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Oscillation Periods of Neutron Stars

THE recent discovery'-* of celestial X-ray sources
prompted various authors®-!? to propose possible produc-
tion mechanisms of these X-rays. In an earlier com-
munication, one of us!? suggested that some of the X-ray
emission might be associated with the mechanical energy
of radial oscillations of neutron stars. To investigate
such a possibility, precise knowledge of the oscillation
periods is important. The investigation of the possible
effect of nuclear forces on such periods is interesting in
itself. This communication presents some results of such
work.

It is well known that general relativity is important in
such condensed bodies as neutron stars. Therefore, the
circular frequency for purely radial oscillations in general
relativity, as given by Chandrasekhar!s-'s (the final cor-
rected expression), was used in our calculations. Three
types of nuclear forces were chosen for use in the equation
of state. One, designated ‘Skyrme’, is a three-body
nuclear potential!¢. The other two are neutron-neutron
potentials derived by Levinger and Simmons'?, and are
designated Vg and V) potentials. The case of non-inter-
acting fermions was also considered for comparison. The
models with zero interactions are designated ‘ideal’ gas
models, and the others with the three types of nuclear
forces are called the ‘Skyrme’, Vg and ¥V, type models,
respectively. The properties of these models are more
fully described in a thesis!'?, and will be published in due
course.

The periods for the four kinds of models are shown as
a function of the stellar gravitational mass in Fig. 1; the
periods are expressed in milliseconds and the masses are
expressed in solar mass units. The broad horizontal
portion of each curve corresponds to a series of stable
neutron star models. The ‘Skyrme’-type stars have periods
of 0-2-0-3 msec and the V, type stars have periods of
0-4-0-5 msec in the stable region. The typical periods of
the Vg type models are about 0-3 msec when the stars are
massive, but for less-massive models the periods are about
1 msec. The periods for ideal gas models vary rapidly
with mass, decreasing with increasing mass to about
0-8 msec. Estimates of oscillation periods that can be
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Fig. 1. Periods of radial oscillation for neutron stars corresponding to

four equations of state. The branches marked (1) represent equations of

state limited so that the pressure does not exceed one third of the proper

energy density; branches marked (2) are limited so that the pressure does

not exceed the prover energy density
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obtained from the classical equations (order of msec)!®
are especially good for the ideal gas models. However,
our present results show that we must resort to calcula-
tions of the exact general relativistic expressions to obtain
more detailed quantitative information.

In asuitable equation of state the pressure is not allowed
to increase without limit as the density increases, so that
either the restriction p < €/3 or » < ¢ must be imposed.
The periods were calculated for both restrictions on the
equations of state and are shown in Fig. 1. The curves
denoted by (1) represent the models with the limit p < /3
and those by (2) with p < e. The difference is negligible
over the major portion of the stable region because these
restrictions become applicable only near the massive end
of the stability region for some of the equations of state
used.

The square of frequency w? is positive in a stable
region, becomes zero at the point of instability, and is
negative in the region of instability!®-**. The period
approaches infinity at the boundaries of the stable region
(one or both ends of the curves in Fig. 1). The curve of
the ‘Skyrme’-type models with p < ¢/3, however, fails to
show this singularity at the massive end. Instead of
going to infinity (that is, w? = 0), the period approaches
a finite value, as infinite central density is approached,
after a number of damped oscillations. For this particular
model, instability never sets in at the high-density limit.
All other models chosen for this investigation, however,
show a singularity at the point of the major mass max-
imum.

The behaviour on the low-mass side is more com-
plicated. In order to obtain more quantitative informa-
tion in this region we must include electrons in our
configuration. All present models have a pure neutron
configuration. Therefore, all curves in Fig. 1 are termin-
ated near 0-2 solar masses.

In order to single out the effect of nuclear forces on the
periods, the following period normalization may be used.
The normalization factor, t,, is defined as:

Tn = 27‘/ Wn,
where:

on? = AGMR—3[31‘.4-3GMHR—I< %) 1“4)]. 1)

The formula for w,* is the expression obtained for a
homogenous fluid sphere with a constant I" and constant
energy density, if one expands the formula® for w2,
subject to the condition 2GM/c*R<1. The third term
in the expression is therefore the general relativistic effect
(this expression is quite general and may be used for any
range of mass), and the general relativistic effect on the
periods is accounted for in this way. The factor 4 is a
correction which accounts for the departure from homo-
geneity, and I is the ratio of specific heats.

In Fig. 2, the normalized periods, /7, (with T' = 5/3
and A = 1), are plotted versus stellar mass. We note
that the effocts of nuclear forces are shown more clearly
in this figure. Near ordinary nuclear densities the
‘Skyrme’-type potential has the largest attractive term,
which decroases the pressure at a given density, the V),
type has an attractive term of intermediate magnitude,
and the Vg type has the least attractive term. One con-
clusion to be drawn from Fig. 2 is that an attractive
foree tends to decrease the oscillation periods.

