Author Bibliographies
Publications by Lettie A. Roach
This citation list includes papers published while the author has been on staff at the NASA Goddard Institute for Space Studies. It may include some publications based on research conducted prior to their having joined the institute staff.
Submitted / In Review
Winds and meltwater together can largely explain Southern Ocean variability and trends over the last three decades. Geophys. Res. Lett., submitted.
, , , and , 2023:2023
Goosse, H., S. Allende Contador, C.M. Bitz, E. Blanchard-Wrigglesworth, C. Eayrs, T. Fichefet, K. Himmich, P.-V. Huot, F. Klein, S. Marchi, F. Massonnet, B. Mezzina, C. Pelletier, Modulation of the seasonal cycle of the Antarctic sea ice extent by sea ice processes and feedbacks with the ocean and the atmosphere. The Cryosphere, 17, no. 1, 407-425, doi:10.5194/tc-17-407-2023.
, M. Vancoppenolle, and N.P.M. van Lipzig, 2023:Asymmetry in the seasonal cycle of zonal-mean surface air temperature. Geophys. Res. Lett., 50, no. 10, e2023GL103403, doi:10.1029/2023GL103403.
, I. Eisenman, T. Wagner, and A. Donohoe, 2023:2022
Cooper, V., Wind waves in sea ice of the western Arctic and a global coupled wave-ice model. Phil. Trans. Roy. Soc. A, 380, no. 2235, 20210258, doi:10.1098/rsta.2021.0258.
, J. Thomson, S. Brenner, M. Smith, M. Meylan, and C. Bitz, 2022:Horvat, C., and WIFF1.0: A hybrid machine-learning-based parameterization of Wave-Induced sea-ice Floe Fracture. Geosci. Model Dev., 15, no. 2, 803-814, doi:10.5194/gmd-15-803-2022.
, 2022:Montiel, F., A.L. Kohout, and Physical drivers of ocean wave attenuation in the marginal ice zone. J. Phys. Oceanogr., 52, no. 5, 889-906, doi:10.1175/JPO-D-21-0240.1.
, 2022:Observed winds crucial for September Arctic sea ice loss. Geophys. Res. Lett., 49, no. 6, e2022GL097884, doi:10.1029/2022GL097884.
, and E. Blanchard-Wrigglesworth, 2022:Asymmetry in the seasonal cycle of Antarctic sea ice due to insolation. Nat. Geosci., 15, no. 4, 277-281, doi:10.1038/s41561-022-00913-6.
, I. Eisenman, T.J. Wagner, E. Blanchard-Wrigglesworth, and C.M. Bitz, 2022:The impact of winds on AMOC in a fully-coupled climate model. Geophys. Res. Lett., 49, no. 24, e2022GL101203, doi:10.1029/2022GL101203.
, E. Blanchard-Wrigglesworth, S. Ragen, W. Cheng, K.C. Armour, and C.M. Bitz, 2022:2021
Blanchard-Wrigglesworth, E., A. Donohoe, High-frequency sea ice variability in observations and models. Geophys. Res. Lett., 48, no. 14, e2020GL092356, doi:10.1029/2020GL092356.
, A. DuVivier, and C.M. Bitz, 2021:Blanchard-Wrigglesworth, E., Impact of winds and Southern Ocean SSTs on Antarctic sea ice trends and variability. J. Climate, 34, no. 3, 949-965, doi:10.1175/JCLI-D-20-0386.1.
, A. Donohoe, and Q. Ding, 2021:2020
Ackley, S.F., S. Stammerjohn, T. Maksym, M. Smith, J. Cassano, P. Guest, J.-L. Tison, B. Delille, B. Loose, P. Sedwick, L. DePace, Sea-ice production and air/ice/ocean/biogeochemistry interactions in the Ross Sea during the PIPERS 2017 autumn field campaign. Ann. Glaciol., 61, no. 82, 181-195, doi:10.1017/aog.2020.31.
, and J. Parno, 2020:Bracegirdle, T.J., G. Krinner, M. Tonelli, F.A. Haumann, K.A. Naughten, T. Rackow, Twenty first century changes in Antarctic and Southern Ocean surface climate in CMIP6. Atmos. Sci. Lett., 21, no. 9, e984, doi:10.1002/asl.984.
, and I. Wainer, 2020:Hošeková, L., M.P. Malila, W.E. Rogers, Attenuation of ocean surface waves in pancake and frazil sea ice along the coast of the Chukchi Sea. J. Geophys. Res. Oceans, 125, no. 12, e2020JC016746, doi:10.1029/2020JC016746.
, E. Eidam, L. Rainville, N. Kumar, and J. Thomson, 2020:Horvat, C., D. Flocco, D.W. Rees Jones, The effect of melt pond geometry on the distribution of solar energy under first-year sea ice. Geophys. Res. Lett., 47, no. 4, e2019GL085956, doi:10.1029/2019GL085956.
, and K.M. Golden, 2020:Kohout, A.L., M. Smith, Observations of exponential wave attenuation in Antarctic sea ice during the PIPERS campaign. Ann. Glaciol., 61, no. 82, 196-209, doi:10.1017/aog.2020.36.
, G. Williams, F. Montiel, and M.J.M. Williams, 2020:Notz, D., J. Dörr, D.A. Bailey, E. Blockley, M. Bushuk, J.B. Debernard, E. Dekker, P. DeRepentigny, D. Docquier, N.S. Fučkar, J.C. Fyfe, A. Jahn, M. Holland, E. Hunke, D. Iovino, N. Khosravi, G. Madec, F. Massonnet, S. O'Farrell, A. Petty, A. Rana, Arctic sea ice in CMIP6. Geophys. Res. Lett., 47, no. 10, e2019GL086749, doi:10.1029/2019GL086749.
, E. Rosenblum, C. Rousset, T. Semmler, J. Stroeve, T. Toyoda, B. Tremblay, H. Tsujino, and M. Vancoppenolle, 2020:Antarctic sea ice area in CMIP6. Geophys. Res. Lett., 47, no. 9, e2019GL086729, doi:10.1029/2019GL086729.
, J. Dörr, C.R. Holmes, F. Massonnet, E.W. Blockley, D. Notz, T. Rackow, M.N. Raphael, S.P. O'Farrell, D.A. Bailey, and C.M. Bitz, 2020:2019
Horvat, C., L.A. Roach, R. Tilling, C.M. Bitz, B. Fox-Kemper, C. Guider, K. Hill, A. Ridout, and A. Shepherd, 2019: Estimating the sea ice floe size distribution using satellite altimetry: Theory, climatology, and model comparison. The Cryosphere, 13, 2869-2885, doi:10.5194/tc-13-2869-2019.
Advances in modeling interactions between sea ice and ocean surface waves. J. Adv. Model. Earth Syst., 11, no. 12, 4167-4181, doi:10.1029/2019MS001836.
, C.M. Bitz, C. Horvat, and S.M. Dean, 2019:2018
Consistent biases in Antarctic sea ice concentration simulated by climate models. The Cryosphere, 12, 365-383, doi:10.5194/tc-12-365-2018.
, S.M. Dean, and J.A. Renwick, 2018:An emergent sea ice floe size distribution in a global coupled ocean-sea ice model. J. Geophys. Res. Oceans, 123, no. 6, 4322-4337, doi:10.1029/2017JC013692.
, C. Horvat, S.M. Dean, and C.M. Bitz, 2018:Quantifying growth of pancake sea ice floes using images from drifting buoys. J. Geophys. Res. Oceans, 123, no. 4, 2851-2866, doi:10.1002/2017JC013693.
, M.M. Smith, and S.M. Dean, 2018:Automated parameter tuning applied to sea ice in a global climate model. Clim. Dyn., 50, no. 1, 51-65, doi:10.1007/s00382-017-3581-5.
, S.F.B. Tett, M.J. Mineter, K. Yamazaki, and C.D. Rae, 2018: