Author Bibliographies
Publications by Michael J. Way
This citation list includes papers published while the author has been on staff at the NASA Goddard Institute for Space Studies. It may include some publications based on research conducted prior to their having joined the institute staff.
2024
Carter, J.L., R.D. Perera, and Hyper illumination of exoplanets: Analytical and numerical approaches. Astron. J., 167, no. 5, 222, doi:10.3847/1538-3881/ad33c1.
, 2024:Sparrman, V., S. Bladh, and Multiple habitable phases on outer exosolar worlds. Astrophys. J., 962, no. 1, 83, doi:10.3847/1538-4357/ad1685.
, 2024:Young, A., T. Robinson, J. Krissansen-Totton, E.W. Schwieterman, N. Wogan, Inferring chemical disequilibrium biosignatures for proterozoic Earth-like exoplanets. Nat. Astron., 8, no. 1, 101-110, doi:10.1038/s41550-023-02145-z.
, , G. Arney, C. Reinhard, M. Line, D. Catling, and J. Windsor, 2024:2023
Mogul, R., S.S. Limaye, and The CO2 profile and analytical model for the Pioneer Venus Large Probe neutral mass spectrometer. Icarus, 392, 115374, doi:10.1016/j.icarus.2022.115374.
, 2023:Mogul, R., G. Avice, S.S. Limaye, and Deriving new mixing ratios for gases in Venus' atmosphere using data acquired by the Pioneer Venus Large Probe Neutral Mass Spectrometer. MethodsX, 11, 102305, doi:10.1016/j.mex.2023.102305.
, 2023:O'Rourke, J., C. Wilson, M. Borrelli, P.K. Byrne, C. Dumoulin, R. Ghail, A. Gülcher, S. Jacobson, O. Korablev, T. Spohn, Venus, the planet: Introduction to the evolution of Earth's sister planet. Space Sci. Rev., 219, 10, doi:10.1007/s11214-023-00956-0.
, M. Weller, and F. Westall, 2023:Salvador, A., G. Avice, D. Breuer, C. Gillmann, H. Lammer, E. Marcq, S.N. Raymond, H. Sakuraba, M. Scherf, and Magma ocean, water, and the early atmosphere of Venus. Space Sci. Rev., 219, no. 7, 51, doi:10.1007/s11214-023-00995-7.
, 2023:Exploring climate with obliquity in a variable-eccentricity Earth-like world. Astron. J., 166, no. 6, 227, doi:10.3847/1538-3881/ad0373.
, N. Georgakarakos, and T.L. Clune, 2023:Synergies between Venus and exoplanetary observations: Venus and its extrasolar siblings. Space Sci. Rev., 219, 13, doi:10.1007/s11214-023-00953-3.
, C. Ostberg, B.J Foley, C. Gillmann, D. Höning, H. Lammer, J. O'Rourke, M. Persson, A.-C. Plesa, A. Salvador, M. Scher, and M. Weller, 2023:Westall, F., D. Höning, G. Avice, D. Gentry, T. Gerya, C. Gillmann, N. Izenberg, The habitability of Venus. Space Sci. Rev., 219, 17, doi:10.1007/s11214-023-00960-4.
, and C. Wilson, 2023:Widemann, T., S.E. Smrekar, J.B. Garvin, A.G. Straume-Lindner, A.C. Ocampo, M.D. Schulte, T. Voirin, S. Hensley, M.D. Dyar, J.L. Whitten, D.C. Nunes, S.A. Getty, G.N. Arney, N.M. Johnson, E. Kohler, T. Spohn, J.G. O'Rourke, C.F. Wilson, Venus evolution through time: Key science questions, selected mission concepts and future investigations. Space Sci. Rev., 219, no. 7, 56, doi:10.1007/s11214-023-00992-w.
, C. Ostberg, F. Westall, D. Höning, S. Jacobson, A. Salvador, G. Avice, D. Breuer, L. Carter, M.S. Gilmore, R. Ghail, J. Helbert, P. Byrne, A.R. Santos, R.R. Herrick, N. Izenberg, E. Marcq, T. Rolf, M. Weller, C. Gillmann, O. Korablev, L. Zelenyi, L. Zasova, D. Gorinov, G. Seth, C.V.N. Rao, and N. Desai, 2023:2022
Fauchez, T.J., G.L. Villanueva, D.E. Sergeev, M. Turbet, I.A. Boutle, The TRAPPIST-1 Habitable Atmosphere Intercomparison (THAI). Part III: Simulated observables — The return of the spectrum. Planet. Sci. J., 3, no. 9, 213, doi:10.3847/PSJ/ac6cf1.
