;,0= XV ¢—AxdV¢—AX 02)’02
+ A%y +4 A% X oy o— 3 (X o*+ Axe?)?
+5(Ve+4y®)? (42)

as in the resonance case.

G. CONTOPOULOS AND M. MOUTSOULAS

(ili) Equation (28) is now written
XYV (—15724-Cy)=124xy(2V>—C,). 43)

Equations (38), (39), and (43) have the same form as
Egs. (46), (47), and (50) of the resonance case (paper
II), therefore they are solved in the same way. The
boundary is given by Eq. (58) of paper II. The only
difference is that Cy and C; are not the same as in the
resonance case.

We find a few characteristic points of the boundary.
Because the method is in general similar to that used
in paper II detailed calculations are not given, except
when they differ essentially from those of paper II.

A. Section with the Curve of Zero Velocity
Equation (59) of paper II is replaced here by
C(4x?)=1542%*— (20h+12K A%) Ax*— 41412 4,0

+12KA2(2h— YV 2—Ay2)=0. (44)
The discriminant is

4{160h2—' 180900;0
+ 60K A2 —4h+3(V @+ Ay?) J4+-36K24%)
=4{[5(2X #— V4 24x?— Ay?) — 6K A> ]

+3604 (x0Vo— X30)?} 20.  (45)

It is zero only for the periodic orbits, where
Yo Yo (ZOh— 6KA2)%

20 Xo  \0A5KA?

(46)

The periodic orbits are two straight lines through
the origin in zero-order approximation. They exist for
10k/3>KiA®>—5k/3, i.e., in the whole resonance
region. If K42 — 10//3 these orbits tend to the periodic
orbit y=0. If KiA? — —5k/3 they tend to the periodic
orbit x=0 (in zero order).

The periodic orbits (46) are stable, while the periodic
orbits y=0 and x=0 are unstable inside the resonance
region and stable outside it. We may say that the
periodic orbits (46), take away the stability of the
orbits y=0and x=0.

In higher approximation the resonance periodic
orbits do not pass through the origin, as it is indicated
by the corresponding invariant curves [Figs. 2(a)-(c)].

We assume y,=0; then C(0)=6(0,0) and

C(2h)=6(0,2k)=6(0,0)+20/2>C (0).

If 6(0,0)>0 we have two real roots of Eq. (43) if
KA*>—5k/3 (B-type orbits).

If 6(0,2%) <0, we have no real root (C-type orbits),
and if 6(0,0) <0, 6(0,2%)>0 we have one real root for
Ax? (A-, D- or box-type orbits).
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B. Section with the x Axis (if XV0)

Equations (79) and (81) of paper II are replaced
here by

¥2=C,y/15= (20— 124x*— 6K A%) /15 4n
and
D(Ax?)=144A%*—24 A2 (20h— 6K A%)+ 10042+ 225X ¢

—30X¢*(10h—3 A2+ 6K A2) — 135 A2+ 420k A?
— 180K A%+ 120K A%h+36K2A%= g(Aa?)=0. (48)

As we have seen above, Eq. (48) has real roots only
if inequality (13) is satisfied inside the limiting curve.
The smaller root Ax,? is acceptable if

0<4x2<2k and 0<X?<2k, 0K V2< 2%,
hence
0< Ax* < 3(10A+6K 4?)
and
Ax2< & (208—6K A?).

The last relation is satisfied whenever we have real
roots of Eq. (47) because their mean is 7% (204— 6K A42).
We have also seen that when inequality (13) is satisfied
we cannot have §(0) <0. Therefore the only condition is

I[3(10k4+6K 42)1>0.

We have already seen that if this inequality is
satisfied we have A-type orbits, otherwise we have
box-type orbits (no angular point of the boundary on
the x axis).

C. Branch Perpendicular to the x Axis (X=0)
Equation (84) of paper II is replaced here by

E(Aa2)=9A4%4— 2452 (14h— 6K A?)+ 41— 1204,
—12KA?(2h— V¢ — Ay@)=0. (49)

The discriminant is

4{[2(X o+ Ax?)—T(Y i+ Aye)+6K A>T
+216(X oY o+ Ax0y0)2} 20.  (50)

It is zero only for the periodic orbit where

Ay Y, 2h4-3K AN}
=— = ( ) . (51)
Xo Atx, Th—3KA?
The periodic orbit is the ellipse
Axo2 Ayo2 2
- (52)

- =
Th—3KA® 2h+3KA2 9

It exists whenever 7h/3>KA?>—2h/3, ie., when
there are C-type orbits.
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We find, as in the resonance case, that the boundaries
of the A-, B- and C-type orbits have 1, 0, and 2 positive
roots for X=0.

In case A there is a double root for x=x,=0. In
second approximation the double root (corresponding
to an unstable periodic orbit) is given by Eq. (36).

D. Section with the y Axis (if X¥'><0)
Equation (106) of paper II is replaced here by

F(Ay?)=144A42y*—24Ay*(10h+6K A%)+160k2
—180¢0; 0+60K A%(—4h+3 (VY 2+ Ay?))
136KEA*=0. (53)

We have real roots only if
0(0,0)= —4h*4-12¢0,0+12KA*(2h— Y #— Ays*) 2 0.

This happens in cases B, §, and for some ‘“box” orbits.
Further, we must have 0< 4y2< 2k and

0< V2= (20h—34y*—6K A2) /15K 2h— Ay>.
These relations are reduced to
(1) 0<4y*<{5(10r+-6KA?) if KA2°<Th/3,
and
(i) 0<4y*<5(020p—6KA?) if KA*>Th/3.
We have always

F(0)=160/*—180¢.o
+ 60K A —4h+3(Y ¢+ Ay?) ]+36K24420, (54)

as given in Eq. (45).

If KA?2<7h/3 and Eq. (53) has real roots, then
one of them is smaller than the mean of the roots
72 (105+6K A4%); i.e., then we have always one accept-
able root (cases B and § only).

If KA*>'7h/3 we must also have

F[3(20h—6K A%)]= — 156 (A2, X )
—40(20h— 6K A2) (—14h+6K A7) <0, (55)

because the mean of the roots is then larger than
5(20r—6K 42).
The curve

156 (A2, X ) +40(20h— 6K A%) (— 14h+ 6K A2)=0 (56)

is inside the curve (25) if 10k/3>KA>Th/3.

The orbits with initial conditions inside the curve
(56) are “box” orbits; their boundary does not have
an angular point on the y axis. The orbits with an
angular point on the y axis are called D-type orbits.
We see that if KIA?2<7h/3 then the D-type orbits
correspond to §-type invariant curves. If, however,
KA*>7Th/3, only part of the D-type orbits correspond
to invariant curves of § type; if the initial conditions
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are between the curves (56) and (25) the orbits are
D type while the invariant curves are of the simple
(ellipse like) type.
The curve (56) intersects the X axis at the points
Xo==+((1/15){102+6K 4*
—4[3(6KA42— 10k) (10h— 3K A2) 1))

and the 4% axis at the points
A¥xo=£[§(—14h+6KA?) A

These points are inside the corresponding intersections
of the curve (25); they tend to the origin if KA2— 7h/3
and to the limiting curve if K42 — 10%/3. The curves

s . LI
T ¥ o 05
1

L L _,_L.L.

4
\
RS i

S

F1c. 3. Two orbits in the case 4=0.1, B=0.08, ¢=0.1 (%
~0.00765). Initial conditions=(a) x¢=0.39, v,=X,=0, ¥,
=0.009487 (box type). (b) %0=0.35, yo=X,=0, ¥=0.055227
(A type on the left, box type on the right).

(56) and (25) both shrink to one point if KA42— 7hk/3
and tend to coincide with the limiting curve if
KA2— 10k/3.

E. Branch Perpendicular to the y Axis (V=0)
Equation (109) of paper II is replaced here by

G(Ay?)=94%y"—2A4y*(4h+ 6K A%) —16k*—12 00,0
+12KA42(Y 2+ Ay?)=0. (57)

The discriminant is the same as that of Eq. (49);
i.e., it is positive except for the type-C periodic orbit,
when it is zero.

As in paper IT it is seen that no solution of Eq. (57) is
acceptable in case B, two solutions in case C, and one
solution in case A and D and for box-type orbits.
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Fic. 4. Two orbits in the case 4=0.1, B=0.104, ¢=0.05,
(h=0.00765). Initial conditions: (a) xo=0.35, yo=Xo=0, Vo
=0.055227 (D type). (b) #,=0.1, yo=Xo=0, ¥=0.1195826
(C type).

Figures 3-5, give some examples of boundaries of
orbits in various cases. The boundaries are marked as
dash-dotted lines and the areas covered by the orbits
are shaded. The curves of zero velocity are marked as
dashed lines, on which lie the apexes of the boundaries
of the A-, B- and D-type orbits.