The calculations presented here are intended only to
illustrate tho importance of nuclear interaction corrections
to the equation of state. It seems likely that neutron star
vibration periods will be less than would be calculated
for a gas of non-interacting particles. If thermal emission
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Fig. 2. Periods of radial oscillation of neutron stars with four equations
of state relative to the normalization factor z,, defined in equation 1. The
branches marked (1) and (2) are as defined for Fig. 1

in the soft X-ray region should be detected from such
objects, then it will become desirable to attempt to
detect and measure vibration periods. With some
additional indication of the mass or radius of such
objects, these periods will then give information about
the nucloar forces in the interiors of neutron stars.
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Visible Polarization Data of Mars

For several years the most widely accepted value of
90 mbar for the surface pressure on Mars had been based
on visible photometriec and polarimetric work, particularly
by Dollfus! (ef. de Vaucouleurs? for a detailed discussion).
Recently, however, a value of 25415 mbar has been
derived by Kaplan, Miinch, and Spinrad?® from a curve-
of-growth analysis of pressure-broadened carbon-dioxide
vibration-rotation lines in near infra-red Martian spectra.
A possible explanation of the discrepancy is that aerosol
particles in the Martian atmosphere contribute an appre-
ciable component to the observed brightness and polar-
ization of Mars. Dollfus assumed that Rayleigh scattering
by molecules dominates the atmospheric brightness and
polarization at A 6100 A and that the aerosol contribution
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is insignificant. If this is not the case, then certain
important deductions may have to be changed. The
purpose of this communication is to illustrate what these
changes may be.

Using four different methods based on polarization and
brightness measures of Mars, Dollfus? derived for
% 6100 A a ratio of the atmosphoric brightness to the
surface brightness, By/Bs=0-028, for the bright areas at
the centre of the Martian disk at zero phase (opposition).
Applying the expression for Rayleigh scattering, and
assuming that the seattering properties of the atmospheric
gases of Mars and Earth are similar, he arrived at a
surface pressure of 90 mbar. But if the surface pressure
were 25 mbar, the ratio B,/Bs would be only 0-0078 on the
basis of molecular scattering. A significant portion of the
rest of the atmospheric brightness may reasonably be
attributed to secattering by aerosol particles. We will
arbitrarily assume that B,/Bs=0-028 and P =25 mbear,
so that the brightness of the aerosols is 65/25 that of
the gas.

The next step in determining the contribution of the
aerosol component to the total polarization of Mars is to
examine the polarizations by various compositions,
shapes, sizes, and size distributions of the particles.
Kuipert has suggested that spherical ice particles of
submicron size can explain the ultra-violet polarimetrie,
photometric, and photographic properties of the Martian
blue haze. For the scattering of visible radiation by
spherical particles of such sizes, one must resort to Mie
scattering theory, in which the polarization and brightness
properties of an atmosphere depend on the parameter
x=2ra/), where a is the particle radius and A the wave-
length of observation. Computations of polarization and
intensity versus phase angle for various distributions of «
have been carried out by B. M. Herman and are cited by
Kuipert. We have selected two of his ‘‘balanced’’ mix-
tures, 4” and B” (neither integral nor holf-integral values
of » are favoured), which would apply to *» 6100 A for
most frequent diameters of 0-58 and 0-77u respectively
(Table 1).

The curves of the polarization versus phase angle for
these mixtures are shown in Fig. 1, ¢. These polarizations
exhibit a strong negative branch at low phase angles
and cross-over from negative to positive polarizations
boetween 30° and 40°. This behaviour is quite different
from that of molecular polarization, Fig. la, which is
always positive and increases with the phase angle.

We next computed the total atmospheric polarization
versus phase angle for these mixtures for a 25 mbar
atmosphere, Fig. 1d, e. This is easily done using the
formula:

VoL. 208

PpBp + PuBn
By + Bn

where Pg is the total atmospheric polarization, P, the
polarization by aerosol particles, By the particle bright-
ness, P, the molecular polarization, and B, the mole-
cular brightness. Pp and By versus phase angle are given
by Kuipert, and P, and B, versus phase angle are
calculated from the well-known expressions for Rayleigh
scattering. Bp+ B is normalized to unity at zero phase
angle with relative weights of 65 and 25 for B, and Bn
respectively.

To satisfy ourselves that it is reasonable to propose
that aerosols contribute as much as 65/90 of the
atmospheric brightness at A 6100 A, we computed the
required abundances of mixtures 4” and B”. With the
assumption of the similarity of the scattering properties
of the terrestrial and Martian atmospheric constituents
the results are about 2x 10¢ particles cm~2 for mixture
A” and about 1x 10°¢ particles em-? for mixture B”. For

P, =

Table 1. THE WEIGHTING FACTORS FOR THE AEROSOL MIXTURES A* AND B”
Mixture/z  2-0 2-5 3-0 35 4-0 45 50 55
A" 2 7 10 7 2 0 0 0
B” 0 0 2 7 10 7 2 0





