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ABSTRACT

Theoretical sunspot models are constructed which are a generalization of those considered by Schliiter
and Temesvary (1958). A non-vanishing horizontal component of the pressure gradient, as required by
magneto-hydrostatic equilibrium, is obtained by assuming that a magnetic field in the solar hydrogen
convection zone (HCZ) inhibits the convective-energy transport. In the framework of Prandtl’s mixing-
length theory, this is achieved by making the ratio of the mixing length, /, and the pressure scale height,
H, smaller in the magnetic-field region than in the surrounding undisturbed HCZ.

The corresponding system of ordinary differential equations was solved numerically, and pressure,
temperature, and magnetic-field strength along the axis of symmetry were obtained. When //H ranges
from zero to (}/H)ucz a one-parameter family of solutions results; in the one extreme convective-energy
transport is completely suppressed; in the other extreme there is no inhibition of convective-energy trans-
port. From this family of models, relations between the coolness of a spot and its magnetic-field strength
and between the magnetic-field strength and I/H are derived. The former relation agrees with observa-
tions to within 50 per cent; the latter indicates a maximum possible field strength of about 5000 gauss.

I. INTRODUCTION

This investigation is concerned with the magnetic fields and low temperatures ob-
served in sunspots. Its aim is to obtain a quantitative understanding of these two quan-
tities, especially the relation between them. For this purpose, theoretical sunspot mod-
els are calculated. As a first step it seems reasonable to ignore dynamical effects; hence,
a stationary sunspot is assumed. The visible spot is thought to be the uppermost part of
a phenomenon extending through the superficial layers of the Sun. In the following, this
whole three-dimensional phenomenon has to be considered; consequently the name
“sunspot’’ will be applied to all of it.

Since the work of Cowling (1946) it has been known that sunspot magnetic fields have
decay times of the order of magnitude of 1000 years. Thus this magnetic field must be
considered the primary phenomenon. Brought to the surface region by some as-yet un-
known mechanism, it produces the observed coolness. Such a magnetic field has two im-
portant consequences.

First, it exerts forces on its surroundings. In the stationary case these forces have to
be in equilibrium with the pressure gradient and the gravity force. Without a magnetic
field the pressure gradient, which then only balances the gravity forces, has a component
only in the vertical direction. In the presence of a magnetic field, forces also act in the
horizontal direction; hence, the gradient of pressure must have a non-vanishing hori-
zontal component.

Second, the region between the Sun’s surface and a depth of about 5 solar radius is
known to be thermally unstable. Here turbulent convection rather than radiation is the
prevailing energy-transport mechanism. If a magnetic field is brought into this so-called
hydrogen convection zone (HCZ), a strong influence on the pattern of motion is to be
expected. This, in turn, affects the energy-transport mechanism, and hence the depth
dependence of temperature and pressure is changed. Taken together, these remarks lead
to the following conclusion about the structure of stationary sunspots: The magnetic field
of a sunspot has to affect the convective-energy transport in such a way that the resulting pres-

* This paper is based on the author’s thesis (1962) done at the Max-Planck-Institut fiir Physik und
Astrophysik, Munich (Germany).
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sure gradient together with the gravity force is in turn able to balance the forces exerted by this
magnetic field.

If it were possible to formulate this statement quantitatively, the magnetic field
would be the self-consistent solution of the problem. Let us see to what extent a formula-
tion can be achieved.

As far as the magneto-hydrostatic part is concerned, there are no essential difficulties.
One has to write down the magneto-hydrostatic equation, here a partial differential vec-
tor equation. Schliiter and Temesvary (1958) have shown how this three-dimensional
problem may be reduced to a one-dimensional one, by assuming that the magnetic field
1s axially symmetric and untwisted, and that the horizontal dependence of its vertical
component obeys a certain similarity law. With these assumptions the magnetic field
can be deduced from its field strength at the axis of symmetry; that, in turn, is obtained
as the solution of an ordinary differential equation. To solve this equation, one has to
know as a function of depth the horizontal difference in pressure between a point at the
axis of symmetry and a point far from the axis.

A deductive description of the interaction between a magnetic field and turbulent con-
vection, however, presents a completely unsolved problem. Even for the simpler prob-
lem, the description of turbulent convection itself by the hydrodynamical equations,
there is no generally accepted solution. Due to this difficulty in solving the full problem,
certain tentative suggestions for the case of sunspots have been made. Biermann (1941)
suggested that the magnetic field might inhibit convection entirely; to transport all
energy by radiation a much steeper temperature gradient is required; consequently, the
spot region is cooler than its surroundings. On the other hand, Hoyle (1949) suggested
that the only effect of the magnetic field might consist in forcing the convective flow to
follow the lines of force. If these funnel out near the surface, that part of the energy
transported by convection is then distributed over a greater area; the flux is therefore
decreased, and the spot is again cooler than its surroundings.

Numerical calculations based on these assumptions in neither case have led to reason-
able sunspot models—at best they gave extreme cases. It seemed plausible, as was in
fact already suggested earlier (Cowling 1953), that the truth must lie somewhere in be-
tween. In general, there might be a certain reduced but non-negligible amount of energy
transported by convection within the spot region.

To arrive at a quantitative formulation of this idea, it is useful to consider first how the
structure of the HCZ in the absence of a magnetic field is calculated (see Vitense 1953;
Bohm-Vitense 1958). For this purpose, Prandtl’s mixing-length theory is applied: “tur-
bulent elements” are formed, rise, and are assumed to mix with their surroundings after
they have passed a certain distance / (Prandtl’s mixing length). They perform convective-
energy transport in communicating their energy excess to the surrounding matter, while
they move the distance /. For the quantity / one usually takes the pressure scale height A
or some small multiple of it.

For the present application it is important to notice that the ratio //H governs the
efficiency of convection in transporting energy. As //H decreases, more and more energy
is transported by radiation, and in the limit //H — 0 radiation carries all the energy.
This property makes //H a convenient parameter to describe partial inhibition of con-
vection by the magnetic field.! One assigns to the whole sunspot region a ratio 0 <
I/H < (I/H)ucz. Then one can solve the corresponding structure equations to obtain
temperature and pressure as functions of depth. Finally, one can use the horizontal
pressure difference to solve the simplified magneto-hydrostatic equation. Thus the de-
sired sunspot model is obtained, which one can then compare with observations.

The initially assumed //H is now uniquely related to a certain magnetic-field configu-
ration. The range of values of I/H permitted by our condition 0 < I/H < (I/H)ucz

1 Recently E. Spiegel suggested to the author the reduction of the mixing-length perpendicular to the
magnetic field as a physical justification for the decrease of I/H.
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gives us a one-dimensional family of sunspot models. Letting !/H go to the limits of the
interval one should get models corresponding to the ideas of Biermann or of Hoyle.

II. EQUATIONS

In order to get a set of differential equations describing the sunspot model as outlined
above, one has to write down the expressions for momentum and energy balance. The
former in the present case is the magneto-hydrostatic equation; the latter gives a rela-
tion between the energy flux and the temperature gradient.

Let us start with the magneto-hydrostatic equation:

Vp=—74-1;BX(VXB)+pg, %

where B is the magnetic-field vector (in Gaussian units), p is the pressure, p is the density,
and g is the gravitational acceleration. Schliiter and Temesvary (1958) have shown that
equation (1) may be simplified considerably in the case where the magnetic field is
axially symmetric, untwisted, and its vertical component B, obeys—in cylindrical co-
ordinates—the similarity law

D(a)

Bz(z,r)=Bz(z,0)D—(—(-)—) with a=r{(z). (2)

This last assumption is reasonable only if there are no returning lines of force in the
same spot, or, in other words, if the total magnetic flux ¢ has a finite constant value
throughout the spot. Since observations show (see Hale and Nicholson 1925) that in
general two spots of opposite magnetic polarity belong together, one may assume that
the lines of force of the spot under consideration are completed to closed loops by the
magnetic field of the accompanying spot.

If one chooses D(0) such that the following normalization condition holds:

27 [ D(a)ada=8¢, ®)

T ./(; (a)ada=¢

the components of the magnetic field according to equation (2) can be written as
B.(z,r)=D(a){*(2z), (42)
B,(z,r)=——D(a)aZ—§, (4b)

- and B, vanishes, since we assume the field to be untwisted. When equation (4) is sub-

stituted into the horizontal component of equation (1) one gets an equation which, in-
tegrated over a, leads to the ordinary differential equation:

'y —y+8rap=0, )
where
y = [B.(z O,

fO”[Du)/D(owada

f=

3 e

1

foww(a)/D(O)]ada

and primes denote derivatives with respect to depth z. The horizontal pressure differ-
ence, Ap = p(3,0) — p(3, =) arises from integrating the pressure gradient over a. If
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Ap is known as a function of depth, the corresponding magnetic field can be calculated
by solving equation (5).
For the subsequent calculations the function D(a)/D(0) was chosen to be

D(a) _
D(0)

e, (6)

According to de Jager (1959) this is in fairly good agreement with observations. With
this choice for D(a)/D(0) the quantities defined above become

D(a)=2¢w, =2,

T 27
Next we consider the vertical component of equation (1). Since in Ap only the pressure
on the spot axis enters, we need only consider the vertical component of equation (1)
at r = 0. There the magnetic term vanishes identically and the equation reduces to the
hydrostatic equation:

P =gp. )

For numerical calculations it is more convenient, however, to use log ¢ as the independ-
ent variable. Hence, changing the independent variable in equation (7) and using the
equation of state for an ideal gas, we obtain

dsz RT
dlogp_;élnlo_ﬂln 10, (8)

where R is the gas constant, T is the temperature, and p is the molecular weight. The
right-hand side of equation (9) clearly is, apart from the factor In 10, the pressure scale
height, denoted by H.
Now let us consider the equations of energy balance. If the energy is transported by
radiation, this leads to
dlogT _ kpH

= =3 I
dlogp  VETT6 T4 @

where « is the Rosseland mean opacity and o is the Stefan-Boltzmann constant. The
atmosphere will only be thermally stable as long as

2+ x(1—x)(§+x/kT)
Vi <V = , (10)
S+x(1—=2)(§+x/kT)*

where £ is the Boltzmann constant, x is the degree of ionization and x the ionization po-
tential of hydrogen. We consider only hydrogen because this is the only element under-
going ionization in the region under consideration. If Vg exceeds Vaq turbulent convec-
tion sets in and one has to include also the convective energy transport. The formalism
used is that given by Béhm-Vitense (1958). Briefly summarized this is as follows.

The total energy flux F is the sum of a part F¢, transported by convection, and a part
Fg, transported by radiation:

F=Fg+Fq; an
F¢ and Fg are related to the actual temperature gradient v by the equations
oT*
Fr=1% poV’ .
!
Fc=%cppT<v>§(V—V'). (12b)
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where c, is the specific heat at constant pressure, ! is Prandtl’s mixing length, v’ is the
temperature gradient governing the change of state of the “turbulent elements,” and
{v) is their mean velocity. The last quantity is given by

<v>2=%¥<é>2(v~v’). (13)

The rising turbulent elements would undergo adiabatic changes if it were not for radia-
tive exchange of energy between them and the surrounding matter. An approximate
treatment of the radiative exchange, which assumes the turbulent elements are optically

thick, gives
v—v =_chp2T:<H<v> (_l_) 14

Following Kippenhahn (1962) this system of equations is solved in the following way:
equations (13) and (14) combine to the quadratic equation

(V _ V/) + ZU(V — V’)1/2 — (V — Vad) =0 , (15)

— ol E 2 _S_E 1/2
U—lchp2T:cH(l>(RT '

Equations (9), (11), (12), and (13) combine to an equation which, after substituting the
positive root for (v — v')'/2 from expression (15), becomes

with

(V= Vaa) = (VE — Vaa) + V(U + (v — V)2 = U)* =0, (16)
with
Y cppT kH (L)z &Z_" 1/2
32 4Tt \H/) \8u/

This is a cubic equation for [U? + (V — Vaq)]'”2 which is easily shown to have only one
real root. Taking the usual formulae for the root of a cubic equation, finally an explicit
(and rather lengthy) expression for v is obtained.

Now we have two simultaneous differential equations, equation (8) and the root of
equation (16), the solution of which gives the temperature and pressure along the axis
of symmetry. Before we can solve this system, however, we must specify «, ¢, p, and x
as functions of p and T'.

A value of « for each p and T was obtained by interpolating in a table, based on the
results of Vitense (1951a).

Expressions for ¢,, u, and x were taken over from Kippenhahn, Temesvary, and Bier-
mann (1958):

=S +3a1 -0 (3+%) |,

— Mo
M 1+z°

# o 13.53X5040
[—m-zlgT T

log —0.48 —log X —log p —log o,

where uo is the molecular weight of the neutral mixture of hydrogen and helium with the
abundances X = 0.6, ¥ = 0.4, respectively.

Above we have described the usual approach to calculate the structure of the undis-
turbed HCZ, Now we wish to allow for the influence of the magnetic field. We do this
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by decreasing the quantity I/H. To get insight into the consequences of varying I/I7
consider equation (16). Letting J/H — 0, the turbulent elements eventually become op-
tically thin and U has to be redefined. For the optically thin case Vitense (1953) gives

ok H (3u\'/?

U=12=r\&r

This quantity is independent of /, hence, it remains constant, whereas V' goes to zero
as 2 and equation (16) gives
' hrn vV=¥V R
YH=0
Dividing equation (16) by V we see that

l/}}r—goov Vad -
Thus for any positive value //H there corresponds a temperature gradient which lies
between Vg and Vaq. Furthermore, for any 0 < I/H < (I/H)ucz there corresponds a
temperature gradient which lies between Vg and the actual one in the HCZ. This makes
I/H a convenient parameter to interpolate between the two extreme values the tem-
perature gradient can assume.