In all cases we take 4=0.1, 2~0.00765; hence the
intervals (—5h/3, —2k/3), (—2h/3, 5k/6), (5k/6, Th/3)
and (7h/3, 10k/3) for KA? are (—0.01275, —0.0051),
(—0.0051, 0.006375), (0.006375, 0.01785), (0.01785,
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F1c. 5. Two orbits in the case 4=0.1, B=0.106, ¢=0.05,
(h=~0.00765). Initial conditions: (a) xo=0.35, y=X,=0, Yo
=0.55227 (D type). (b) #%=0.1, y=Xo=0, ¥¢=0.1195826
(box type).
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0.0255). The corresponding intervals for B for e=0.1
are: (i) (0.08725, 0.0949), (i) (0.0949, 0.106375), (iii)
(0.106375, 0.11785), (iv) (0.11785, 0.1255); and for
¢=0.05 theyare: (i) (0.0968125, 0.098725), (ii) (0.98725,
0.10159375), (iii) (0.10159375, 0.1044625), (iv)
(0.1044625, 0.106375). Of course, these intervals are
given in first approximation and in practice they are
somewhat different, especially in the case e=0.1.

Figure 3 gives two orbits when B is in the interval
(i). Both orbits have their initial points on the x axis
and their initial velocities perpendicular to this axis.
Orbit a is of box type. Orbit b is A type at left, i.e.
the boundary has an angular point on the x axis and
forms a triangle inside the space covered by the orbit.
On the right, the boundary does not have an angular
point. This is due to the fact that when e is large the
invariant curves are distorted so that the A-type
character (two maxima for |x|, which do not happen
for X=0) appears only on the left, while on the right
the maximum «x occurs for X=0 [Fig. 2(a)].

If B is in the interval (ii) the orbits are similar to
those of paper II, because the value K=0 belongs to
this interval.

Figure 4 gives two orbits when B is in the interval
(iif). Orbit a is of D type, while orbit b is of C type, as
it should be expected from the form of the invariant
curves [Fig. 2(b)].

Figure 5 gives two orbits when B is in the interval
(iv). Orbit a is of D type while orbit b is of box type,
as should be expected from the theory above.

Similar results are found when e=0.1. Then, how-
ever, the D-type orbits have the angular points of the
upper and lower boundaries more to the left of the y
axis than the corresponding orbits in the case e=0.05.

When B is outside the resonance range all the orbits
are boxes.

III. CASE A4 B. INVARIANT CURVES

This case is similar to the case 4=4B of paper I
(Contopoulos 1963). (The notations of papers II and
III are different from those used in paper I. Namely,
we here use the symbols #, v, X, ¥, 4, B, €, ®10, P20, - -
instead of ¢, 2, R, Z, P, Q, b, ®o, Vo, -+ +.)

If A~4B a small divisor appears in the term ®;; of
the third integral (1").

We can construct an integral valid near the resonance
case A=4B if we set

4B=A-t ¢k
and multiply ®; by 2(4B—A4)/e. Then

o= poteort - - - = k(X2 Aa?)+ Awyt—daV>+AXyY
+ (¢ A2) (— k A2wy>— A%t — A232y2— 3 A2yA— 2 452X
—4ARVH5AX P+ TAP Y —1642XyY — X*
— 12XV 14T+ - - = gotegnot

(58)

(59)
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where we have included in ¢; the terms
— (1/ A% [ (2®10)24 12(2P10) (2P20) — 14 (2P20)%]

of the resonance case [ the present terms are four times
larger than in Eqs. (47), (48) of paper I].

The invariant curves on the A, X, plane for
y=1v,=0 are found if we set

V2=2h—X2—Ax? (60)
in Eq. (59):
(452, X2) = k(X2+ Ax?) —4x(2h— X2 — Aa?)
+ (¢/ A2) (25X%—2X2(40h— 21 A%?)
+17 A28 — 64hAx?) =y (Ax?, X 2)=const. (61)
If ¢ — 0 the invariant curves become
X2=[y+4x(2h— Ax?)—kAx>]/ (k+4x).  (62)

These curves for various values of & and A¥xo, X, are
shown in Fig. 6.
All the invariant curves are inside the limiting curve

X+ Axg=2h. (63)

The invariant curves cannot cross the line A}x= —3k A%

If —3kAi<—(2h)} or —1kA¥>(2k)} this line is
outside the limiting curve and the invariant curves are
simple distorted ellipses as in the general nonresonance
case. We have resonance phenomena if

428/ A<k <4 (2h/ A1, (64)

We must always have 0 X2< 2h—Aa?; if k4+4x4>0
these relations are written: 4Ax*+kAx*—8hx—y <0
and ¢ <2hk, or

w(x)=44 (B—xd)+ kA (62— x6*) — 8k (x—x0)

bt on (k+4xo) <0, (65)

and k+4x,>0. The function w(x) is positive for
x=—%k, x=(2h/A)* and x— «, and negative for
x=1x,; therefore it has three real roots x,, s, ¥3, where
=l <a;<wo<x2<(2h/A)t<x;, and we must have
%1 <2< For x=x, or x=1x, we have X?=0.

The two roots 1, %, coincide if they are equal to one
root of the equation o’(x¥)=124x*+2kAx—8k=0, or

w=— 75k {11+ (96k/k24) i}, (66)

In order that these roots should be between = (2/4/4)}
we must have the relations (64). Then we have always
two acceptable solutions (two invariant points that
correspond to two periodic orbits that cross the x axis
perpendicularly). We can check that then we have
X2 max=0~

Therefore we have two sets of closed invariant curves
around the points (66). If £=0 the two sets are sym-
metric with respect to the X axis.

If % is outside the limits (64), e.g., if || 4 >4(2h)}
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(c)

we have only one set of closed invariant curves around
the point x=—5k[1— (1+(96%/k24)¥].

This explains why for values of 4 near 4B we have
two periodic orbits perpendicular to the x axis, while
in general we have only one such orbit (Contoupoulos
1965).

A numerical application of the approximate formula
(66) for h=0.00765, B=0.1, ¢=0.1, and 4=0.39
(k=0.1), of A4=0.41 (k=—0.1) gives the periodic
orbits at x=0.106, x=—0.123 for 4=0.39 and at
%=0.120, x=—0.104 for 4=0.41, while the periodic
orbits found empirically are at x=0.121, x=—0.106
for 4=0.39 and at x=0.133, x=—0.085 for 4=0.41.

If we take into account the terms of first order in e
the invariant curves change a little, but their topology
is the same

In particular we note that the straight line A¥x
= —1kA% which separates the sets of invariant curves
around the two invariant points Py, Ps, becomes curved
(for £>0 it is concave to the left).

Fic. 6. Invariant curves in the cases: (a) 4A=0.4, B=0.1,
(e—0), £=0.00765, k=0. (b) A=04, B=0.1,
=0.00765, £=0.6. (c)
k=—0.6. In these cases 4(2//4)¥=0.78.

(e=0), &

A4=04, B=0.1, (¢—0), h=0.00765,

IV. BOUNDARIES OF ORBITS (A~4B)

We find the boundaries of the orbits in zero-order
approximation. As usually we eliminate X and ¥
between the zero-order energy integral

X2=2h—Y?— Ax?—1 A2, (67)
the third integral
o=k (X?+Ax2)+x(Ay2—4V?)+4yX V= ¢4, (68)
and
Jo=(0¢0/0X)Y — (d¢p0/0YV)X
=2XV (k+4x)+4y(72—X»)=0. (69)

Equations (68) and (69) become
49XV =V (k+4x)— Axy*—k(2h—145")+ po0,  (70)
and

(b+420) XV =2y(—2V2+2h— A2?—345%).  (71)
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Eliminating XV we find
V2= (k+4x)2416y* [ 292 (8h—4Ax>— Ay?)
+ (k+4) (A2 — po;0)+ik (k+4x) 8h— Ay ]. (72)

If we raise both members of Eq. (71) to the square and
replace X2 and ¥2 by their values (67) and (72) we find
after some operations

Ady5— 2 A2 (Sh—k Ax) — Ay (2h— Aa?) (k24 —32%)
+ (2hk— ¢o;0) (—kA+124x) ]
—44 (th— ©o; 0) (4Ax3+kAx2—8hx— ®o; o) =0. (73)

If Xo=%0=0 we have for y=0:

(x—xo)[4422+ (dxo+k)Ax
4 Aw¢—8h-+kAx]=0, (74)

hence we have three roots, %o, %1, %s. If 4x0+2>0 we
have

Ko< — 28/ AV < — % (dxo+-k) <21 < (2h/ A)3,
and if 4x,+%<0 we have
—(2h/A) i<z < — % (dao+k) < (2h/ A) < 1.
If Xo=0 Eq. (73) is written

A y*— (dwotk) (x—20) ]
X[y2— (dwr+k) (w—21) J[ (92— (das+&) (x—22) ]=0,
(75)

i.e., the boundary is composed of three parabolas, as
in the resonance case (Fig. 8, in Contopoulos 1965).

: i
— i Yo ;}

Fi1c. 7. Boundaries of orbits in the case: 4=0.34, B=0.1,
e=0.1 (£=0.6), #=0.00765, and initial conditions yo=X,=0 and
(a) A¥ro=0.06, (b) A¥e=0, (c) A*xo=—0.06, (d) A¥xo=—0.08,
Atxy=—0.10.

We have periodic orbits if ®e=x1 or xo=uxs, ie.,

o= —7gk{1=[ 14 (96k/k24) #},

as given by Eq. (66).
The periodic orbits in this approximation are parabolas

y2— (dao+ k) (x—2,) =0. (76)

If #— —4(2h/A)* we have periodic orbits for x,—>
(2h/A)? and xo— —3%(2h/A)%; then the first parabola
becomes 3*=0, i.e., it coincides with the x axis. If
k— 4(2h/A)* we find similar results.

Some orbits calculated in the case £=0.6 are shown
in Fig. 7. The boundaries of the orbits are approxi-
mately three parabolas. All orbits surround one of the
two main periodic orbits.

In case ¢ we see that the left boundary has an
angular point on the x axis and there is also an inner
triangle formed by extending the two arcs of the
boundary a little beyond the angular point, and by a
small arc perpendicular to the x axis. In this respect
the orbit has some similarity with the A-type orbits of
the case A~B. The corresponding invariant curve has
two minima with respect to x which do not lie on the
# axis. This happens because this invariant curve goes
near the limiting line that separates the two sets of
invariant curves around the two invariant points Py, P,
and this limiting line is concave to the left.

V. CONCLUSIONS

We see that the resonance phenomena do not appear
only at the resonance itself, i.e., when the ratio of the
unperturbed frequencies A%/B? has a rational value,
but also for a range of values of 43/ B2,

The main resonance effect is the appearance of new
periodic orbits besides the periodic orbit near the axis
=0 and the orbit y=0. When one of the new periodic
orbits is stable there appear ‘‘tube” orbits near it. The
invariant curves corresponding to the ‘“tube” orbits
are closed curves around the stable invariant points,
which represent the periodic orbits. As the ratio
AY/B# increases or decreases the invariant points move
until they disappear, either at the limiting curve
(which corresponds to the periodic orbit y=0) or by
reaching another invariant point, e.g., the invariant
point near the center (which corresponds to the periodic
orbit near x=0).

In the case A3/Bi~2 there are two periodic orbits
(approximately two parabolas) crossing perpendicularly
the x axis one on each side of the origin. As 4—4B
increases (decreases) the periodic orbit to the right (to
the left) tends to coincide with the orbit y=0. The
periodic orbit y=0 is unstable in the resonance region
and stable outside it.

In the case A%#/B¥~1 the structure of the resonance
region is more complicated. There are four different
patterns of invariant curves which correspond to four
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consecutive intervals of values of 4— B. One of these
intervals includes the value 4—B=0. The invariant
points Py, P, appear in all four patterns, while the
invariant points Ps, P4 appear only in the central two
patterns.

The theory of the third integral, developed in zero
order with respect to ¢, gives the main characteristics
of the invariant curves and of the various types of
orbits. Higher approximations give results which are
closer to the accurate results found by numerical
integration of the orbits.

One new form of resonant orbits, namely the D-type
orbits, appears for a range of values of 4—B(<0),
while it is not present for 4= B. This is one case of a
resonance phenomenon which appears near but not
at the resonance itself.

[We would like to indicate a few typographical errors
in paper II: In Eq. (9) write o= instead of @o=; in
Eq. (33) write —34x?) instead of —3A4x)?; in Eq.
(41) write 94%x* instead of 94x¢*; in Eq. (59) write 4

G. CONTOPOULOS AND M. MOUTSOULAS

instead of B; in Eq. (60) write 324% instead of 322; in
Table I, col. 4 write 1.0 instead of 1.7; and in p. 831,
column 2, line 12 interchange X, and ¥,.]
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