Publication Acknowledgments
NASA Modeling, Analysis, and Prediction Program
The following publications made use of funding, computing resources or other support from the NASA Modeling, Analysis, and Prediction Program (MAP).
This is page 1 of 3. Go to page 1, 2, 3.
2025
Orenstein, P., A.H. Sobel, S.J. Camargo, The global seasonal relationship between satellite-observed cold pools and rainfall. J. Climate, 38, no. 4, 989-1003, doi:10.1175/JCLI-D-23-0218.1.
, and P. Garg, 2025:Physics of the seasonal sea ice zone. Annu. Rev. Mar. Sci., 17, 355-379, doi:10.1146/annurev-marine-121422-015323.
, M.M. Smith, A. Herman, and , 2025:2024
Atwood, T.B., Atmospheric CO2 emissions and ocean acidification from bottom-trawling. Front. Mar. Sci., 10, 1125137, doi:10.3389/fmars.2023.1125137.
, T. DeVries, , J.S. Mayorga, D. Bradley, R.B. Cabral, , and E. Sala, 2024:Butler, A.H., D. Shindell, Chapter 4: Impacts on climate, air quality and the ozone layer. In Global Nitrous Oxide Assessment. D.R. Kanter and A.R. Ravishankara, Eds., United Nations Environment Programme and Food and Agriculture Organization, pp. 87-131, doi:10.59117/20.500.11822/46562.
, A. Bais, E.M. Bednarz, J.S. Daniel, E. Fleming, D. Kinnison, S. Madronich, O. Morgenstern, D. Plummer, R.W. Portmann, S. Tilmes, A.R. Ravishankara, Z. Wang, S. Wei, Q. Zhang, and Y. Zhang, 2024:Observational constraint on a feedback from supercooled clouds reduces projected warming uncertainty. Commun. Earth Environ., 5, 181, doi:10.1038/s43247-024-01339-1.
, , , I. Silber, , M. Zelinka, H. Chepfer, T. Khadir, and R. Roehrig, 2024:Better constraining supercooled clouds could reduce projected warming spread. In Radiation Processes in the Atmosphere and Ocean, 4–8 July 2022, Thessaloniki, Greece, AIP Conference Proceedings, vol. 2988, AIP Publishing, p. 070009, doi:10.1063/5.0183626.
, , , I. Silber, , M.D. Zelinka, and H. Chepfer, 2024:Influence of more mechanistic representation of particle dry deposition on historical changes in global aerosol burdens and radiative forcing. J. Adv. Model. Earth Syst., 16, no. 3, e2023MS003952, doi:10.1029/2023MS003952.
, , , , , , and , 2024:Characterizing the 2010 Russian heatwave-Pakistan flood concurrent extreme over the last millennium using the Great Eurasian Drought Atlas. J. Climate, 37, no. 17, 4389-4401, doi:10.1175/JCLI-D-23-0773.1.
, E.R. Cook, K.J. Anchukaitis, and D. Singh, 2024:Modeling atmospheric brown carbon in the GISS ModelE Earth system model. Atmos. Chem. Phys., 24, no. 10, 6275-6304, doi:10.5194/acp-24-6275-2024.
, , , , and G.L. Schuster, 2024:Grise, K.M., and Understanding the relationship between cloud controlling factors and the ISCCP weather states. J. Climate, 37, no. 20, 5387-5403, doi:10.1175/JCLI-D-24-0011.1.
, 2024:Ing, R.N., P.W. Nienow, A.J. Sole, A.J. Tedstone, and Minimal impact of late-season melt events on Greenland ice sheet annual motion. Geophys. Res. Lett., 51, no. 4, e2023GL106520, doi:10.1029/2023GL106520.
, 2024:Lenssen, N., A GISTEMPv4 observational uncertainty ensemble. J. Geophys. Res. Atmos., 129, no. 17, e2023JD040179, doi:10.1029/2023JD040179.
, , P. Jacobs, M. Menne, and , 2024:The sensitivity of the Equatorial Pacific ODZ to particulate organic matter remineralization in a climate model under pre-industrial conditions. Ocean Model., 188, 102303, doi:10.1016/j.ocemod.2023.102303.
, , D. Nicholson, , , and , 2024:Li, L., N.M. Mahowald, M. Gonçalves Ageitos, V. Obiso, Improved constraints on hematite refractive index for estimating climatic effects of dust aerosols. Commun. Earth Environ., 5, no. 1, 295, doi:10.1038/s43247-024-01441-4.
, C. Pérez García-Pando, C. Di Biagio, P. Formenti, P.G. Brodrick, R.N. Clark, R.O. Green, R. Kokaly, G. Swayze, and D.R. Thompson, 2024:Lichstein, J.W., T. Zhang, Effects of water limitation and competition on tree carbon allocation in an Earth system modeling framework. J. Ecol., 112, no. 11, 2522-2539, doi:10.1111/1365-2745.14416.
, C.E. Farrior, R. Dybzinski, S. Malyshev, E. Shevliakova, R.A. Birdsey, and S.W. Pacala, 2024:Mülmenstädt, J., Can general circulation models (GCMs) represent cloud liquid water path adjustments to aerosol-cloud interactions? Atmos. Chem. Phys., 24, no. 23, 13633-13652, doi:10.5194/acp-24-13633-2024.
, , M. Huang, P.-L. Ma, N. Mahfouz, , S.M. Burrows, M.W. Christensen, S. Dipu, A. Gettelman, L.R. Leung, , J. Quaas, A.C. Varble, H. Wang, K. Zhang, and Y. Zheng, 2024:Mülmenstädt, J., E. Gryspeerdt, S. Dipu, J. Quaas, General circulation models simulate negative liquid water path-droplet number correlations, but anthropogenic aerosols still increase simulated liquid water path. Atmos. Chem. Phys., 24, no. 12, 7331-7345, doi:10.5194/acp-24-7331-2024.
, , , , A. Gettelman, Y. Ming, Y. Zheng, P.-L. Ma, H. Wang, K. Zhang, M.W. Christensen, A.C. Varble, L.R. Leung, X. Liu, D. Neubauer, D.G. Partridge, P. Stier, and T. Takemura, 2024:Towards robust community assessments of the Earth's climate sensitivity. Earth Syst. Dyn., 16, no. 1, 317, doi:10.5194/esd-16-317-2025.
, and M. Webb, 2024:Severe global cooling after volcanic super-eruptions? The answer hinges on unknown aerosol size. J. Climate, 37, no. 4, 1449-1464, doi:10.1175/JCLI-D-23-0116.1.
, , L. Polvani, , , and , 2024:Replicating the Hadley Cell and subtropical jet disconnect in idealized atmospheric models. Weather Clim. Dynam., 5, no. 1, 251-261, doi:10.5194/wcd-5-251-2024.
, D. Waugh, Z. Wu, and T. Reichler, 2024:Observationally constrained regional variations of shortwave absorption by iron oxides emphasize the cooling effect of dust. Atmos. Chem. Phys., 24, no. 9, 5337-5367, doi:10.5194/acp-24-5337-2024.
, M. Gonçalves Ageitos, C. Pérez García-Pando, G.L. Schuster, , C. Di Biagio, P. Formenti, , , and , 2024:Coupled stratospheric ozone and Atlantic Meridional Overturning Circulation feedbacks on the Northern Hemisphere midlatitude jet response to 4×CO2. J. Climate, 37, no. 10, 2897-2917, doi:10.1175/JCLI-D-23-0119.1.
, , D. Waugh, , X. Zhang, G. Chiodo, , and , 2024:Rivera, A., Assessing acetone for the GISS ModelE2.1 Earth system model. Geosci. Model Dev., 17, no. 8, 3487-3505, doi:10.5194/gmd-17-3487-2024.
, , and D. Shindell, 2024:Sea ice in 2023. Nat. Rev. Earth Environ., 5, no. 4, 235-237, doi:10.1038/s43017-024-00542-0.
, and W.N. Meier, 2024:Extreme events contributing to tipping elements and tipping points. Surv. Geophys., early on-line, doi:10.1007/s10712-024-09863-7.
, G. Hegerl, S. Seneviratne, B. Abis, A. Bastos, A. Conversi, A. Landolfi, H. Kim, , , B. Otto-Bliesner, F. Pausata, I. Pinto, and L. Suarez-Guiterrez, 2024:Shindell, D., R. Hunter, Premature deaths due to heat exposure: The potential effects of neighborhood-level versus city-level acclimatization within US cities. GeoHealth, 8, no. 1, e2023GH000970, doi:10.1029/2023GH000970.
, and L. Parsons, 2024:Shindell, D., Reductions in premature deaths from heat and particulate matter air pollution in South Asia, China, and the US under decarbonization. Proc. Natl. Acad. Sci., 121, no. 5, e2312832120, doi:10.1073/pnas.2312832120.
, E. Nagamoto, L. Parsons, and Y. Zhang, 2024:Shindell, D., I. Petropoulos, The impact of decarbonization on particulate soiling of solar panels. ACS EST Air, 1, no. 12, 1531-1540, doi:10.1021/acsestair.4c00105.
, L. Parsons, and M. Bergin, 2024:Shindell, D., P. Sadavarte, I. Aben, T. de Oliveira Bredariol, G. Dreyfus, L. Höglund-Isaksson, B. Poulter, M. Saunois, The methane imperative. Front. Sci., 2, 1349770, doi:10.3389/fsci.2024.1349770.
, S. Szopa, K. Rentz, L. Parsons, Z. Qu, , and J.D. Maasakkers, 2024:Takahashi, H., Systematic differences between the Northern and Southern Hemispheres: Warm frontal ice water path linked to the origin of extratropical cyclones. J. Climate, 37, no. 8, 2491-2504, doi:10.1175/JCLI-D-23-0391.1.
, D.J. Posselt, and G.A. Duffy, 2024:Tan, C., D.T. McCoy, and Constraints on Southern Ocean shortwave cloud feedback from the hydrological cycle. J. Geophys. Res. Atmos., 129, no. 6, e2023JD040489, doi:10.1029/2023JD040489.
, 2024:Oceanic cloud trends during the satellite era and their radiative signatures. Clim. Dyn., 62, no. 9, 9319-9332, doi:10.1007/s00382-024-07396-8.
, W.B. Rossow, F. Bender, L. Oreopoulos, and , 2024:Werapitiya, G., D. McCoy, Meteorology modulates the impact of GCM horizontal resolution on underestimation of midlatitude ocean wind speeds. Geophys. Res. Lett., 51, no. 13, e2024GL108512, doi:10.1029/2024GL108512.
, P. Field, and S. Rahimi, 2024:Exploring the ENSO modulation of the QBO periods with GISS E2.2 models. Atmos. Chem. Phys., 24, no. 1, 509-532, doi:10.5194/acp-24-509-2024.
, , , , , , , and , 2024:2023
Bergas-Massó, E., M. Gonçalves-Ageitos, S. Myriokefalitakis, Pre-industrial, present and future atmospheric soluble iron deposition and the role of aerosol acidity and oxalate under CMIP6 emissions. Earth's Future, 5, no. 6, e2022EF003353, doi:10.1029/2022EF003353.
, T. van Noije, P. Le Sager, G. Montané Pinto, and C. Pérez García-Pando, 2023:Understanding model-observation discrepancies in satellite retrievals of atmospheric temperature using GISS ModelE. J. Geophys. Res. Atmos., 128, no. 1, e2022JD037523, doi:10.1029/2022JD037523.
, , , , , , , and D.T. Shindell, 2023:An observation-based method to assess tropical stratocumulus and shallow cumulus clouds and feedbacks in CMIP6 and CMIP5 models. Environ. Res. Commun., 5, no. 4, 045001, doi:10.1088/2515-7620/acc78a.
, , , R. Pincus, and H. Chepfer, 2023:Diverging global dry and humid heat responses to modern irrigation. Earth Interact., 27, no. 1, e230006, doi:10.1175/EI-D-23-0006.1.
, , and , 2023:Warming overwhelms the efficacy of wet conditions to moderate extreme heat and atmospheric aridity across the Central Plains. Geophys. Res. Lett., 50, no. 7, e2023GL102939, doi:10.1029/2023GL102939.
, , and , 2023:Ding, X., G. Chen, P. Zhang, D. Domeisen, and Extreme stratospheric wave activity as harbingers of cold events over North America. Commun. Earth Environ., 4, 187, doi:10.1038/s43247-023-00845-y.
, 2023:Gomez, J., R.J. Allen, S.T. Turnock, L.W. Horowitz, The projected future degradation in air quality is caused by more abundant natural aerosols in a warmer world. Commun. Earth Environ., 4, no. 1, 22, doi:10.1038/s43247-023-00688-7.
, , D. Olivié, E.S. Thomson, and P. Ginoux, 2023:Emissions background, climate, and season determine the impacts of past and future pandemic lockdowns on atmospheric composition and climate. Earth's Future, 11, no. 5, e2022EF002959, doi:10.1029/2022EF002959.
, , , and , 2023:Im, U., Present-day and future PM2.5 and O3-related global and regional premature mortality in the EVAv6.0 health impact assessment model. Environ. Res., 216, no. 4, 114702, doi:10.1016/j.envres.2022.114702.
, L.M. Frohn, C. Geels, , and J. Brandt, 2023:Law, K.S, J.L. Hjorth, J.B. Pernov, C. Whaley, H. Skov, M. Collaud Coen, J. Langner, S.R. Arnold, D.W Tarasick, J. Christensen, M. Deushi, P. Effertz, Arctic tropospheric ozone trends. Geophys. Res. Lett., 50, no. 22, e2023GL103096, doi:10.1029/2023GL103096.
, M. Gauss, U. Im, N. Oshima, I. Petropavlovskikh, D. Plummer, , S. Tsyro, S. Solberg, and S.T Turnock, 2023:Li, J.-L.F., Comparisons of simulated radiation, surface wind stress and SST fields over tropical Pacific by the GISS CMIP6 versions of global climate models with observations. Environ. Res. Commun., 5, no. 1, 015005, doi:10.1088/2515-7620/aca9ab.
, K.-M. Xu, M. Richardson, H. Takahashi, and J. Jiang, 2023:Li, Q., J. Marshall, Global climate impacts of Greenland and Antarctic meltwater: A comparative study. J. Climate, 36, no. 11, 3571-3590, doi:10.1175/JCLI-D-22-0433.1.
, , , and , 2023:Martin, Z.K., I.R. Simpson, P. Lin, The lack of a QBO-MJO connection in climate models with a nudged stratosphere. J. Geophys. Res. Atmos., 128, no. 17, e2023JD038722, doi:10.1029/2023JD038722.
, Q. Tang, J.M. Caron, C.-C. Chen, H. Kim, L.R. Leung, J.H. Richter, and S. Xie, 2023:McCray, C.D., Changing nature of high-impact snowfall events in Eastern North America. J. Geophys. Res. Atmos., 128, no. 13, e2023JD038804, doi:10.1029/2023JD038804.
, D. Paquin, M. Leduc, Z. Bi, M. Radiyat, C. Silverman, M. Spitz, and B.R. Brettschneider, 2023:Connections between upper tropospheric and lower stratospheric circulation responses to increased CO2. J. Climate, 36, no. 12, 4101-2112, doi:10.1175/JCLI-D-22-0851.1.
, D. Waugh, and , 2023:Atmospheric response to a collapse of the North Atlantic circulation under a mid-range future climate scenario: A regime shift in Northern Hemisphere dynamics. J. Climate, 36, no. 19, 6669-6693, doi:10.1175/JCLI-D-22-0841.1.
, , , , , , , , and , 2023:Parsons, L.A., D.T. Shindell, Geophysical uncertainties in air pollution exposure and benefits of emissions reductions for global health. Earth's Future, 11, no. 9, e2023EF003839, doi:10.1029/2023EF003839.
, and E. Nagamoto, 2023:Previdi, M., J.-F. Lamarque, A.M. Fiore, Arctic warming in response to regional aerosol emissions reductions. Environ. Res. Climate, 2, no. 3, 035011, doi:10.1088/2752-5295/ace4e8.
, D.T. Shindell, G. Correa, and , 2023:Ren, X., D.J. Lunt, E. Hendy, A. von der Heydt, A. Abe-Ouchi, B.L. Otto-Bliesner, C.J.R. Williams, C. Stepanek, C. Guo, D. Chandan, G. Lohmann, J.C. Tindall, The hydrological cycle and ocean circulation of the Maritime Continent in the mid-Pliocene: Results from PlioMIP2. Clim. Past, 19, no. 10, 20253-2077, doi:10.5194/cp-19-2053-2023.
, , M. Kageyama, M.L.J. Baatsen, N. Tan, Q. Zhang, R. Feng, W.-L. Chan, W.R. Peltier, X. Li, Y. Kamae, Z. Zhang, and A.M. Haywood, 2023:Asymmetry in the seasonal cycle of zonal-mean surface air temperature. Geophys. Res. Lett., 50, no. 10, e2023GL103403, doi:10.1029/2023GL103403.
, I. Eisenman, T. Wagner, and A. Donohoe, 2023:Winds and meltwater together lead to Southern Ocean surface cooling and sea ice expansion. Geophys. Res. Lett., 50, no. 24, e2023GL105948, doi:10.1029/2023GL105948.
, , , E. Blanchard-Wrigglesworth, T.W.N. Haine, and , 2023:Stochastic bifurcation of the North Atlantic Circulation under a mid-range future climate scenario with the NASA-GISS ModelE. J. Climate, 36, no. 18, 6141-6161, doi:10.1175/JCLI-D-22-0536.1.
, , , , , , , , , and , 2023:Comment on "Advanced testing of low, medium, and high ECS CMIP6 GCM simulations versus ERA5-T2m" by N. Scafetta (2022). Geophys. Res. Lett., 50, e2022GL102530, doi:10.1029/2022GL102530.
, G.S. Jones, and J.J. Kennedy, 2023:CERESMIP: A climate modeling protocol to investigate recent trends in the Earth's energy imbalance. Front. Clim., 5, 1202161, doi:10.3389/fclim.2023.1202161.
, T. Andrews, , P.J. Durack, N.G. Loeb, V. Ramaswamy, N.P. Arnold, M.G. Bosilovich, J. Cole, L.W. Horowitz, G.C. Johnson, J.M. Lyman, B. Medeiros, T. Michibata, D. Olonscheck, D. Paynter, S.P. Raghuraman, M. Schulz, D. Takasuka, V. Tallapragada, P.C. Taylor, and T. Ziehn, 2023:Anomalous meltwater from ice sheets and ice shelves is a historical forcing. Geophys. Res. Lett., 50, no. 24, e2023GL106530, doi:10.1029/2023GL106530.
, , , , Q. Li, C.D. Rye, , J.C. Marshall, and J.J.M. Busecke, 2023:Shindell, D., L. Parsons, The important role of African emissions reductions in projected local rainfall changes. NPJ Clim. Atmos. Sci., 6, 47, doi:10.1038/s41612-023-00382-7.
, K. Hicks, J. Kuylenstierna, and C. Heaps, 2023:Earth-system-model evaluation of cloud and precipitation occurrence for supercooled and warm clouds over the Southern Ocean's Macquarie Island. Atmos. Chem. Phys., 23, no. 16, 9037-9069, doi:10.5194/acp-23-9037-2023.
, , I. Silber, , , J. Mülmenstädt, A. Protat, S. Alexander, and A. McDonald, 2023:On the impact of a dry intrusion driving cloud-regime transitions in a mid-latitude cold-air outbreak. J. Atmos. Sci., 80, no. 12, 2881-2896, doi:10.1175/JAS-D-23-0040.1.
, , , , , D. Painemal, and , 2023:Weierbach, H., The impact of background ENSO and NAO conditions and anomalies on the modeled response to Pinatubo-sized volcanic forcing. Atmos. Chem. Phys., 23, no. 24, 15491-15505, doi:10.5194/acp-23-15491-2023.
, and , 2023:Whaley, C.H., K.S. Law, J.L. Hjorth, H. Skov, S.R. Arnold, J. Langner, J.B. Pernov, R.-Y. Chien, J.H. Christensen, M. Deushi, X. Dong, Arctic tropospheric ozone: Assessment of current knowledge and model performance. Atmos. Chem. Phys., 23, no. 1, 637-661, doi:10.5194/acp-23-637-2023.
, M. Flanner, J.S. Fu, M. Gauss, U. Im, L. Marelle, T. Onishi, N. Oshima, D.A. Plummer, L. Pozzoli, J.-C. Raut, R. Skeie, M.A. Thomas, , S. Tsyro, S.T. Turnock, K. von Salzen, and D.W. Tarasick, 2023:Zhang, X., D.W. Waugh, and Dependence of Northern Hemisphere tropospheric transport on the midlatitude jet under abrupt CO2 increase. J. Geophys. Res. Atmos., 128, no. 13, e2022JD038454, doi:10.1029/2022JD038454.
, 2023:Comparison of clouds and cloud feedback between AMIP5 to AMIP6. MDPI Atmos., 14, no. 6, 978, doi:10.3390/atmos14060978.
, , and , 2023:2022
The turning point of the aerosol era. J. Adv. Model. Earth Syst., 14, no. 12, e2022MS003070, doi:10.1029/2022MS003070.
, , , , , , and , 2022:Bowman, H., S. Turnock, Changes of anthropogenic precursor emissions drive shifts of ozone seasonal cycle throughout northern midlatitude troposphere. Atmos. Chem. Phys., 22, no. 5, 3507-3524, doi:10.5194/acp-22-3507-2022.
, , M. Deushi, N. Oshima, F.M. O'Connor, L. Horowitz, T. Wu, J. Zhang, and D.D. Parrish, 2022:Brown, F., G.A. Folberth, S. Sitch, The ozone-climate penalty over South America and Africa by 2100. Atmos. Chem. Phys., 22, no. 18, 12331-12352, doi:10.5194/acp-22-12331-2022.
, M. Bauters, P. Boeckx, A.W. Cheesman, M. Deushi, I. Dos Santos Vieira, C. Galy-Lacaux, J. Haywood, J. Keeble, L.M. Mercado, F.M. O'Connor, N. Oshima, , and H. Verbeeck, 2022:Southern Ocean solar reflection biases in CMIP6 models linked to cloud phase and vertical structure representations. Geophys. Res. Lett., 49, no. 22, e2022GL099777, doi:10.1029/2022GL099777.
, T. Khadir, H. Chepfer, and M. Chiriaco, 2022:Responses of compound daytime and nighttime warm-dry and warm-humid events to individual anthropogenic forcings. Environ. Res. Lett., 17, no. 8, 084015, doi:10.1088/1748-9326/ac80ce.
, , , , , , and , 2022:Projected changes in early summer ridging and drought over the Central Plains. Environ. Res. Lett., 17, 104020, doi:10.1088/1748-9326/ac8e1a.
, A.P. Williams, and , 2022:Improved representation of atmospheric dynamics in CMIP6 models removes climate sensitivity dependence on Hadley Cell climatological extent. Atmos. Sci. Lett., 23, no. 3, e1073, doi:10.1002/asl.1073.
, , and L. Polvani, 2022:Hausfather, Z., Climate simulations: Recognize the 'hot model' problem. Nature, 605, 26-29, doi:10.1038/d41586-022-01192-2.
, , J.W. Nielsen-Gammon, and M. Zelinka, 2022:Hernandez-Deckers, D., T. Matsui, and Updraft dynamics and microphysics: On the added value of the cumulus thermal reference frame in simulations of aerosol-deep convection interactions. Atmos. Chem. Phys., 22, no. 2, 711-724, doi:10.5194/acp-22-711-2022.
, 2022:Klovenski, E.R., Y. Wang, Interactive biogenic emissions and drought stress effects on atmospheric composition in NASA GISS ModelE. Atmos. Chem. Phys., 22, no. 10, 13303-13323, doi:10.5194/acp-22-13303-2022.
, , , , , A. Guenther, X. Jiang, W. Li, and N. Lin, 2022:Soil carbon losses reduce soil moisture in global climate model simulations. Earth Interact., 26, no. 1, 195-208, doi:10.1175/EI-D-22-0003.1.
, , , , T. Hengl, J. Sanderman, G.J.M. De Lannoy, and , 2022:Myhre, G., B. Samset, P.M. Forster, Ø. Hodnebrog, M. Sandstad, C.W. Mohr, J. Sillmann, C.W. Stjern, T. Andrews, O. Boucher, Scientific data from precipitation driver response model intercomparison project. Sci. Data, 9, no. 1, 123, doi:10.1038/s41597-022-01194-9.
, T. Iversen, J.-F. Lamarque, M. Kasoar, A. Kirkevåg, R. Kramer, L. Liu, J. Mülmenstädt, D. Olivié, J. Quaas, T.B. Richardson, D. Shawki, D. Shindell, C. Smith, P. Stier, T. Tang, T. Takemura, A. Voulgarakis, and D. Watson-Parris, 2022:Future climate change under SSP emission scenarios with GISS-E2.1. J. Adv. Model. Earth Syst., 14, no. 7, e2021MS002871, doi:10.1029/2021MS002871.
, , , , , , , , , , , , R. Bleck, , , , T.L. Clune, , C.A. Cruz, , , , , D. Kim, , , , , , , S. McDermid, , L.T. Murray, , , C.P. García-Pando, , , , D.T. Shindell, S. Sun, , , , , and , 2022:Russotto, R.D., J.D.O. Strong, S.J. Camargo, A.H. Sobel, Improved representation of tropical cyclones in the NASA GISS-E3 GCM. J. Adv. Model. Earth Syst., 14, no. 1, e2021MS002601, doi:10.1029/2021MS002601.
, , , Y. Moon, and D. Kim, 2022:Scholz, S.R., R. Seager, M. Ting, Y. Kushnir, J.E. Smerdon, Changing hydroclimate dynamics and the 19th to 20th century wetting trend in the English Channel region of northwest Europe. Clim. Dyn., 58, no. 5-6, 1539-1553, doi:10.1007/s00382-021-05977-5.
, E.R. Cook, and S.H. Baek, 2022:Shindell, D., Premature deaths in Africa due to particulate matter under high and low warming scenarios. GeoHealth, 6, no. 5, e2022GH000601, doi:10.1029/2022GH000601.
, L. Parsons, E. Nagamoto, and Chang J., 2022:Silber, I., R.C. Jackson, The Earth Model Column Collaboratory (EMC2) v1.1: An open-source ground-based lidar and radar instrument simulator and subcolumn generator for large-scale models. Geosci. Model Dev., 15, no. 2, 901-927, doi:10.5194/gmd-15-901-2022.
, , S. Collis, J. Verlinde, and J. Ding, 2022:Smith, D.M., N.P. Gillett, I.R. Simpson, P.J. Athanasiadis, J. Baehr, I. Bethke, T.A. Bilge, R. Bonnet, O. Boucher, K.L. Findell, G. Gastineau, S. Gualdi, L. Hermanson, L.R. Leung, J. Mignot, W.A. Müller, S. Osprey, O.H. Otterå, G.G. Persad, A.A. Scaife, Attribution of multi-annual to decadal changes in the climate system: The Large Ensemble Single Forcing Model Intercomparison Project (LESFMIP). Front. Clim., 4, 955414, doi:10.3389/fclim.2022.955414.
, H. Shiogama, R.T. Sutton, D. Swingedouw, S. Yang, T. Zhou, and T. Ziehn, 2022:Dilution of boundary layer cloud condensation nucleus concentrations by free tropospheric entrainment during marine cold air outbreaks. Geophys. Res. Lett., 49, no. 11, e2022GL098444, doi:10.1029/2022GL098444.
, , , , E.C. Crosbie, S. Kirschler, R.H. Moore, D. Painemal, C.E. Robinson, C. Seethala, M.A. Shook, C. Voigt, E.L. Winstead, L.D. Ziemba, P. Zuidema, and A. Sorooshian, 2022:Tridon, F., I. Silber, A. Battaglia, S. Kneifel, Highly supercooled riming and unusual triple-frequency radar signatures over McMurdo Station, Antarctica. Atmos. Chem. Phys., 22, no. 18, 12467-12491, doi:10.5194/acp-22-12467-2022.
, P. Kalogeras, and R. Dhillon, 2022:Modeling demographic-driven vegetation dynamics and ecosystem biogeochemical cycling in NASA GISS's Earth system model (ModelE-BiomeE v.1.0). Geosci. Model Dev., 15, no. 22, 8153-8180, doi:10.5194/gmd-15-8153-2022.
, , , , S.S. McDermid, , , K. Wilcox, R. Dybzinski, C.E. Farrior, S.W. Pacala, and , 2022:Whaley, C.H., R. Mahmood, K. von Salzen, B. Winter, S. Eckhardt, S. Arnold, S. Beagley, S. Becagli, R.-Y. Chien, J. Christensen, S.M. Damani, K. Eleftheriadis, N. Evangeliou, Model evaluation of short-lived climate forcers for the Arctic Monitoring and Assessment Programme: A multi-species, multi-model study. Atmos. Chem. Phys., 22, no. 9, 5775-5828, doi:10.5194/acp-22-5775-2022.
, M. Flanner, J.S. Fu, M. Gauss, F. Giardi, W. Gong, J.L. Hjorth, L. Huang, U. Im, Y. Kanaya, S. Krishnan, Z. Klimont, T. Kühn, J. Langner, K.S. Law, L. Marelle, A. Massling, D. Olivié, T. Onishi, N. Oshima, Y. Peng, D.A. Plummer, O. Popovicheva, L. Pozzoli, J.-C. Raut, M. Sand, L.N. Saunders, J. Schmale, S. Sharma, H. Skov, F. Taketani, M.A. Thomas, R. Traversi, , S. Tsyro, S. Turnock, V. Vitale, K.A. Walker, M. Wang, D. Watson-Parris, and T. Weiss-Gibbons, 2022:Zanchettin, D., C. Timmreck, M. Khodri, A. Schmidt, M. Toohey, M. Abe, S. Bekki, J. Cole, S.-W. Fang, W. Feng, G. Hegerl, B. Johnson, N. Lebas, Effects of forcing differences and initial conditions on inter-model agreement in the VolMIP volc-pinatubo-full experiment. Geosci. Model Dev., 15, no. 5, 2265-2292, doi:10.5194/gmd-15-2265-2022.
, G.W. Mann, L. Marshall, L. Rieger, A. Robock, S. Rubinetti, , and H. Weierbach, 2022:Zanis, P., D. Akritidis, S. Turnock, V. Naik, S. Szopa, A.K. Georgoulias, Climate change penalty and benefit on surface ozone: A global perspective based on CMIP6 earth system models. Environ. Res. Lett., 17, no. 2, 024014, doi:10.1088/1748-9326/ac4a34.
, M. Deushi, L.W Horowitz, J. Keeble, P. Le Sager, F.M. O'Connor, N. Oshima, , and T. van Noije, 2022:Zhong, Q., N. Schutgens, G van der Werf, T. van Noije, Satellite-based evaluation of AeroCom model bias in biomass burning regions. Atmos. Chem. Phys., 22, no. 17, 11009-11032, doi:10.5194/acp-22-11009-2022.
, , T. Mielonen, A. Kirkevåg, Ø. Seland, H. Kokkola, R. Checa-Garcia, D. Neubauer, Z. Kipling, H. Matsui, P. Ginoux, T. Takemura, P. Le Sager, S. Rémy, H. Bian, M. Chin, K. Zhang, J. Zhu, S.G. Tsyro, G. Curci, A. Protonotariou, B. Johnson, J.E. Penner, N. Bellouin, R.B. Skeie, and G. Myhre, 2022:2021
Abalos, M., N. Calvo, S. Benito-Barca, H. Garny, S.C. Hardiman, P. Lin, M.B. Andrews, N. Butchart, R. Garcia, The Brewer-Dobson circulation in CMIP6. Atmos. Chem. Phys., 21, no. 17, 13571-13591, doi:10.5194/acp-21-13571-2021.
, D. Saint-Martin, S. Watanabe, and K. Yoshida, 2021:Allen, R.J., L.W. Horowitz, V. Naik, N. Oshima, F.M. O'Connor, S. Turnock, S. Shim, P. Le Sager, T. van Noije, Significant climate benefits from near-term climate forcer mitigation in spite of aerosol reductions. Environ. Res. Lett., 16, no. 3, 034010, doi:10.1088/1748-9326/abe06b.
, , L.T. Sentman, J.G John, C. Broderick, M. Deushi, G.A. Folberth, S. Fujimori, and W.J. Collins, 2021:Arnscheidt, C.W., J. Marshall, P. Dutrieux, On the settling depth of meltwater escaping from beneath Antarctic ice shelves. J. Phys. Oceanogr., 51, no. 7, 2257-2270, doi:10.1175/JPO-D-20-0286.1.
, and A. Ramadhan, 2021:Baek, S.H., J.E. Smerdon, US Pacific coastal droughts are predominantly driven by internal atmospheric variability. J. Climate, 34, no. 5, 1947-1962, doi:10.1175/JCLI-D-20-0365.1.
, and A.P. Williams, 2021:Bolles, K.C., A.P. Williams, E.R. Cook, Tree-ring reconstruction of the atmospheric ridging feature that causes flash drought in the central United States since 1500. Geophys. Res. Lett., 48, no. 4, e2020GL091271, doi:10.1029/2020GL091271.
, and D.A. Bishop, 2021:Do sub-mesoscales inhibit destruction of PV? J. Geophys. Res. Oceans, 126, no. 11, e2020JC016991, doi:10.1029/2020JC016991.
, and , 2021:Snow reconciles observed and simulated phase partitioning and doubles cloud feedback. Geophys. Res. Lett., 48, no. 20, e2021GL094876, doi:10.1029/2021GL094876.
, , , I. Silber, and , 2021:Uncertainties, limits, and benefits of climate change mitigation for soil moisture drought in Southwestern North America. Earth's Future, 9, no. 9, e2021EF002014, doi:10.1029/2021EF002014.
, J.S. Mankin, A.P. Williams, , J.E. Smerdon, and H. Liu, 2021:The efficacy of seasonal terrestrial water storage forecasts for predicting vegetation activity over Africa. J. Hydrometeorol., 22, no. 11, 3121-3137, doi:10.1175/JHM-D-21-0046.1.
, K. Slinski, C. Peters-Lidard, A. McNally, K. Arsenault, and A. Hazra, 2021:This is page 1 of 3. Go to page 1, 2, 3.