There remains, however, the question: How crude is the assumption of a constant
I/H throughout the spot region? A more accurate discussion of the structure of the HCZ
shows that the solution is sensitive to the parameters in the theory only in the non-
adiabatic region, that is, where V — Vag > 1072 Deeper down, in the adiabatic region,
the solution becomes very insensitive to changes in the parameters In the solar case
the non-adiabatic region extends over the uppermost 500-1000 km, whereas we expect
that the magnetic fields under consideration extend to a depth larger by at least a factor
10 and therefore appreciable variation should only occur over this distance. As any
variation of //H would plausibly be related to changes in the magnetic field, the varia-
tion will be so small in the critical region that it should be a good approximation to sub-
stitute for //H the value it assumes in this upper region.

The same reasoning can be applied to variations of the total energy flux F. Somehow
this flux must be decreased because we observe in sunspots a flux which is smaller than
in the surrounding photosphere. Again one might plausibly relate any change in F to
variations in the magnetic field. Then they are quite small in the non-adiabatic region;
hence it is a good approximation as for [/H, to substitute for F the value occurring in the
upper part of the spot.

Finally, the question should be discussed: Is there any significant radiative-energy
transport in horizontal direction due to the temperature difference AT between the
spot axis and the surroundings? The existence of energy transport in horizontal direction
requires a horizontal component F, of the flux vector .F, approximately given by

16073
3kp /1)’

where (r) is the mean radius of the spot. The two co1 nponents F, and F, are related to
each other by the requirement that F is a source-free field:

9F, 2
dz (r)

F,= —

F..

Together these equations yield a differential equation for F, which can be used to make
an order of magnitude estimate for the change AF of ¥, through the spot (with depth &):

AF = _12_"_T_ AT

Brp <r>2
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An average value for the “conductivity” is 10'® erg cm— sec™* ® K—'; % and the mean
radius (r) were taken to be 10° cm. The temperature difference AT was in all models
found to be positive and of order 10® ° K with little variation. Hence we finally have

AF = 107 erg cm™? sec?,

which is less than 0.1 per cent of the total energy flux and is therefore unimportant.

In a previous investigation (Deinzer 1960) only energy transport by radiation was
considered within the spot region. To get a self-consistent, singularity-free model for
spots of the usual effective temperatures of about 4000° K a significant horizontal energy
flux was needed. Hence, consistent with the above formulae, models resulted with
drastically reduced mean radii.

IIT. BOUNDARY CONDITIONS

It is now necessary to specify the boundary conditions of the problem. Let us first
consider the conditions to be satisfied at the upper boundary. There we want to fit our
interior solutions for pressure and temperature to those of the solar atmosphere. If we
choose the level where we want to make this fit as the one with an optical depth » = %,
the upper boundary coincides (more or less) with the center of the visible sunspot.
Vitense (19515) has carried out calculations for model atmospheres and obtained the
photospheric pressure as a function of effective temperature and gravitational accelera-
tion. Since we are, in the actual calculation of our model, only concerned with the axis
of symmetry, the magnetic forces vanish identically and Vitense’s results can be used
as the fitting condition. This means that the photospheric pressure of a sunspot is as-
sumed to be the same as for an atmosphere of correspondingly lower effective tempera-
ture and the same g as for the Sun.

Next we should specify the position of the upper boundary compared to the outside
geometrical scale, because later we need the horizontal pressure difference. If we choose
the zero-point of the geometrical scale to coincide with the undisturbed photospheric
level of the Sun, then we have to specify the depth zp of the photospheric level at the
center of the spot. As pressure varies very rapidly with depth, zp enters the pressure
difference very sensitively and therefore greatly affects the calculations. Unfortunately
this quantity, known as the geometrical depression of a sunspot, is poorly determined by
observation. Therefore the reference of the two geometrical scales to each other was
established by choosing an appropriate condition at the lower boundary of the spot re-
gion; zp is then a prediction of our theory.

The magnetic field above the photospheric level was required to be that of a monopole;
in other words, the effect of an accompanying spot was neglected. In the adopted de-
scription of the magnetic field this means y and 3’ have to vanish identically at infinity.
A necessary and sufficient condition for that is obtained from direct inspection of equa-
tion (5). As Ap probably decreases very rapidly above the photosphere, Ap = 0 can be
assumed. Integration of equation (5) then gives

! 1,4
W=t =oa.

From this expression it is seen that vanishing of y and ¥’ at infinity requires that ¢, the
constant of integration, be zero, i.e.,

fy? =13yt

To carry out a further integration we have to take the square root. The resulting am-
biguity in sign is removed by the requirement that the magnetic field has to decrease in
the outward direction; hence we have

y/ — (2]‘)—1 /2}’2. a7
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This is also a sufficient condition for y and y’ vanishing at z— — ., Integration of (17)

leads to
_ (2f)1/2
2+ ¢co’

which clearly vanishes at infinity with all its derivatives. Thus equation (17) serves as
an upper boundary condition for the magnetic field.

Asin the calculation of stellar models, we have to solve a system of non-linear differen-
tial equations. To avoid running into singularities, one knows from stellar structure
calculations (see, e.g., Schwarzschild 1958) that it is necessary to get hold of the be-
havior of the solutions at both ends of the integration interval. Any statement about
the solutions at the lower boundary, however, should in the present case be based on
ideas concerning the continuation of the magnetic field into the interior. Since there is
no generally accepted theory on this continuation, any condition may be imposed. This
condition, however, must be such that our results at the upper boundary are not appre-
ciably influenced. A condition of that kind turned out to be that the magnetic field should
become independent of depth at the lower boundary of the spot region, z,. Quantitatively
this is achieved by requiring

Yy =0 at z=2, as)
Y'=0 at 2z=2. (19)

With the help of equation (5), the latter condition is transformed into the relation be-
tween y and Ap:
yt = 87Ap at 3= 2. (20)

Differentiation of equation (20), with respect to depth, and equation (18) finally give
as a requirement on Ap

(Ap) =0 at  z=2. (1)

The effect of these conditions upon the results at the upper boundary is studied by pos-
ing them at different depths zo. This depth was shifted downward until finally the re-
sults at the upper part of the spot region did not change anymore.

Conditions (18) and (20) can be applied as they stand. Equation (21) is transformed
by virtue of the hydrostatic equation and the equation of state (since ionization is al-
most complete in the region of interest, the molecular weight is assumed to be constant)
into

=4 = Az at 2= 2. (22)

P T

Conditions (21) and (22) refer to horizontal differences in p and T, thus providing the
desired relation between functions at the spot axis and those outside.
The set of boundary conditions is now as follows:

At the upper boundary: p = p(Tetr) y = (2f) 122
4
At the lower boundary: Ap = Sy_ Y =0,
s
T
AT = Ap —.
%

When we compare the number of boundary conditions with the order of the problem
and the number of free parameters, we see that in general a model is uniquely determined
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by specifying the three quantities: z,, the position of the lower boundary, T, the effec-
tive temperature, and ¢, the total magnetic flux. For convenience in the later calcula-
tions, T is preferred as a free parameter to the quantity //H.

To show how a model is obtained with this formulation of the problem, let us outline
the course of the actual calculations.

First pressure and temperature for the undisturbed HCZ had to be obtained. For this
purpose, a solution of the structure equations was calculated, determined by the initial
value at z = 0: log p = 4.85, Terr = 5800° K, and the quantity //H = 1.

Now a value 2o was chosen and a guess Ap(z,) was made. This number and the values
for pressure and temperature of the undisturbed HCZ at the depth 2z, were substituted
into equation (22) to get AT (20). Then we obtained pressure and temperature at the spot
axis by adding Ap(z) and AT(z) to pressure and temperature of the HCZ at zo.

Now an effective temperature T was chosen for the model. From it a value for the
photospheric pressure at the spot axis was obtained by making use of Vitense’s (19515)
results.

With knowledge of the pressure and temperature on the spot axis at 2 = 0 and at
T = £, it was possible to solve the structure equations only for a particular I/H; in
other words this quantity is an eigenvalue of the problem. This was done by trial and
error, and pressure and temperature along the spot axis were obtained. These solutions,
in particular, gave the geometrical depression zp as the depth where the photospheric
conditions are actually assumed.

Now everything was known to set up the horizontal pressure difference Ap as a func-
tion of depth. With Ap(z) and after a total magnetic flux ¢ was chosen, the solution
vy = y(3) of equation (5) was calculated in the interval zp < 3 < 3, satisfying the
boundary conditions (17) and (18). Then we took y(z) from the solution and substituted
it into equation (20) to get a new value for Ap(zo). If this agreed with the initially
guessed value, the calculation was finished. Otherwise the whole procedure was started
again with the new value for Ap(3) and was repeated until finally two successive values
Ap(30) agreed reasonably well.

The numerical calculations were carried out by the step-wise method of Adams and
Stormer, i.e., a virtual initial value problem was solved. The necessary adjustment of
the parameters or undetermined values at one boundary to satisfy the conditions at the
other boundary was obtained by a rapidly converging automatic fitting procedure. All
the numerical work was done on the electronic computers G2 and G3 at the Max-Planck-
Institut fiir Physik und Astrophysik, Munich (Germany).

IV. SOLUTIONS

It is of advantage for the following to introduce first an alternative description of the
magnetic field. So far it has been characterized by y, the square root of the field strength
at the axis of symmetry. Let us now consider the lines of force, which, according to
Schliiter and Temesvary (1958), are given in the 7, z-plane by

a(z,7r) = a = const .

From equations (2), (3), and (4) a more explicit form may be obtained:

_[¢ 1 B 1/2 ooD(a_)— —1/2
’“[WBZ(Z,O)] |2 D(O)“d“] ' =2
Furthermore, the mean radius {r) of the magnetic flux tube was defined by
¢ = w(r)?B.,(3,0) . (29
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From equation (23) it is seen that {r)(z) is the line of force with
D ( a) ]1/2
a=|2" 5oy eda]

Substituting for D(a)/D(0) from equation (6) the lines of force are

O

and the mean radius (r)(2) is now the line of force given by a = 1.

[10° dyn-cm 2]

bp

1 1
o s 10
2z [10% em]

Fic. 1.—Horizontal pressure difference Ap as function of depth z The curves correspond to T =
4000° K, ¢ = 5 X 102 gauss cm? and varying total depth z, Notice the geometrical depression z, =~
0.7 X 108 cm at the left.

Let us now discuss the solutions. The problem formulated in the last two sections
contains three free parameters: the total depth of the sunspot region 2z, its total mag-
netic flux ¢ and its effective temperature T Hence we are concerned with a three-
parameter family of solutions.

Let us first consider the family of solutions in which only 2 is varied, ¢ and T being
kept constant. In Figure 1 we show the function Ap(z) and in Figure 2 we show {r)(z)
and y(z). After z, has assumed values >10000 km, the solutions converge reasonably
well. The limiting functions vary strongly only in the upper 500 km, say, and remain
almost constant further down. They are monotonic with Ap(z) and y(z) increasing and
{r)(z) decreasing; the latter shows the expected funnel shape of the magnetic field. The
independence of our solutions to the position of the lower boundary is gratifying in view
of the somewhat arbitrary choice of the lower boundary condition (see Sec. III).

The example displayed in Figures 1 and 2 represents the case ¢ = 5 X 10% gauss/cm?,
Teir = 4000° K. The essential features of this solution are, however, quite general; the
other cases differ only quantitatively. Once we know the general behavior of the solu-
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tions, the desired convergence in the other cases may be inferred from a simpler graph.
Figure 3 shows the quantity at the upper and lower boundaries as a function of increas-
ing zo for different effective temperatures and with ¢ = 5 X 10 gauss/cm? (“Tess-
family”’). Figure 4 is the corresponding diagram for the ¢-family of solutions with
Tets = 4000° K. Unfortunately, it was not possible to get solutions for ¢ < 5 X 10%
by solving equation (5) as an initial-value problem. For these cases, due to its non-
linear character, equation (5) would have to be solved as a boundary-value problem. It
seems, however, that this is a purely numerical difficulty and there is no objection to
extrapolating the results of Figure 4 to lower magnetic fluxes.

100 ; .

L
r*r

5 10
z [10° em)

F1G. 2.—Square root of the magnetic-field strength at the axis of symmetry y and mean radius {r) as
functions of depth. The curves correspond to Ter = 4000° K, ¢ = 5 X 10% gauss cm? and varying total
depth z,. (The curve (#)(2) for zp = 11 X 10% cm was omitted because it almost coincides with the curve
{r)(z) for zp = 10 X 108 cm.)

Both figures show the desired convergence for values greater than 10000 km. At the
upper boundary the solutions converge faster than at the lower boundary. The main
difference between the two families of solutions is that at zp the curves of the Tes-family
converge to different values of y, whereas the curves of the ¢-family converge to the
same values of y. This means that our sunspot models are independent of ¢ in the ob-
servable part. In other words, the central magnetic field strength, B., is independent
of the total magnetic flux, ¢, in our sunspots. When equation (24) is used, this means
that B, is independent of the mean area, w{r)*(sp), in our sunspot models, which is in
obvious contradiction to the observational results of Houtgast and van Sluiters (1948)
or Nicholson (1938). This failure of our models might be due to the special assumptions
for the magnetic field, although there is no definite answer at present.

For the following, this simply means that we are now only concerned with a one-
dimensional family of solutions; namely, the Te-family. In Table 1 the characteristic
quantities of these models are presented. In the first column the parameter T is given.
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Fic. 3.—Square root of the magnetic-field strength on the axis of symmetry at the upper boundary
¥(2p) (solid curve) and at the lower boundary y(2s) (dasked curve) as functions of total depth z,. The curves
correspond to ¢ = 5 X 10% gauss cm? and varying T.y: curves a, b, ¢, d, e, correspond to T = 5000,
4400, 4200, 4000, 3800° K.
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F16. 4—Square root of the magnetic-field strength on the axis of symmetry at the upper boundary
v(2zp) (lower part of the diagram) and at the lower boundary y(z0) (upper part of the diagram) as functions
of total depth z,. The curves correspond to T = 4000° K and varying ¢: curves a, b, ¢ correspond to
¢ =5 X 102, 7.5 X 102, 10X 102 gauss cm?.
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In the second and fourth columns the logarithm of the corresponding photospheric
pressure, as obtained from Vitense’s (19516) work, and the corresponding energy flux F
are given. The remaining columns give the geometrical depression zp, the quantities
I/H, y(3p) at the surface, and y( ), taken at a depth where it has converged to its con-
stant value. In the last row of Table 1 corresponding data for the undisturbed photo-
sphere of the Sun are given for comparison.

TABLE 1
PROPERTIES OF THE SUNSPOT MODELS
Tur log » zp (105 xg/ i 3(3) 3(@)
CK) & (107 cm) s seecg) (gauss!/?) (gausst/2)
3800 517 8 15 1170 0 185 62 0 98
4000 515 7 00 1425 0 226 58 5 93
4200 512 590 1 750 0 277 555 87
4400 5 08 4 80 2 100 0 345 515 82
5000 4 98 2 40 3 500 0 556 42 6 68
5800 4 85 00 6 418 10 00 0
) ) T
4000 b
—, 3000} .
" .
g .
o
© :
= 2000 } i ~
QO DX
m
1000 | ' b

2000 3000 4000 5000
Teff (k]

Fic. 5 —Central magnetic-field strength B, as a function of effective temperature T in sunspots.
The line represents the theoretical results; the dots are derived from Stumpff (1961, Fig. 17), by means
of a relation of Houtgast and van Sluiters (1948).

From a comparison of photospheric pressures one sees that in the sunspots the photo-
spheric pressure is always larger than in the surrounding undisturbed photosphere. As
there must, however, be a positive pressure difference Ap in order to balance the magnet-
ic forces, the visible level in sunspots cannot be the same as in the photosphere. It must
lie at a depth where the pressure in the surrounding undisturbed atmosphere has in-
creased sufficiently to make Ap > 0. In fact, the numerical results show geometrical
depressions of several hundred kilometers. This agrees in order of magnitude with the
observed “Wilson phenomenon.”

The first and the sixth columns give the desired relation between Tt and B, = *(2p).
This relation is plotted in Figure 5, and we see that the relation is approximately linear,
going from small effective temperatures and high magnetic fields to higher effective tem-
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peratures and small magnetic fields. This means that an effective temperature much
smaller than that of the undisturbed photosphere indicates a sunspot structure, which
deviates very much from that of the undisturbed photosphere; hence, it is possible to
balance considerable magnetic fields.

We shall now compare this result with observations. Stumpff (1961) has made meas-
urements of the effective temperature and the umbral area for several sunspots. To com-
pare these results with the predictions of our model, a relation between the central
magnetic field and the umbral area is needed. Since no theoretical relation of that kind
resulted from the present theory, the observational results of Houtgast and van Sluiters
(1948) or Nicholson (1938) were used. Then Stumpff’s results yield a relation between
Tots and B, this relation is also plotted in Figure 5. Observations show the same slope
as the theoretical models but the theoretical field strengths are higher by about 50 per

4000 N, -

Be [Gouss ]
(&)
o
8
]
[

2000 .

1000 7

Wy

Fic. 6 —Central magnetic-field strength B, as a function of I/H. The dashed part is obtained by
extrapolation.

cent. Considering the crude treatment of convection in the presence of a magnetic field
and the observational uncertainties, this result is still encouraging.?

The fifth and sixth columns give a relation between B, and //H. This is plotted in
Figure 6. In the framework of the present phenomenological formulation, the relation
shows quantitatively the inhibition of convective-energy transport by a magnetic field.
From Figure 6 it is seen that strong magnetic fields correspond to // H-values close to 0;
while weaker fields correspond to J/H-values close to 1, the value assumed for the un-
disturbed HCZ.

The present one-dimensional family of models corresponds to a range in I/H of
0 < I/H < (I/H)ucz. Figure 6 shows the corresponding range in B.. By extrapolation
it follows that the magnetic-field strength has an upper bound of about 5000 gauss. This
occurs in the model where convective-energy transport is suppressed entirely. Thus we
get in the limit a model of the kind suggested by Biermann (1941). If the convective-
energy transport is suppressed entirely by a certain magnetic field, the structure of sun-

2 Added in proof: Dr P. Stumpff kindly drew my attention to the fact that the temperatures given
in his paper are surface temperatures, not effective temperatures. Accordingly, the abscissae of the dots
in Figure 5 must be multiplied by the factor 1 19. This shifts the dots toward the theoretical curve and
makes the agreement between observations and theory more favorable.
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spots can change no more; consequently, stronger magnetic fields cannot be balanced
and hence no equilibrium exists for them. The existence of an upper bound for the mag-
netic-field strengths in sunspots is also an observational fact, although the observed
value is about 20 per cent smaller than the theoretical one. This is another positive check
with observations.

Finally, let us consider Hoyle’s suggestion concerning the reduction of energy flux F
in the spot. With the data from Table 1 we can check whether it is possible to explain
this reduction. Following Hoyle we assume the convective flow follows the lines of force.
With the funnel-shaped magnetic field of the present models this means that the energy
flowing through a certain cross-section further down is distributed over a larger cross-
section in the upper part of the sunspot. If the total flow of energy through the spot is
constant we get

w(r)*F = const .
Hence we obtain for the flux at different depths the ratio, remembering equation (23’),

F(z) _[3’(21)]2

F(3z2) Ly(z2)
TABLE 2
TEST OF UNCERTAINTIES IN THE MODEL WITH T = 4000° K
2D ¥{(zp) y(®)
log # U/ Hucz (107 cm) i/ (gausls)l/Z) (gauss!/2)
515 1 7 00 0 226 58 5 93
4 25 1 470 238 56 5 91
515 . 2 37 0 404 535 97 5

Letting ¥(z1) go to y(zp) and y(25) go to y(« ), we get an expression for the maximum
p0531ble reduction. Its value varies only slightly and is about 0.4. Assuming the full
energy flux transported through the HCZ, F = 6.32 X 10'° erg cm™2 sec™?, enters the
spot region and is by Hoyle’s mechanism reduced to the observed values, the above
ratio must vary from 0.5 to 0.19. Hence for the present models, Hoyle’s mechanism is,
in general, not able to account for the observed flux values in sunspots. It would give a
reduction almost independent of B,, whereas observations require a reduction which is
the greater the stronger B, is.

There are two major uncertainties in the results presented above, for which we shall
now try and make numerical estimates. There is first the question: To what extent is
Vitense’s (19515) relation between photospheric pressure and effective temperature ap-
plicable to sunspots? Observational results of Elsisser (1960) give, for a sunspot with
Ter = 4000° K, a photospheric pressure log p = 4.25. This is smaller than the pres-
sure in the undisturbed solar photosphere, in contrast to Vitense’s theory, which gives
larger values. For this reason the model with Tey = 4000° K was repeated with this
empirical pressure value.

Before we discuss the results of this calculation, let us consider the second uncertainty.
In applying Prandtl’s mixing-length theory to convection in stellar atmospheres, I/H
has to be fixed ad hoc; usually I/H = 1 is assumed. To see how sensitively the results
depend on this assumption, calculations are usually repeated for I//H = 2. In our case,
this check had to be done with (!/H)gcz; I/H for the sunspot adjusted itself according
to the boundary conditions. Again the model with T = 4000° K was repeated.

The changes in the models caused by these two alterations can be seen from Table 2.

© American Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1965ApJ...141..548D

T DI4LT C548D0

o]

DA

rt

No. 2, 1965 THEORY OF SUNSPOTS 563

There are in both cases only minor changes in the magnetic field; they did not exceed
10 per cent. In both cases the geometrical depression was decreased considerably; the
change, however, is still within the observational uncertainty. In the case (//H)ucz = 2,
this ratio for the sunspot is increased by somewhat less than a factor of 2. This might
indicate that a number characterizing the inhibition of convection by the magnetic field
independent of the particular choice for (!/H)ucz is (!/H)/(l/H)ucz. No important
changes in the results are caused by the discussed uncertainties. Neither the main fea-
tures of the presented sunspot models nor their main deviation from observations are
influenced appreciably.

This paper, based on my Munich thesis, was completed while I was a Fulbright gran-
tee and NSA-NRC research associate at the Institute for Space Studies. My thanks
are due to Dr. A, Schliiter for suggesting the problem; to Dr. L. Biermann for a fellow-
ship at the Max-Planck-Institut fiir Physik und Astrophysik, Munich, and for making
the electronic computers G2 and G3 available to me; and to Dr. R. Jastrow and his staff
for their kind hospitality. I am very grateful to Dr. R. Kippenhahn, Dr. E. E. Salpeter,
and Dr. E. Spiegel for valuable discussions, and to Dr. L. B. Lucy, who very carefully
read and greatly improved the English manuscript.
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