, , E.T. Wolf, S.D. Domagal-Goldman, F. Forget, J. Haqq-Misra, R.K. Kopparapu, J. Manners, and N.J. Mayne, 2022:Gillmann, C., The long-term evolution of the atmosphere of Venus: Processes and feedback mechanisms. Space Sci. Rev., 218, 56, doi:10.1007/s11214-022-00924-0.
, G. Avice, D. Breuer, G.J. Golabek, D. Honing, J. Krissansen-Totton, H. Lammer, A.-C. Plesa, M. Persson, J.G. O'Rourke, A. Salvador, M. Scherf, and M.Y. Zolotov, 2022:Schmidt, F., Circumpolar ocean stability on Mars 3 Gy ago. Proc. Natl. Acad. Sci., 119, no. 4, e2112930118, doi:10.1073/pnas.2112930118.
, S. Bouley, A. Séjourné, and , 2022:Sergeev, D.E., T.J. Fauchez, M. Turbet, I.A. Boutle, The TRAPPIST-1 Habitable Atmosphere Intercomparison (THAI). Part II: Moist cases — The two waterworlds. Planet. Sci. J., 3, no. 9, 212, doi:10.3847/PSJ/ac6cf2.
, , E.T. Wolf, S.D. Domagal-Goldman, F. Forget, J. Haqq-Misra, R.K. Kopparapu, F.H. Lambert, J. Manners, and N.J. Mayne, 2022:Turbet, M., T.J. Fauchez, D.E. Sergeev, I.A. Boutle, The TRAPPIST-1 Habitable Atmosphere Intercomparison (THAI). Part I: Dry cases — The fellowship of the GCMs. Planet. Sci. J., 3, no. 9, 211, doi:10.3847/PSJ/ac6cf0.
, , E.T. Wolf, S.D. Domagal-Goldman, F. Forget, J. Haqq-Misra, R.K. Kopparapu, F.H. Lambert, J. Manners, N.J. Mayne, and , 2022:Large scale volcanism and the heat-death of terrestrial worlds. Planet. Sci. J., 3, no. 4, 92, doi:10.3847/PSJ/ac6033.
, R.E. Ernst, and J.D. Scargle, 2022:2021
Effects of spin-orbit resonances and tidal heating on the inner edge of the Habitable Zone. Astrophys. J., 921, no. 1, 25, doi:10.3847/1538-4357/ac135c.
, J. Haqq-Misra, E.T. Wolf, , R. Barnes, , and , 2021:Fauchez, T.J., M. Turbet, D.E. Sergeev, N.J. Mayne, A. Spiga, TRAPPIST Habitable Atmosphere Intercomparison (THAI) workshop report. Planet. Sci. J., 2, no. 3, 106, doi:10.3847/PSJ/abf4df.
, P. Saxena, R. Deitrick, G. Gilli, S.D. Domagal-Goldman, F. Forget, R. Cosentino, R. Barnes, J. Haqq-Misra, , E.T. Wolf, S. Olson, J.S. Crouse, E. Janin, E. Bolmont, J. Leconte, G. Chaverot, Y. Jaziri, , J. Yang, D. Pidhorodetska, R.K. Kopparapu, H. Chen, I.A. Boutle, M. Lefevre, B. Charnay, A. Burnett, J. Cabra, and N. Bouldin, 2021:Guzewich, S.D., 3D simulations of the early Martian hydrological cycle mediated by a H2-CO2 greenhouse. J. Geophys. Res. Planets, 126, no. 7, e2021JE006825, doi:10.1029/2021JE006825.
, , E.T. Wolf, , R. Wordsworth, and , 2021:Höning, D., P. Baumeister, J.L. Grenfell, N. Tosi, and Early habitability and crustal decarbonation of a stagnant-lid Venus. J. Geophys. Res. Planets, 126, no. 10, e2021JE006895, doi:10.1029/2021JE006895.
, 2021:Limaye, S.S., R. Mogul, K.H. Baines, M.A. Bullock, C. Cockell, J.A. Cutts, D.M. Gentry, D.H. Grinspoon, J.W. Head, K.-L. Jessup, V. Kompanichenko, Y.J. Lee, R. Mathies, T. Milojevic, R.A. Pertzborn, L. Rothschild, S. Sasaki, D. Schulze-Makuch, D.J. Smith, and Venus, an astrobiology target. Astrobiology, 21, no. 10, 1163-1185, doi:10.1089/ast.2020.2268.
, 2021:Mogul, R., S.S. Limaye, and M. Way, 2021: Venus' mass spectra show signs of disequilibria in the middle clouds. Geophys. Res. Lett., 48, no. 7, e2020GL091327, doi:10.1029/2020GL091327.
The climates of Earth's next supercontinent: Effects of tectonics, rotation rate, and insolation. Geochem. Geophys. Geosyst., 22, no. 8, e2021GC009983, doi:10.1029/2021GC009983.
, H.S. Davies, J.C. Duarte, and J.A.M. Green, 2021:2020
Airapetian, V.S., R. Barnes, O. Cohen, G.A. Collinson, W.C. Danchi, C.F. Dong, Impact of space weather on climate and habitability of terrestrial type exoplanets. Int. J. Astrobiol., 19, no. 2, 136-194, doi:10.1017/S1473550419000132.
, K. France, K. Garcia-Sage, A. Glocer, N. Gopalswamy, J.L. Grenfell, G. Gronoff, M. Güdel, K. Herbst, W.G. Henning, C.H. Jackman, M. Jin, C.P. Johnstone, L. Kaltenegger, C.D. Kay, K. Kobayashi, W. Kuang, G. Li, B.J. Lynch, T. Lüftinger, J.G. Luhmann, H. Maehara, M.G. Mlynczak, Y. Notsu, R.M. Ramirez, S. Rugheimer, M. Scheucher, J.E. Schlieder, K. Shibata, C. Sousa-Silva, V. Stamenković, R.J. Strangeway, A.V. Usmanov, P. Vergados, O.P. Verkhoglyadova, A.A. Vidotto, M. Voytek, , G.P. Zank, and Y. Yamashiki, 2020:Blackledge, B., M. Green, R. Barnes, and Tides on other Earths: Implications for exoplanet and palaeo-tidal simulations. Geophys. Res. Lett., 47, no. 12, e2019GL085746, doi:10.1029/2019GL085746.
, 2020:Fauchez, T., M. Turbet, E.T. Wolf, I. Boutle, TRAPPIST-1 Habitable Atmosphere Intercomparison (THAI). Motivations and protocol. Geosci. Model Dev., 13, 707-716, doi:10.5194/gmd-13-707-2020.
, , N.J. Mayne, , R.K. Kopparapu, J. Yang, F. Forget, A. Mandell, and S.D. Domagal Goldman, 2020:Guzewich, S., J. Lustic-Yaeger, C.E. Davis, R.K. Kopparapu, The impact of planetary rotation rate on the reflectance and thermal emission spectrum of terrestrial exoplanets around Sunlike stars. Astrophys. J., 893, no. 2, 140, doi:10.3847/1538-4357/ab83ec.
, and V.S. Meadows, 2020:Venusian habitable climate scenarios: Modeling Venus through time and applications to slowly rotating Venus-like exoplanets. J. Geophys. Res. Planets, 125, no. 5, e2019JE006276.
, and , 2020:2019
Modeling a transient secondary paleolunar atmosphere: 3-D simulations and analysis. Geophys. Res. Lett., 46, no. 10, 5107-5116, doi:10.1029/2019GL082494.
, , , , E.T. Wolf, and G. Gronoff, 2019:Enhanced habitability on high obliquity bodies near the outer edge of the Habitable Zone of Sun-like stars. Astrophys. J., 884, no. 2, 138, doi:10.3847/1538-4357/ab4131.
, , and , 2019:Albedos, equilibrium temperatures, and surface temperatures of habitable planets. Astrophys. J., 884, no. 1, 75, doi:10.3847/1538-4357/ab3be8.
, , , , , Y. Fujii, , , , S.D. Guzewich, and , 2019:Habitable climate scenarios for Proxima Centauri b with a dynamic ocean. Astrobiology, 19, no. 1, 99-125, doi:10.1089/ast.2017.1760.
, , , , , , and T.L. Clune, 2019:Climates of warm Earth-like planets III: Fractional habitability from a water cycle perspective. Astrophys. J., 887, no. 2, 197, doi:10.3847/1538-4357/ab57fd.
, , , , , and , 2019:Green, J.A.M., Consequences of tidal dissipation in a putative Venusian ocean. Astrophys. J. Lett., 876, no. 2, L22, doi:10.3847/2041-8213/ab133b.
, and R. Barnes, 2019:Jansen, T., C. Scharf, Climates of warm Earth-like planets II: Rotational 'Goldilocks' zones for fractional habitability and silicate weathering. Astrophys. J., 875, no. 2, 79, doi:10.3847/1538-4357/ab113d.
, and , 2019:Kane, S.R., G. Arney, D. Crisp, S. Domagal-Goldman, L.S. Glaze, C. Goldblatt, D. Grinspoon, J.W. Head, A. Lenardic, C. Unterborn, Venus as a laboratory for exoplanetary science. J. Geophys. Res. Planets, 124, no. 8, 2015-2028, doi:10.1029/2019JE005939.
, and K.J. Zahnle, 2019:Venus topography and boundary conditions in 3D general circulation modeling. In Planetary Cartography and GIS. H. Hargital, Ed., Lecture Notes in Geoinformation and Cartography, Springer International, pp. 325-335, doi:10.1007/978-3-319-62849-3_19.
, and J. Wang, 2019:2018
Kane, S.R., A.Y. Ceja, Climate modeling of a potential ExoVenus. Astrophys. J., 869, no. 1, 46, doi:10.3847/1538-4357/aaec68.
, and E.V. Quintana, 2018:Climates of warm Earth-like planets I: 3-D model simulations. Astrophys. J. Supp. Ser., 239, no. 2, 24, doi:10.3847/1538-4365/aae9e1.
, , , T.L. Clune, , and , 2018:2017
Scargle, J.D., Structure in galaxy distribution. III. Fourier transforming the universe. Astrophys. J., 839, 40, doi:10.3847/1538-4357/aa692d.
, and P. Gazis, 2017:Resolving orbital and climate keys of Earth and extraterrestrial environments with dynamics 1.0: A general circulation model for simulating the climates of rocky planets. Astrophys. J. Supp. Ser., 231, no. 1, 12, doi:10.3847/1538-4365/aa7a06.
, , , , T. Clune, , , , , , and , 2017:Effects of variable eccentricity on the climate of an Earth-like world. Astrophys. J. Lett., 835, no. 1, L1, doi:10.3847/2041-8213/835/1/L1.
, and N. Georgakarakos, 2017:2016
Andrews, D.J., S. Barabash, N.J.T. Edberg, D.A. Gurnett, B.E.S. Hall, M. Holmström, M. Lester, D.D. Morgan, H.J. Opgenoorth, R. Ramstadt, B. Sanchez-Cano, Plasma observations during the Mars atmospheric "plume" event of March-April 2012. J. Geophys. Res. Space Phys., 121, no. 4, 3139-3154, doi:10.1002/2015JA022023.
, and O. Witasse, 2016:Bergvall, N., T. Marquart, Local starburst galaxies and their descendants: Statistics from the Sloan Digital Sky Survey. Astron. Astrophys., 587, A72, doi:10.1051/0004-6361/201525692.
, A. Blomqvist, E. Holst, G. Östlin, and E. Zackrisson, 2016:Georgakarakos, N., I. Dobbs-Dixon, and Long term evolution of planetary systems with a terrestrial planet and a giant planet. Mon. Not. Roy. Astron. Soc., 461, no. 2, 1512-1528, doi:10.1093/mnras/stw1378.
, 2016:Was Venus the first habitable world of our solar system? Geophys. Res. Lett., 43, no. 16, 8376-8383, doi:10.1002/2016GL069790.
, , , , D.H. Grinspoon, , , and T. Clune, 2016:2015
Structure in the 3D galaxy distribution. II. Voids and watersheds of local maxima and minima. Astrophys. J., 799, 95, doi:10.1088/0004-637X/799/1/95.
, P.R. Gazis, and J.D. Scargle, 2015:2014
Historical notes on the expanding universe. Phys. Today, 67, no. 7, 8, doi:10.1063/PT.3.2431.
, A. Belenkiy, H. Nussbaumer, and J. Peacock, 2014:2013
Dismantling Hubble's legacy. In Origins of the Expanding Universe: 1912-1932. M.J. Way and D. Hunter, Eds., ASP Conference Series, vol. 471, Astronomical Society of the Pacific, pp. 97-134.
, 2013:Origins of the Expanding Universe: 1912-1932. ASP Conference Series 471. Astronomical Society of the Pacific.
and D. Hunter (Eds.), 2013:2012
Commentary: Learning about the sky through simulations. In Statistical Challenges in Modern Astronomy V. E.D. Feigelsson and B. Jogesh, Eds., Lecture Notes in Statistics, vol. 209, Springer, pp. 361-366, doi:10.1007/978-1-4614-3520-4_34.
, 2012:Can self-organizing maps accurately predict photometric redshifts? Publ. Astron. Soc. Pacific, 124, 274-279, doi:10.1086/664796.
, and C.D. Klose, 2012:Advances in Machine Learning and Data Mining for Astronomy. Data Mining and Knowledge Discovery Series. Chapman and Hall/CRC.
, J.D. Scargle, K. Ali, and A.N. Srivastava (Eds.), 2012:2011
Galaxy Zoo morphology and photometric redshifts in the Sloan Digital Sky Survey. Astrophys. J. Lett., 734, L9, doi:10.1088/2041-8205/734/1/L9.
, 2011:Structure in the 3D galaxy distribution: I. Methods and example results. Astrophys. J., 727, 48, doi:10.1088/0004-637X/727/1/48.
, P.R. Gazis, and J.D. Scargle, 2011:2010
Gazis, P.R., C. Levit, and Viewpoints: A high-performance high-dimensional exploratory data analysis tool. Publ. Astron. Soc. Pacific, 122, 1518-1525, doi:10.1086/657902.
, 2010:2009
Foster, L., A. Waagen, N. Aijaz, M. Hurley, A. Luis, J. Rinsky, C. Satyavolu, Stable and efficient Gaussian process calculations. J. Mach. Learn. Res., 10, 857-882.
, P. Gazis, and A. Srivastava, 2009:Quintana, H., D. Proust, G. Hertling, A. Ramirez, I. Toledo, and High relative velocity central dumbbells in poor clusters. Astron. Nachr., 330, 924-927, doi:10.1002/asna.200911264.
, 2009:New approaches to Gaussian process regression in the Sloan Digital Sky Survey. Astrophys. J., 706, 623-636, doi:10.1088/0004-637X/706/1/623.
, L.V. Foster, P.R. Gazis, and A.N. Srivastava, 2009:2006
Novel methods for predicting photometric redshifts from broadband photometry using virtual sensors. Astrophys. J., 647, 102-115, doi:10.1086/505293.
, and A.N. Srivastava, 2006:2005
Redshifts in the Southern Abell Redshift Survey Clusters. I. The data. Astron. J., 130, 2012-2018, doi:10.1086/462418.
, H. Quintana, L. Infante, D.G. Lambas, and H. Muriel, 2005:2004
Doroshkevich, A., D.L. Tucker, S. Allam, and Large scale structure in the SDSS galaxy survey. Astron. Astrophys., 418, 7-23, doi:10.1051/0004-6361:20031780.
, 2004:2003
Chiang, L.-Y., P.D. Naselsky, O.V. Verkhodanov, and Non-Gaussianity of the derived maps from the first-year Wilkinson Microwave Anisotropy Probe data. Astrophys. J., 590, L65-L68, doi:10.1086/376822.
, 2003:2002
Muriel, H., H. Quintana, L. Infante, D.G. Lambas, and Velocity dispersions and cluster properties in the Southern Abell Redshift Survey Clusters. II. Astron. J., 124, 1934-1942, doi:10.1086/342854.
, 2002:2000
Flores, R.A., H. Quintana, and Deconstructing Abell 3266: A major merger in a quiet cluster. Astrophys. J., 532, 206-213, doi:10.1086/308539.
, 2000: