Author Bibliographies
Publications by Kostas Tsigaridis
This citation list includes papers published while the author has been on staff at the NASA Goddard Institute for Space Studies. It may include some publications based on research conducted prior to their having joined the institute staff.
Submitted / In Review
Petrenko, M., R. Kahn, M. Chin, Biomass burning emissions analysis based on MODIS AOD and AeroCom multi-model simulations. Atmos. Chem. Phys, submitted.
, T. Bergman, H. Bian, G. Curci, B. Johnson, J. Kaiser, Z. Kipling, H. Kokkola, X. Liu, , T. Mielonen, G. Myhre, X. Pan, A. Protonotariou, S. Remy, R.B. Skeie, P. Stier, T. Takemura, , H. Wang, D. Watson-Parris, and K. Zhang, 2024:2024
Influence of more mechanistic representation of particle dry deposition on historical changes in global aerosol burdens and radiative forcing. J. Adv. Model. Earth Syst., 16, no. 3, e2023MS003952, doi:10.1029/2023MS003952.
, , , , , , and , 2024:Modeling atmospheric brown carbon in the GISS ModelE Earth system model. Atmos. Chem. Phys., 24, no. 10, 6275-6304, doi:10.5194/acp-24-6275-2024.
, , , , and G.L. Schuster, 2024:Estimating the impact of a 2017 smoke plume on surface climate over northern Canada with a climate model, satellite retrievals, and weather forecasts. J. Geophys. Res. Atmos., 129, no. 15, e2023JD039396, doi:10.1029/2023JD039396.
, M. Luo, , , , , , , and , 2024:Luo, M., H.M. Worden, TROPESS-CrIS CO single-pixel vertical profiles: Intercomparisons with MOPITT and model comparisons for 2020 western US wildfires. Atmos. Meas. Tech., 17, no. 9, 2611-2024, doi:10.5194/amt-17-2611-2024.
, , and , 2024:Severe global cooling after volcanic super-eruptions? The answer hinges on unknown aerosol size. J. Climate, 37, no. 4, 1449-1464, doi:10.1175/JCLI-D-23-0116.1.
, , L. Polvani, , , and , 2024:Observationally constrained regional variations of shortwave absorption by iron oxides emphasize the cooling effect of dust. Atmos. Chem. Phys., 24, no. 9, 5337-5367, doi:10.5194/acp-24-5337-2024.
, M. Gonçalves Ageitos, C. Pérez García-Pando, G.L. Schuster, , C. Di Biagio, P. Formenti, , , and , 2024:Ren, F., J. Lin, C. Xu, J.A. Adeniran, J. Wang, R.V. Martin, A. van Donkelaar, M. Hammer, L. Horowitz, S.T. Turnock, N. Oshima, J. Zhang, Evaluation of CMIP6 model simulations of PM2.5 and its components over China. Geosci. Model Dev., 17, no. 12, 4821-4836, doi:10.5194/gmd-17-4821-2024.
, , Ø. Seland, P. Nabat, D. Neubauer, G. Strand, T. van Noije, P. Le Sager, and T. Takemura, 2024:Rivera, A., Assessing acetone for the GISS ModelE2.1 Earth system model. Geosci. Model Dev., 17, no. 8, 3487-3505, doi:10.5194/gmd-17-3487-2024.
, , and D. Shindell, 2024:The CUISINES framework for conducting exoplanet model intercomparison projects, version 1.0. Planet. Sci. J., 5, 175, doi:10.3847/PSJ/ad5830.
, T.J. Fauchez, S. Domagal-Goldman, D.A. Christie, R. Deitrick, J. Haqq-Misra, C.E. Harman, N. Iro, N.J. Mayne, , G.L. Villanueva, A.V. Young, and G. Chaverot, 2024:Composition and climate impacts of increasing launches to Low Earth Orbit. In AIAA SciTech 2024 Forum, 8-12 January 2024, Orlando, FL, American Institute of Aeronautics and Astronautics, doi:10.2514/6.2024-2168.
, , , M.N. Ross, C. Maloney, , and K.H. Rosenlof, 2024:2023
Understanding model-observation discrepancies in satellite retrievals of atmospheric temperature using GISS ModelE. J. Geophys. Res. Atmos., 128, no. 1, e2022JD037523, doi:10.1029/2022JD037523.
, , , , , , , and D.T. Shindell, 2023:Gomez, J., R.J. Allen, S.T. Turnock, L.W. Horowitz, The projected future degradation in air quality is caused by more abundant natural aerosols in a warmer world. Commun. Earth Environ., 4, no. 1, 22, doi:10.1038/s43247-023-00688-7.
, , D. Olivié, E.S. Thomson, and P. Ginoux, 2023:Emissions background, climate, and season determine the impacts of past and future pandemic lockdowns on atmospheric composition and climate. Earth's Future, 11, no. 5, e2022EF002959, doi:10.1029/2022EF002959.
, , , and , 2023:Im, U., Present-day and future PM2.5 and O3-related global and regional premature mortality in the EVAv6.0 health impact assessment model. Environ. Res., 216, no. 4, 114702, doi:10.1016/j.envres.2022.114702.
, L.M. Frohn, C. Geels, , and J. Brandt, 2023:Ji, A., J.F. Kasting, G.J. Cooke, D.R. Marsh, and Comparison between ozone column depths and methane lifetimes computed by one- and three-dimensional models at different atmospheric O2 levels. Roy. Soc. Open Sci., 10, no. 5, 230056, doi:10.1098/rsos.230056.
, 2023:Law, K.S, J.L. Hjorth, J.B. Pernov, C. Whaley, H. Skov, M. Collaud Coen, J. Langner, S.R. Arnold, D.W Tarasick, J. Christensen, M. Deushi, P. Effertz, Arctic tropospheric ozone trends. Geophys. Res. Lett., 50, no. 22, e2023GL103096, doi:10.1029/2023GL103096.
, M. Gauss, U. Im, N. Oshima, I. Petropavlovskikh, D. Plummer, , S. Tsyro, S. Solberg, and S.T Turnock, 2023:Misios, S., A. Chrysanthou, StratoFIRE: Modeling wildfire smoke in the stratosphere. In Proceedings of 16th International Conference on Meteorology, Climatology and Atmospheric Physics — COMECAP 2023: 25-29 September 2023, Athens, Greece. K. Moustris and N. Panagiotis, Eds., MDPI Environmental Sciences Proceedings, vol. 26, no. 1, p. 180, doi:10.3390/environsciproc2023026180.
, and V. Amiridis, 2023:Investigating hydroclimatic impacts of the 168-158 BCE volcanic quartet and their relevance to the Nile River basin and Egyptian history. Clim. Past, 19, no. 1, 249-275, doi:10.5194/cp-19-249-2023.
, , , F. Ludlow, and J.G. Manning, 2023:Weierbach, H., The impact of background ENSO and NAO conditions and anomalies on the modeled response to Pinatubo-sized volcanic forcing. Atmos. Chem. Phys., 23, no. 24, 15491-15505, doi:10.5194/acp-23-15491-2023.
, and , 2023:Whaley, C.H., K.S. Law, J.L. Hjorth, H. Skov, S.R. Arnold, J. Langner, J.B. Pernov, R.-Y. Chien, J.H. Christensen, M. Deushi, X. Dong, Arctic tropospheric ozone: Assessment of current knowledge and model performance. Atmos. Chem. Phys., 23, no. 1, 637-661, doi:10.5194/acp-23-637-2023.
, M. Flanner, J.S. Fu, M. Gauss, U. Im, L. Marelle, T. Onishi, N. Oshima, D.A. Plummer, L. Pozzoli, J.-C. Raut, R. Skeie, M.A. Thomas, , S. Tsyro, S.T. Turnock, K. von Salzen, and D.W. Tarasick, 2023:Wilcox, L.J., R.J. Allen, B.H. Samset, M.A. Bollasina, P.T. Griffiths, J.M. Keeble, M.T. Lund, R. Makkonen, J. Merikanto, D. O'Donnell, D.J. Paynter, G.G. Persad, S.T. Rumbold, T. Takemura, The Regional Aerosol Model Intercomparison Project (RAMIP). Geosci. Model Dev., 16, no. 13, 4451-4479, doi:10.5194/gmd-16-4451-2023.
, S. Undorf, and , 2023:Zhong, Q., N. Schutgens, G.R. van der Werf, T. Takemura, T. van Noije, T. Mielonen, R. Checa-Garcia, U. Lohmann, A. Kirkevåg, D.J.L. Olivié, H. Kokkola, H. Matsui, Z. Kipling, P. Ginoux, P. Le Sager, S. Rémy, H. Bian, M. Chin, K. Zhang, Threefold reduction of modeled uncertainty in direct radiative effects by constraining absorbing aerosols over biomass burning regions. Sci. Adv., 9, no. 48, eadi3568, doi:10.1126/sciadv.adi3568.
, and , 2023:2022
The turning point of the aerosol era. J. Adv. Model. Earth Syst., 14, no. 12, e2022MS003070, doi:10.1029/2022MS003070.
, , , , , , and , 2022:Bowman, H., S. Turnock, Changes of anthropogenic precursor emissions drive shifts of ozone seasonal cycle throughout northern midlatitude troposphere. Atmos. Chem. Phys., 22, no. 5, 3507-3524, doi:10.5194/acp-22-3507-2022.
, , M. Deushi, N. Oshima, F.M. O'Connor, L. Horowitz, T. Wu, J. Zhang, and D.D. Parrish, 2022:Brown, F., G.A. Folberth, S. Sitch, The ozone-climate penalty over South America and Africa by 2100. Atmos. Chem. Phys., 22, no. 18, 12331-12352, doi:10.5194/acp-22-12331-2022.
, M. Bauters, P. Boeckx, A.W. Cheesman, M. Deushi, I. Dos Santos Vieira, C. Galy-Lacaux, J. Haywood, J. Keeble, L.M. Mercado, F.M. O'Connor, N. Oshima, , and H. Verbeeck, 2022:Fauchez, T.J., G.L. Villanueva, D.E. Sergeev, M. Turbet, I.A. Boutle, The TRAPPIST-1 Habitable Atmosphere Intercomparison (THAI). Part III: Simulated observables — The return of the spectrum. Planet. Sci. J., 3, no. 9, 213, doi:10.3847/PSJ/ac6cf1.
, , E.T. Wolf, S.D. Domagal-Goldman, F. Forget, J. Haqq-Misra, R.K. Kopparapu, J. Manners, and N.J. Mayne, 2022:Klovenski, E.R., Y. Wang, Interactive biogenic emissions and drought stress effects on atmospheric composition in NASA GISS ModelE. Atmos. Chem. Phys., 22, no. 10, 13303-13323, doi:10.5194/acp-22-13303-2022.
, , , , , A. Guenther, X. Jiang, W. Li, and N. Lin, 2022:Future climate change under SSP emission scenarios with GISS-E2.1. J. Adv. Model. Earth Syst., 14, no. 7, e2021MS002871, doi:10.1029/2021MS002871.
, , , , , , , , , , , , R. Bleck, , , , T.L. Clune, , C.A. Cruz, , , , , D. Kim, , , , , , , S. McDermid, , L.T. Murray, , , C.P. García-Pando, , , , D.T. Shindell, S. Sun, , , , , and , 2022:Sergeev, D.E., T.J. Fauchez, M. Turbet, I.A. Boutle, The TRAPPIST-1 Habitable Atmosphere Intercomparison (THAI). Part II: Moist cases — The two waterworlds. Planet. Sci. J., 3, no. 9, 212, doi:10.3847/PSJ/ac6cf2.
, , E.T. Wolf, S.D. Domagal-Goldman, F. Forget, J. Haqq-Misra, R.K. Kopparapu, F.H. Lambert, J. Manners, and N.J. Mayne, 2022:Turbet, M., T.J. Fauchez, D.E. Sergeev, I.A. Boutle, The TRAPPIST-1 Habitable Atmosphere Intercomparison (THAI). Part I: Dry cases — The fellowship of the GCMs. Planet. Sci. J., 3, no. 9, 211, doi:10.3847/PSJ/ac6cf0.
, , E.T. Wolf, S.D. Domagal-Goldman, F. Forget, J. Haqq-Misra, R.K. Kopparapu, F.H. Lambert, J. Manners, N.J. Mayne, and , 2022:Von Salzen, K., C.H. Whaley, S.C. Anenberg, R. Van Dingenen, Z. Klimont, M.G. Flanner, R. Mahmood, S.R. Arnold, S. Beagley, R.-Y. Chien, J.H. Christensen, S. Eckhardt, A.M.L. Ekman, N. Evangeliou, Clean air policies are key for successfully mitigating Arctic warming. Commun. Earth Environ., 3, no. 1, 222, doi:10.1038/s43247-022-00555-x.
, J.S. Fu, M. Gauss, W. Gong, J.L. Hjorth, U. Im, S. Krishnan, K. Kupiainen, T. Kühn, J. Langner, K.S. Law, L. Marelle, D. Olivié, T. Onishi, N. Oshima, V.-V. Paunu, Y. Peng, D. Plummer, L. Pozzoli, S. Rao, J.-C. Raut, M. Sand, J. Schmale, M. Sigmond, M.A. Thomas, , S. Tsyro, S.T. Turnock, M. Wang, and B. Winter, 2022:Whaley, C.H., R. Mahmood, K. von Salzen, B. Winter, S. Eckhardt, S. Arnold, S. Beagley, S. Becagli, R.-Y. Chien, J. Christensen, S.M. Damani, K. Eleftheriadis, N. Evangeliou, Model evaluation of short-lived climate forcers for the Arctic Monitoring and Assessment Programme: A multi-species, multi-model study. Atmos. Chem. Phys., 22, no. 9, 5775-5828, doi:10.5194/acp-22-5775-2022.
, M. Flanner, J.S. Fu, M. Gauss, F. Giardi, W. Gong, J.L. Hjorth, L. Huang, U. Im, Y. Kanaya, S. Krishnan, Z. Klimont, T. Kühn, J. Langner, K.S. Law, L. Marelle, A. Massling, D. Olivié, T. Onishi, N. Oshima, Y. Peng, D.A. Plummer, O. Popovicheva, L. Pozzoli, J.-C. Raut, M. Sand, L.N. Saunders, J. Schmale, S. Sharma, H. Skov, F. Taketani, M.A. Thomas, R. Traversi, , S. Tsyro, S. Turnock, V. Vitale, K.A. Walker, M. Wang, D. Watson-Parris, and T. Weiss-Gibbons, 2022:Yu, F., G. Luo, A.A. Nair, Use of machine learning to reduce uncertainties in particle number concentration and aerosol indirect radiative forcing predicted by climate models. Geophys. Res. Lett., 49, no. 16, e2022GL098551, doi:10.1029/2022GL098551.
, and , 2022:Zanchettin, D., C. Timmreck, M. Khodri, A. Schmidt, M. Toohey, M. Abe, S. Bekki, J. Cole, S.-W. Fang, W. Feng, G. Hegerl, B. Johnson, N. Lebas, Effects of forcing differences and initial conditions on inter-model agreement in the VolMIP volc-pinatubo-full experiment. Geosci. Model Dev., 15, no. 5, 2265-2292, doi:10.5194/gmd-15-2265-2022.
, G.W. Mann, L. Marshall, L. Rieger, A. Robock, S. Rubinetti, , and H. Weierbach, 2022:Zanis, P., D. Akritidis, S. Turnock, V. Naik, S. Szopa, A.K. Georgoulias, Climate change penalty and benefit on surface ozone: A global perspective based on CMIP6 earth system models. Environ. Res. Lett., 17, no. 2, 024014, doi:10.1088/1748-9326/ac4a34.
, M. Deushi, L.W Horowitz, J. Keeble, P. Le Sager, F.M. O'Connor, N. Oshima, , and T. van Noije, 2022:Zeng, G., N.L. Abraham, A.T. Archibald, Attribution of stratospheric and tropospheric ozone changes between 1850 and 2014 in CMIP6 models. J. Geophys. Res. Atmos., 127, no. 16, e2022JD036452, doi:10.1029/2022JD036452.
, M. Deushi, L.K. Emmons, P.T. Griffiths, B. Hassler, L.W. Horowitz, J. Keeble, M.J. Mills, O. Morgenstern, L.T. Murray, V. Naik, F.M. O'Connor, N. Oshima, L.T. Sentman, S. Tilmes, , J.H.T. Williams, and P.J. Young, 2022:Zhong, Q., N. Schutgens, G van der Werf, T. van Noije, Satellite-based evaluation of AeroCom model bias in biomass burning regions. Atmos. Chem. Phys., 22, no. 17, 11009-11032, doi:10.5194/acp-22-11009-2022.
, , T. Mielonen, A. Kirkevåg, Ø. Seland, H. Kokkola, R. Checa-Garcia, D. Neubauer, Z. Kipling, H. Matsui, P. Ginoux, T. Takemura, P. Le Sager, S. Rémy, H. Bian, M. Chin, K. Zhang, J. Zhu, S.G. Tsyro, G. Curci, A. Protonotariou, B. Johnson, J.E. Penner, N. Bellouin, R.B. Skeie, and G. Myhre, 2022:Zhong, Q., N. Schutgens, G.R. van der Werf, T. van Noije, Using modelled relationships and satellite observations to attribute modelled aerosol biases over biomass burning regions. Nat. Commun., 13, no. 1, 5914, doi:10.1038/s41467-022-33680-4.
, , T. Mielonen, R. Checa-Garcia, D. Neubauer, Z. Kipling, A. Kirkevåg, D.J.L. Olivié, H. Kokkola, H. Matsui, P. Ginoux, T. Takemura, P. Le Sager, S. Rémy, H. Bian, and M. Chin, 2022:2021
Allen, R.J., L.W. Horowitz, V. Naik, N. Oshima, F.M. O'Connor, S. Turnock, S. Shim, P. Le Sager, T. van Noije, Significant climate benefits from near-term climate forcer mitigation in spite of aerosol reductions. Environ. Res. Lett., 16, no. 3, 034010, doi:10.1088/1748-9326/abe06b.
, , L.T. Sentman, J.G John, C. Broderick, M. Deushi, G.A. Folberth, S. Fujimori, and W.J. Collins, 2021:Derwent, R.G., D.D. Parrish, A.T. Archibald, M. Deushi, Intercomparison of the representations of the atmospheric chemistry of pre-industrial methane and ozone in earth system and other global chemistry-transport models. Atmos. Environ., 248, 118248, doi:10.1016/j.atmosenv.2021.118248.
, , D. Shindell, L.W. Horowitz, M.A.H. Khan, and D.E. Shallcross, 2021:Fauchez, T.J., M. Turbet, D.E. Sergeev, N.J. Mayne, A. Spiga, TRAPPIST Habitable Atmosphere Intercomparison (THAI) workshop report. Planet. Sci. J., 2, no. 3, 106, doi:10.3847/PSJ/abf4df.
, P. Saxena, R. Deitrick, G. Gilli, S.D. Domagal-Goldman, F. Forget, R. Cosentino, R. Barnes, J. Haqq-Misra, , E.T. Wolf, S. Olson, J.S. Crouse, E. Janin, E. Bolmont, J. Leconte, G. Chaverot, Y. Jaziri, , J. Yang, D. Pidhorodetska, R.K. Kopparapu, H. Chen, I.A. Boutle, M. Lefevre, B. Charnay, A. Burnett, J. Cabra, and N. Bouldin, 2021:Changes in satellite retrievals of atmospheric composition over eastern China during the 2020 COVID-19 lockdowns. Atmos. Chem. Phys., 21, no. 24, 18333-18350, doi:10.5194/acp-21-18333-2021.
, , , , and , 2021:Gliß, J., A. Mortier, M. Schulz, E. Andrews, Y. Balkanski, AeroCom phase III multi-model evaluation of the aerosol life cycle and optical properties using ground- and space-based remote sensing as well as surface in situ observations. Atmos. Chem. Phys., 21, no. 1, 87-128, doi:10.5194/acp-21-87-2021.
, A.M.K. Benedictow, H. Bian, R. Checa-Garcia, M. Chin, P. Ginoux, J.J. Griesfeller, A. Heckel, Z. Kipling, A. Kirkevåg, H. Kokkola, P. Laj, P. Le Sager, M.T. Lund, C. Lund Myhre, H. Matsui, G. Myhre, D. Neubauer, T. van Noije, P. North, D.J.L. Olivié, L. Sogacheva, T. Takemura, , and S.G. Tsyro, 2021:Guzewich, S.D., 3D simulations of the early Martian hydrological cycle mediated by a H2-CO2 greenhouse. J. Geophys. Res. Planets, 126, no. 7, e2021JE006825, doi:10.1029/2021JE006825.
, , E.T. Wolf, , R. Wordsworth, and , 2021:Reductions in NO2 burden over north equatorial Africa from decline in biomass burning in spite of growing fossil fuel use, 2005 to 2017. Proc. Natl. Acad. Sci., 118, no. 7, e2002579118, doi:10.1073/pnas.2002579118.
, N. Andela, , C. Galy-Lacaux, M. Ossohou, and , 2021:Changes in biomass burning, wetland extent, or agriculture drive atmospheric NH3 trends in select African regions. Atmos. Chem. Phys., 21, no. 21, 16277-16291, doi:10.5194/acp-21-16277-2021.
, N. Andela, E. Dammers, L. Clarisse, P-F. Coheur, M. Van Damme, C. Di Vittorio, C. Galy-Lacaux, M. Ossohou, , and , 2021:Continental and ecoregion-specific drivers of atmospheric NO2 and NH3 seasonality over Africa revealed by satellite observations. Glob. Biogeochem. Cycles, 35, no. 8, doi:10.1029/2020GB006916.
, N. Andela, , C. Galy-Lacaux, M. Ossohou, E. Dammers, M. Van Damme, L. Clarisse, and , 2021:Im, U., Present and future aerosol impacts on Arctic climate change in the GISS-E2.1 Earth system model. Atmos. Chem. Phys., 21, no. 13, 10413-10438, doi:10.5194/acp-21-10413-2021.
, , P.L. Langen, J.P. French, R. Mahmood, T. Manu, K. von Salzen, D.C. Thomas, C.H. Whaley, Z. Klimont, H. Skov, and J. Brandt, 2021:Jones, C.D., The climate response to emissions reductions due to COVID-19: Initial results from CovidMIP. Geophys. Res. Lett., 48, no. 8, e2020GL091883, doi:10.1029/2020GL091883.
, S.T. Rumbold, J. Walton, R.D. Lamboll, R.B. Skeie, S. Fiedler, P. Forster, J. Rogelj, M. Abe, M. Botzet, K. Calvin, C. Cassou, J.N.S. Cole, P. Davini, M. Deushi, M. Dix, J.C. Fyfe, N.P. Gillett, T. Ilyina, M. Kawamiya, , S. Kharin, T. Koshiro, H. Li, C. Mackallah, W.A. Müller, P. Nabat, T. van Noije, P. Nolan, R. Ohgaito, D. Olivié, N. Oshima, J. Parodi, T.J. Reerink, L. Ren, , R. Séférian, Y. Tang, C. Timmreck, J. Tjiputra, E. Tourigny, , H. Wang, M. Wu, K. Wyser, S. Yang, Y. Yang, and T. Ziehn, 2021:CMIP6 historical simulations (1850-2014) with GISS-E2.1. J. Adv. Model. Earth Syst., 13, no. 1, e2019MS002034, doi:10.1029/2019MS002034.
, , , , , , , , , , R. Bleck, , , , T.L. Clune, , C.A. Cruz, , , , , D. Kim, , , , , J. Marshall, , S. McDermid, , L.T. Murray, , , C. Pérez García-Pando, , , , , D.T. Shindell, S. Sun, , , , , , and , 2021:Nault, B.A., P. Campuzano-Jost, D.A. Day, D.S. Jo, J.C. Schroder, H.M. Allen, R. Bahreini, H. Bian, D.R. Blake, M. Chin, S.L. Clegg, P.R. Colarco, J.D. Crounse, M.J. Cubison, P.F. DeCarlo, J.E. Dibb, G.S. Diskin, A. Hodzic, W. Hu, J.M. Katich, M.J. Kim, J.K. Kodros, A. Kupc, F.D. Lopez-Hilfiker, E.A. Marais, A.M. Middlebrook, J.A. Neuman, J.B. Nowak, B.B. Palm, F. Paulot, J.R. Pierce, G.P. Schill, E. Scheuer, J.A. Thornton, Chemical transport models often underestimate inorganic aerosol acidity in remote regions of the atmosphere. Commun. Earth Environ., 2, no. 1, 93, doi:10.1038/s43247-021-00164-0.
, P.O. Wennberg, C.J. Williamson, and J.L. Jimenez, 2021:Osipov, S., G. Stenchikov, The Toba supervolcano eruption caused severe tropical stratospheric ozone depletion. Commun. Earth Environ., 2, no. 1, 71, doi:10.1038/s43247-021-00141-7.
, , , M. Fnais, and J. Lelieveld, 2021:Parrish, D.D., R.G. Derwent, S.T. Turnock, F.M. O'Connor, J. Staehelin, Investigations of the anthropogenic reversal of the natural ozone gradient between northern and southern midlatitudes. Atmos. Chem. Phys., 21, no. 12, 9669-9679, doi:10.5194/acp-21-9669-2021.
, M. Deushi, N. Oshima, , T. Wu, and J. Zhang, 2021:Sand, M., B.H. Samset, G. Myhre, J. Gliß, Aerosol absorption in global models from AeroCom phase III. Atmos. Chem. Phys., 21, no. 20, 15929-15947, doi:10.5194/acp-21-15929-2021.
, H. Bian, M. Chin, R. Checa-Garcia, P. Ginoux, Z. Kipling, A. Kirkevåg, H. Kokkola, P. Le Sager, M.T. Lund, H. Matsui, T. van Noije, S. Remy, M. Schulz, P. Stier, C.W. Stjern, T. Takemura, , S.G. Tsyro, and D. Watson-Parris, 2021:Su, W., L. Liang, G. Myhre, T.J Thorsen, N.G Loeb, G.L Schuster, P. Ginoux, F. Paulot, D. Neubauer, R. Checa-Garcia, H. Matsui, Understanding top-of-atmosphere flux bias in the AeroCom Phase III models: A clear-sky perspective. J. Adv. Model. Earth Syst., 13, no. 9, e2021MS002584, doi:10.1029/2021MS002584.
, R.B. Skeie, T. Takemura, , and M. Schulz, 2021:Thornhill, G., W. Collins, D. Olivié, R.B. SKeie, A. Archibald, Climate-driven chemistry and aerosol feedbacks in CMIP6 Earth system models. Atmos. Chem. Phys., 21, no. 2, 1105-1126, doi:10.5194/acp-21-1105-2021.
, R. Checa-Garcia, S. Fiedler, G. Folberth, A. Gjermundsen, L. Horowitz, J.-F. Lamarque, M. Michou, J. Mulcahy, P. Nabat, V. Naik, F.M. O'Connor, F. Paulot, M. Schulz, C.E. Scott, R. Seferian, C. Smith, T. Takemura, S. Tilmes, , and J. Weber, 2021:2020
Allen, R.J., S. Turnock, P. Nabat, D. Neubauer, U. Lohmann, D. Olivie, N. Oshima, M. Michou, T. Wu, J. Zhang, T. Takemura, M. Schulz, Climate and air quality impacts due to mitigation of non-methane near-term climate forcers. Atmos. Chem. Phys., 20, no. 16, 9641-9663, doi:10.5194/acp-20-9641-2020.
, , L. Emmons, L. Horowitz, V. Naik, T. van Noije, T. Bergman, J.-F. Lamarque, P. Zanis, I. Tegen, , P. Le Sager, P. Good, S. Shim, F. O'Connor, D. Akritidis, A.K. Georgoulias, M. Deushi, L.T. Sentman, S. Fujimori, and W.J. Collins, 2020:Historical (1850-2014) aerosol evolution and role on climate forcing using the GISS ModelE2.1 contribution to CMIP6. J. Adv. Model. Earth Syst., 12, no. 8, e2019MS001978, doi:10.1029/2019MS001978.
, , , , , , , , and , 2020:Fauchez, T., M. Turbet, E.T. Wolf, I. Boutle, TRAPPIST-1 Habitable Atmosphere Intercomparison (THAI). Motivations and protocol. Geosci. Model Dev., 13, 707-716, doi:10.5194/gmd-13-707-2020.
, , N.J. Mayne, , R.K. Kopparapu, J. Yang, F. Forget, A. Mandell, and S.D. Domagal Goldman, 2020:Hodzic, A., P. Campuzano-Jost, H. Bian, M. Chin, P.R. Colarco, D.A. Day, K.D. Froyd, B. Heinold, D.S. Jo, J.M. Katich, J.K. Kodros, B.A. Nault, J.R. Pierce, E. Ray, J. Schacht, G.P. Schill, J.C. Schroder, J.P. Schwarz, D.T. Sueper, I. Tegen, S. Tilmes, Characterization of organic aerosol across the global remote troposphere: A comparison of ATom measurements and global chemistry models. Atmos. Chem. Phys., 20, 4607-4635, doi:10.5194/acp-20-4607-2020.
, P. Yu, and J.L. Jimenez, 2020:GISS-E2.1: Configurations and climatology. J. Adv. Model. Earth Syst., 12, no. 8, e2019MS002025, doi:10.1029/2019MS002025.
, , , , , , , , , R. Bleck, , , , T.L. Clune, , C.A. Cruz, , , , , D. Kim, , , , , J. Marshall, , S. McDermid, , , L.T. Murray, , , C. Pérez García-Pando, , , , , D.T. Shindell, S. Sun, , , , , , and , 2020:The interactive global fire module pyrE (v1.0). Geosci. Model Dev., 13, no. 7, 3091-3118, doi:10.5194/gmd-13-3091-2020.
, , , and , 2020:Morgenstern, O., F.M. O'Connor, B.T. Johnson, G. Zeng, J.P. Mulcahy, J. Williams, J. Teixeira, M. Michou, P. Nabat, L.W. Horowitz, V. Naik, L.T. Sentman, M. Deushi, Reappraisal of the climate impacts of ozone-depleting substances. Geophys. Res. Lett., 47, no. 20, e2020GL088295, doi:10.1029/2020GL088295.
, , D.T. Shindell, and D.E. Kinnison, 2020:GISS Model E2.2: A climate model optimized for the middle atmosphere. Part 2: Validation of large-scale transport and evaluation of climate response. J. Geophys. Res. Atmos., 125, no. 24, e2020JD033151, doi:10.1029/2020JD033151.
, , , , , L.T. Murray, D.T. Shindell, , , , and , 2020:Osipov, S., G. Stenchikov, The role of the SO2 radiative effect in sustaining the volcanic winter and soothing the Toba impact on climate. J. Geophys. Res. Atmos., 125, no. 2, e2019JD031726, doi:10.1029/2019JD031726.
, , and , 2020:Sand, M., B.H. Samset, Black carbon and precipitation: An energetics perspective. J. Geophys. Res. Atmos., 125, no. 13, e2019JD032239, doi:10.1029/2019JD032239.
, , and G. Myhre, 2020:Turnock, S.T., R.J. Allen, M. Andrews, Historical and future changes in air pollutants from CMIP6 models. Atmos. Chem. Phys., 20, 14547-14579, doi:10.5194/acp-20-14547-2020.
, L. Emmons, P. Good, L. Horowitz, M. Michou, P. Nabat, V. Naik, D. Neubauer, F.M. O'Connor, D. Olivié, M. Schulz, A. Sellar, T. Takemura, S. Tilmes, , T. Wu, and J. Zhang, 2020:Zanis, P., D. Akritidis, A.K. Georgoulias, R.J. Allen, Fast responses on pre-industrial climate from present-day aerosols in a CMIP6 multi-model study. Atmos. Chem. Phys., 20, 8381-8404, doi:10.5194/acp-20-8381-2020.
, O. Boucher, J. Cole, B. Johnson, M. Deushi, M. Michou, J. Mulcahy, P. Nabat, D. Olivié, N. Oshima, A. Sima, M. Schulz, T. Takemura, and , 2020:2019
Modeling a transient secondary paleolunar atmosphere: 3-D simulations and analysis. Geophys. Res. Lett., 46, no. 10, 5107-5116, doi:10.1029/2019GL082494.
, , , , E.T. Wolf, and G. Gronoff, 2019:Fanourgakis, G.S., M. Kanakidou, A. Nenes, Evaluation of global simulations of aerosol particle number and cloud condensation nuclei number, with implications for cloud droplet formation. Atmos. Chem. Phys., 19, 8591-8617, doi:10.5194/acp-19-8591-2019.
, T. Bergman, K.S. Carslaw, A. Grini, D.S. Hamilton, J.S. Johnson, V.A. Karydis, A. Kirkevåg, J.K. Kodros, U. Lohmann, G. Luo, R. Makkonen, H. Matsui, D. Neubauer, J.R. Pierce, J. Schmale, P. Stier, , T. van Noije, H. Wang, D. Watson-Parris, , Y. Yang, M. Yoshioka, N. Daskalakis, S. Decesari, M. Gysel Beer, N. Kalivitis, X. Liu, N.M. Mahowald, S. Myriokefalitakis, R. Schrödner, M. Sfakianaki, A.P. Tsimpidi, M. Wu, and F. Yu, 2019:Kim, D., M. Chin, H. Yu, X. Pan, H. Bian, Q. Tan, R.A. Kahn, Asian and trans-Pacific Dust: A multi-model and multi-remote sensing observation analysis. J. Geophys. Res. Atmos., 124, no. 23, 13534-13559, doi:10.1029/2019JD030822.
, , T. Takemura, L. Pozzoli, N. Bellouin, and M. Schulz, 2019:2018
Chiodo, G., L.M. Polvani, D.R. Marsh, W. Ball, S. Muthers, A. Stenke, E. Rozanov, and The response of the ozone layer to quadrupled CO2 concentrations. J. Climate, 31, no. 10, 3893-3907, doi:10.1175/JCLI-D-17-0492.1.
, 2018:Can semi-volatile organic aerosols lead to fewer cloud particles? Atmos. Chem. Phys., 18, 14243-14251, doi:10.5194/acp-18-14243-2018.
, , and , 2018:Kanakidou, M., S. Myriokefalitakis, and Aerosols in atmospheric chemistry and biogeochemical cycles of nutrients. Environ. Res. Lett., 13, no. 6, 063004, doi:10.1088/1748-9326/aabcdb.
, 2018:Mao, J., A. Carlton, R.C. Cohen, W.H. Brune, S.S. Brown, G.M. Wolfe, J.L. Jimenez, H.O.T. Pye, N. Lee Ng, L. Xu, V.F. McNeill, Southeast Atmosphere Studies: Learning from model-observation syntheses. Atmos. Chem. Phys., 18, 2615-2651, doi:10.5194/acp-18-2615-2018.
, B.C. McDonald, C. Warneke, A. Guenther, M.J. Alvarado, J. de Gouw, L.J. Mickley, E.M. Leibensperger, R. Mathur, C.G. Nolte, R.W. Portmann, N. Unger, M. Tosca, and L.W. Horowitz, 2018:Marshall, L., A. Schmidt, M. Toohey, K.S. Carslaw, G.W. Mann, M. Sigl, M. Khodri, C. Timmreck, D. Zanchettin, W. Ball, S. Bekki, J.S.A. Brooke, S. Dhomse, C. Johnson, J.-F. Lamarque, Multi-model comparison of the volcanic sulfate deposition from the 1815 eruption of Mt. Tambora. Atmos. Chem. Phys., 18, 2307-2328, doi:10.5194/acp-18-2307-2018.
, M.J. Mills, U. Niemeier, J.O. Pope, V. Poulain, A. Robock, E. Rozanov, A. Stenke, T. Sukhodolov, S. Tilmes, , and F. Tummon, 2018:The present and future of secondary organic aerosol direct forcing on climate. Curr. Clim. Change Rep., 4, no. 2, 84-98, doi:10.1007/s40641-018-0092-3.
, and M. Kanakidou, 2018:2017
Bian, H., M. Chin, D.A. Hauglustaine, M. Schulz, G. Myhre, Investigation of global nitrate from the AeroCom Phase III experiment. Atmos. Chem. Phys., 17, 12911-12940, doi:10.5194/acp-17-12911-2017.
, M.T. Lund, V.A. Karydis, T.L. Kucsera, X. Pan, A. Pozzer, R.B. Skeie, S.D. Steenrod, K. Sudo, , A.P. Tsimpidi, and S.G. Tsyro, 2017:MATRIX-VBS (v1.0): Implementing an evolving organic aerosol volatility in an aerosol microphysics model. Geosci. Model Dev., 10, 751-764, doi:10.5194/gmd-10-751-2017.
, , and , 2017:Katragkou, E., I. Gkotovou, S. Kartsios, V. Pavlidis, AUTH regional climate model contributions to EURO-CORDEX. In Perspectives on Atmospheric Sciences. T. Karacostas, A. Bais, T.P. Nastos, T. Karacostas, A. Bais, and P.T. Nastos, Eds., Springer Atmospheric Sciences, Springer, pp. 741-746, doi:10.1007/978-3-319-35095-0_106.
, M. Trail, , and T.S. Karacostas, 2017:Interactive nature of climate change and aerosol forcing. J. Geophys. Res. Atmos., 122, no. 6, 3457-3480, doi:10.1002/2016JD025809.
, , , , , and , 2017:Aerosols at the Poles: An AeroCom Phase II multi-model evaluation. Atmos. Chem. Phys., 17, 12197-12218, doi:10.5194/acp-17-12197-2017.
, B.H. Samset, Y. Balkanski, , N. Bellouin, T.K. Berntsen, H. Bian, M. Chin, T. Diehl, R. Easter, S.J. Ghan, T. Iversen, A. Kirkevåg, J.-F. Lamarque, G. Lin, X. Liu, G. Luo, G. Myhre, T. van Noije, J.E. Penner, M. Schulz, Ø. Seland, R.B. Skeie, P. Stier, T. Takemura, , F. Yu, K. Zhang, and H. Zhang, 2017:Van Marle, M.J.E., Fire and deforestation dynamics in Amazonia (1973-2014). Glob. Biogeochem. Cycles, 31, no. 1, 24-38, doi:10.1002/2016GB005445.
, G.R. van der Werf, I.A. Estrada de Wagt, R.A. Houghton, L.V. Rizzo, P. Artaxo, and , 2017:Resolving orbital and climate keys of Earth and extraterrestrial environments with dynamics 1.0: A general circulation model for simulating the climates of rocky planets. Astrophys. J. Supp. Ser., 231, no. 1, 12, doi:10.3847/1538-4365/aa7a06.
, , , , T. Clune, , , , , , and , 2017:2016
New statistical model for variability of aerosol optical thickness: Theory and application to MODIS data over ocean. J. Atmos. Sci., 73, no. 2, 821-837, doi:10.1175/JAS-D-15-0130.1.
, , , A. Marshak, R.C. Levy, and , 2016:Significant atmospheric aerosol pollution caused by world food cultivation. Geophys. Res. Lett., 43, no. 10, 5394-5400, doi:10.1002/2016GL068354.
, , and , 2016:Daskalakis, N., Large gain in air quality compared to an alternative anthropogenic emissions scenario. Atmos. Chem. Phys., 16, 9771-9784, doi:10.5194/acp-16-9771-2016.
, S. Myriokefalitakis, G.S. Fanourgakis, and M. Kanakidou, 2016:Kanakidou, M., S. Myriokefalitakis, N. Daskalakis, G. Fanourgakis, A. Nenes, A. Baker, Past, present and future atmospheric nitrogen deposition. J. Atmos. Sci., 73, no. 5, 2039-2047, doi:10.1175/JAS-D-15-0278.1.
, and N. Mihalopoulos, 2016:Kasoar, M., A. Voulgarakis, J.-F. Lamarque, D.T. Shindell, N. Bellouin, W.J. Collins, Regional and global climate response to anthropogenic SO2 emissions from China in three climate models. Atmos. Chem. Phys., 16, 9785-9804, doi:10.5194/acp-16-9785-2016.
, and , 2016:Kipling, Z., P. Stier, C.E. Johnson, G.W. Mann, N. Bellouin, What controls the vertical distribution of aerosol? Relationships between process sensitivity in HadGEM3-UKCA and inter-model variation from AeroCom Phase II. Atmos. Chem. Phys., 16, 2221-2241, doi:10.5194/acp-16-2221-2016.
, T. Bergman, M. Chin, T. Diehl, S.J. Ghan, T. Iversen, A. Kirkevåg, H. Kokkola, X. Liu, G. Luo, T. van Noije, K.J. Pringle, K. von Salzen, M. Schulz, Ø. Seland, R.B. Skeie, T. Takemura, , and K. Zhang, 2016:Koffi, B., M. Schulz, F.-M. Bréon, F. Dentener, B.M. Steensen, J. Griesfeller, D. Winker, Y. Balkanski, Evaluation of the aerosol vertical distribution in global aerosol models through comparison against CALIOP measurements: AeroCom phase II results. J. Geophys. Res. Atmos., 121, no. 12, 7254-7283, doi:10.1002/2015JD024639.
, N. Bellouin, T. Berntsen, H. Bian, M. Chin, T. Diehl, R. Easter, S. Ghan, D.A. Hauglustaine, T. Iversen, A. Kirkevåg, X. Liu, U. Lohmann, G. Myhre, P. Rasch, Ø. Seland, R.B. Skeie, S.D. Steenrod, P. Stier, J. Tackett, T. Takemura, , M.R. Vuolo, J. Yoon, and K. Zhang, 2016:Kristiansen, N.I., A. Stohl, D.J.L. Olivié, B. Croft, O.A. Søvde, H. Klein, T. Christoudias, D. Kunkel, S.J. Leadbetter, Y.H. Lee, K. Zhang, Evaluation of observed and modelled aerosol lifetimes using radioactive tracers of opportunity and an ensemble of 19 global models. Atmos. Chem. Phys., 16, 3525-3561, doi:10.5194/acp-16-3525-2016.
, T. Bergman, N. Evangeliou, H. Wang, P.-L. Ma, R.C. Easter, P.J. Rasch, X. Liu, G. Pitari, G. Di Genova, S.Y. Zhao, Y. Balkanski, , , H. Kokkola, R.V. Martin, J.R. Pierce, M. Schulz, D. Shindell, H. Tost, and H. Zhang, 2016:Role of atmospheric chemistry in the climate impacts of stratospheric volcanic injections. Nat. Geosci., 9, no. 9, 652-655, doi:10.1038/ngeo2771.
, , and , 2016:Evaluating secondary inorganic aerosols in three dimensions. Atmos. Chem. Phys., 16, 10651-10669, doi:10.5194/acp-16-10651-2016.
, , and , 2016:Peng, Z., D.A. Day, A.M. Ortega, B.B. Palm, W.W. Hu, H. Stark, R. Li, Non-OH chemistry in oxidation flow reactors for the study of atmospheric chemistry systematically examined by modeling. Atmos. Chem. Phys., 16, 4283-4305, doi:10.5194/acp-16-4283-2016.
, W.H. Brune, and J.L. Jimenez, 2016:Zanchettin, D., M. Khodri, C. Timmreck, M. Toohey, A. Schmidt, E.P. Gerber, G. Hegerl, A. Robock, F.S. Pausata, W.T. Ball, The Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP): Experimental design and forcing input data for CMIP6. Geosci. Model Dev., 9, 2701-2719, doi:10.5194/gmd-9-2701-2016.
, S. Bekki, S.S. Dhomse, , G.W. Mann, L. Marshall, M. Mills, M. Marchand, U. Niemeier, V. Poulain, E. Rozanov, A. Rubino, A. Stenke, , and F. Tummon, 2016:2015
Sensitivity to factors underlying the hiatus. US CLIVAR Variations, 13, no. 3, 25-29.
, , , and , 2015:Do responses to different anthropogenic forcings add linearly in climate models? Environ. Res. Lett., 10, no. 10, 104010, doi:10.1088/1748-9326/10/10/104010.
, , D. Shindell, C. Bonfils, , , and , 2015:Future climate change under RCP emission scenarios with GISS ModelE2. J. Adv. Model. Earth Syst., 7, no. 1, 244-267, doi:10.1002/2014MS000403.
, , , , , , , , , , , , , T.L. Clune, , , , , , , , , , , S. Menon, , , , , , , , S. Sun, , N. Unger, , , and J. Zhang, 2015:Pan, X., M. Chin, R. Gautam, H. Bian, D. Kim, P.R. Colarco, T.L. Diehl, T. Takemura, L. Pozzoli, A multi-model evaluation of aerosols over South Asia: Common problems and possible causes. Atmos. Chem. Phys., 15, 5903-5928, doi:10.5194/acp-15-5903-2015.
, , and N. Bellouin, 2015:Trail, M., A.P. Tsimpidi, P. Liu, Reforestation and crop land conversion impacts on future regional air quality in the Southeastern U.S. Agric. Forest Meteorol., 209, 78-86, doi:10.1016/j.agrformet.2015.05.001.
, Y. Hu, A. Nenes, B. Stone, and A.G. Russell, 2015:Trail, M.A., A.P. Tsimpidi, P. Liu, Impacts of potential CO2-reduction policies on air quality in the United States. Environ. Sci. Technol., 49, no. 8, 5133-5141, doi:10.1021/acs.est.5b00473.
, Y. Hu, J.R. Rudokas, P.J. Miller, A. Nenes, and A.G. Russell, 2015:Voulgarakis, A., M.E. Marlier, Interannual variability of tropospheric trace gases and aerosols: The role of biomass burning emissions. J. Geophys. Res. Atmos., 120, no. 14, 7157-7173, doi:10.1002/2014JD022926.
, D.T. Shindell, , and S. Mangeon, 2015:2014
Model-based estimation of sampling-caused uncertainty in aerosol remote sensing for climate research applications. Q. J. Roy. Meteorol. Soc., 140, 2353-2363, doi:10.1002/qj.2305.
, , , , and T. van Noije, 2014:Jiao, C., M.G. Flanner, Y. Balkanski, An AeroCom assessment of black carbon in Arctic snow and sea ice. Atmos. Chem. Phys., 14, 2399-2417, doi:10.5194/acp-14-2399-2014.
, N. Bellouin, T.K. Berntsen, H. Bian, K.S. Carslaw, M. Chin, N. De Luca, T. Diehl, S.J. Ghan, T. Iversen, A. Kirkevåg, D. Koch, X. Liu, G.W. Mann, J.E. Penner, G. Pitari, M. Schulz, Ø. Seland, R.B. Skeie, S.D. Steenrod, P. Stier, T. Takemura, , T. van Noije, Y. Yun, and K. Zhang, 2014:Kim, D., M. Chin, H. Yu, T. Diehl, Q. Tan, R.A. Kahn, Sources, sinks, and transatlantic transport of North African dust aerosol: A multi-model analysis and comparison with remote-sensing data. J. Geophys. Res. Atmos., 119, no. 10, 6259-6277, doi:10.1002/2013JD021099.
, , T. Takemura, L. Pozzoli, N. Bellouin, M. Schulz, S. Peyridieu, A. Chédin, and B. Koffi, 2014:Mann, G.W., K.S. Carslaw, C.L. Reddington, K.J. Pringle, M. Schulz, A. Asmi, D.V. Spracklen, D.A. Ridley, M.T. Woodhouse, L.A. Lee, K. Zhang, S.J. Ghan, R.C. Easter, X. Liu, P. Stier, Intercomparison and evaluation of aerosol microphysical properties among AeroCom global models of a range of complexity. Atmos. Chem. Phys., 14, 4679-4713, doi:10.5194/acp-14-4679-2014.
, P.J. Adams, H. Tost, J. Lelieveld, , , T.P.C. van Noije, A. Strunk, E. Vignati, N. Bellouin, M. Dalvi, C.E. Johnson, T. Bergman, H. Kokkola, K. von Salzen, F. Yu, G. Luo, A. Petzold, J. Heintzenberg, A. Clarke, J.A. Ogren, J. Gras, U. Baltensperger, U. Kaminski, S.G. Jennings, C.D. O'Dowd, R.M. Harrison, D.C.S. Beddows, M. Kulmala, Y. Viisanen, V. Ulevicius, N. Mihalopoulos, V. Zdimal, M. Fiebig, H.-C. Hansson, E. Swietlicki, and J.S. Henzig, 2014:CMIP5 historical simulations (1850-2012) with GISS ModelE2. J. Adv. Model. Earth Syst., 6, no. 2, 441-477, doi:10.1002/2013MS000266.
, , , , , , , , , , , , , , , , T.L. Clune, , , , , D. Koch, , , , S. Menon, , , , , , , , , S. Sun, , N. Unger, , , and J. Zhang, 2014:Samset, B.H., G. Myhre, A. Herber, Y. Kondo, S.-M. Li, N. Moteki, M. Koike, N. Oshima, J.P. Schwarz, Y. Balkanski, Modelled black carbon radiative forcing and atmospheric lifetime in AeroCom Phase II constrained by aircraft observations. Atmos. Chem. Phys., 14, 12465-12477, doi:10.5194/acp-14-12465-2014.
, N. Bellouin, T.K. Berntsen, H. Bian, M. Chin, T. Diehl, R.C. Easter, S.J. Ghan, T. Iversen, A. Kirkevåg, J.-F. Lamarque, G. Lin, X. Liu, J.E. Penner, M. Schulz, Ø. Seland, R.B. Skeie, P. Stier, T. Takemura, , and K. Zhang, 2014:Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive. J. Adv. Model. Earth Syst., 6, no. 1, 141-184, doi:10.1002/2013MS000265.
, , , , , , , , M.K. Bhat, , , , , T.L. Clune, , R. de Fainchtein, , , , , , , , , , , S. Menon, , , A.O. Oloso, , , W.M. Putman, , , , , , R.A. Syed, , , N. Unger, , , and J. Zhang, 2014:Reconciling warming trends. Nat. Geosci., 7, no. 3, 158-160, doi:10.1038/ngeo2105.
, , and , 2014:Trail, M., A.P. Tsimpidi, P. Liu, Sensitivity of air quality to potential future climate change and emissions in the United States and major cities. Atmos. Environ., 94, 552-563, doi:10.1016/j.atmosenv.2014.05.079.
, J. Rudokas, P. Miller, A. Nenes, Y. Hu, and A.G. Russell, 2014:The AeroCom evaluation and intercomparison of organic aerosol in global models. Atmos. Chem. Phys., 14, 10845-10895, doi:10.5194/acp-14-10845-2014.
, N. Daskalakis, M. Kanakidou, P.J. Adams, P. Artaxo, R. Bahadur, Y. Balkanski, , N. Bellouin, A. Benedetti, T. Bergman, T.K. Berntsen, J.P. Beukes, H. Bian, K.S. Carslaw, M. Chin, G. Curci, T. Diehl, R.C. Easter, S.J. Ghan, S.L. Gong, A. Hodzic, C.R. Hoyle, T. Iversen, S. Jathar, J.L. Jimenez, J.W. Kaiser, A. Kirkevåg, D. Koch, H. Kokkola, Y.H. Lee, G. Lin, X. Liu, G. Luo, X. Ma, G.W. Mann, N. Mihalopoulos, J.-J. Morcrette, J.-F. Müller, G. Myhre, S. Myriokefalitakis, S. Ng, D. O'Donnell, J.E. Penner, L. Pozzoli, K.J. Pringle, L.M. Russell, M. Schulz, J. Sciare, Ø. Seland, , S. Sillman, R.B. Skeie, D. Spracklen, T. Stavrakou, S.D. Steenrod, T. Takemura, P. Tiitta, S. Tilmes, H. Tost, T. van Noije, P.G. van Zyl, K. von Salzen, F. Yu, Z. Wang, Z. Wang, R.A. Zaveri, H. Zhang, K. Zhang, Q. Zhang, and X. Zhang, 2014:2013
Historical and future black carbon deposition on the three ice caps: Ice-core measurements and model simulations from 1850 to 2100. J. Geophys. Res. Atmos., 118, no. 14, 7948-7961, doi:10.1002/jgrd.50612.
, A. Bausch, , , B. Xu, R. Edwards, M. Bisiaux, and J. McConnell, 2013:Meskhidze, N., M.D. Petters, Production mechanisms, number concentration, size distribution, chemical composition, and optical properties of sea spray aerosols. Atmos. Sci. Lett., 14, 207-213, doi:10.1002/asl2.441.
, T. Bates, C. O'Dowd, J. Reid, E.R. Lewis, B. Gantt, M.D. Anguelova, P.V. Bhave, J. Bird, A.H. Callaghan, D. Ceburnis, R. Chang, A. Clarke, G. de Leeuw, G. Deane, P.J. DeMott, S. Elliot, M.-C. Facchini, C.W. Fairall, L. Hawkins, Y. Hu, J.G. Hudson, M.S. Johnson, K.C. Kaku, W.C. Keene, D.J. Kieber, M.S. Long, M. Mårtensson, R.L. Modini, C.L. Osburn, K.A. Prather, A. Pszenny, M. Rinaldi, L.M. Russell, M. Salter, A.M. Sayer, A. Smirnov, S.R. Suda, T.D. Toth, D.R. Worsnop, A. Wozniak, and S.R. Zorn, 2013:Myhre, G., B.H. Samset, M. Schulz, Y. Balkanski, Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations. Atmos. Chem. Phys., 13, 1853-1877, doi:10.5194/acp-13-1853-2013.
, T.K. Berntsen, H. Bian, N. Bellouin, M. Chin, T. Diehl, R.C. Easter, J. Feichter, S.J. Ghan, D. Hauglustaine, T. Iversen, S. Kinne, A. Kirkevåg, J.-F. Lamarque, G. Lin, X. Liu, M.T. Lund, G. Luo, X. Ma, T. van Noije, J.E. Penner, P.J. Rasch, A. Ruiz, Ø. Seland, R.B. Skeie, P. Stier, T. Takemura, , P. Wang, Z. Wang, L. Xu, H. Yu, F. Yu, J.-H. Yoon, K. Zhang, H. Zhang, and C. Zhou, 2013:Samset, B.H., G. Myhre, M. Schulz, Y. Balkanski, Black carbon vertical profiles strongly affect its radiative forcing uncertainty. Atmos. Chem. Phys., 13, 2423-2434, doi:10.5194/acp-13-2423-2013.
, T.K. Berntsen, H. Bian, N. Bellouin, T. Diehl, R.C. Easter, S.J. Ghan, T. Iversen, S. Kinne, A. Kirkevåg, J.-F. Lamarque, G. Lin, X. Liu, J. Penner, Ø. Seland, R.B. Skeie, P. Stier, T. Takemura, , and K. Zhang, 2013:Trail, M., A.P. Tsimpidi, P. Liu, Downscaling a global climate model to simulate climate change impacts on US regional and urban air quality. Geosci. Model Dev., 6, 1429-1445, doi:10.5194/gmd-6-1429-2013.
, Y. Hu, A. Nenes, and A.G. Russell, 2013:Trail, M., A.P. Tsimpidi, P. Liu, Potential impact of land use change on future regional climate in the Southeastern U.S.: Reforestation and crop land conversion. J. Geophys. Res. Atmos., 118, no. 20, 11577-11588, doi:10.1002/2013JD020356.
, Y. Hu, A. Nenes, B. Stone, and A.G. Russell, 2013:Uncertainties and importance of sea spray composition on aerosol direct and indirect effects. J. Geophys. Res. Atmos., 118, no. 1, 220-235, doi:10.1029/2012JD018165.
, D. Koch, and S. Menon, 2013:2012
Kanakidou, M., R.A. Duce, J.M. Prospero, A.R. Baker, C. Benitez-Nelson, F.J. Dentener, K.A. Hunter, P.S. Liss, N. Mahowald, G.S. Okin, M. Sarin, Atmospheric fluxes of organic N and P to the global ocean. Glob. Biogeochem. Cycles, 26, GB3026, doi:10.1029/2011GB004277.
, M. Uematsu, L.M. Zamora, and T. Zhu, 2012:Analysis of fine-mode aerosol retrieval capabilities by different passive remote sensing instrument designs. Opt. Express, 20, 21457-21484, doi:10.1364/OE.20.021457.
, , , , , , , , and , 2012:2011
Myriokefalitakis, S., In-cloud oxalate formation in the global troposphere: A 3-D modeling study. Atmos. Chem. Phys., 11, 5761-5782, doi:10.5194/acp-11-5761-2011.
, N. Mihalopoulos, J. Sciare, A. Nenes, K. Kawamura, A. Segers, and M. Kanakidou, 2011:O'Donnell, D., Estimating the direct and indirect effects of secondary organic aerosols using ECHAM5-HAM. Atmos. Chem. Phys., 11, 8635-8659, doi:10.5194/acp-11-8635-2011.
, and J. Feichter, 2011:Rinaldi, M., S. Decesari, C. Carbone, E. Finessi, S. Fuzzi, D. Ceburnis, C.D. O'Dowd, J. Sciare, J.P. Burrows, M. Vrekoussis, B. Ervens, Evidence of a natural marine source of oxalic acid and a possible link to glyoxal. J. Geophys. Res., 116, D16204, doi:10.1029/2011JD015659.
, and M.C. Facchini, 2011:2010
Arneth, A., S.P. Harrison, S. Zaehle, Terrestrial biogeochemical feedbacks in the climate system. Nat. Geosci., 3, 525-532, doi:10.1038/ngeo905.
, S. Menon, P.J. Bartlein, J. Feichter, A. Korhola, M. Kulmala, D. O'Donnell, G. Schurgers, S. Sorvari, and T. Vesala, 2010:A global modeling study on carbonaceous aerosol microphysical characteristics and radiative forcing. Atmos. Chem. Phys., 10, 7439-7456, doi:10.5194/acp-10-7439-2010.
, S. Menon, D. Koch, T.C. Bond, and , 2010:Myriokefalitakis, S., E. Vignati, Global modeling of the oceanic source of organic aerosols. Adv. Meteorol., 2010, 939171, doi:10.1155/2010/939171.
, C. Papadimas, J. Sciare, N. Mihalopoulos, M.C. Facchini, M. Rinaldi, F.J. Dentener, D. Ceburnis, N. Hatzianastasiou, C.D. O'Dowd, M. van Weele, and M. Kanakidou, 2010:2009
Karl, M., Formation of secondary organic aerosol from isoprene oxidation over Europe. Atmos. Chem. Phys., 9, 7003-7030, doi:10.5194/acp-9-7003-2009.
, E. Vignati, and F. Dentener, 2009:2008
Kanakidou, M., S. Myriokefalitakis, and K. Tsigaridis, 2008: Global modelling of Secondary Organic Aerosol (SOA) formation: Knowledge and challenges. In Simulation and Assessment of Chemical Processes in a Multiphase Environment. I. Barnes and M.M. Kharytonov, Eds., NATO Science for Peace and Security Series C: Environmental Security, Springer, pp. 149-165, doi:10.1007/978-1-4020-8846-9_12.
Myriokefalitakis, S., M. Vrekoussis, The influence of natural and anthropogenic secondary sources on the glyoxal global distribution. Atmos. Chem. Phys., 8, 4965-4981, doi:10.5194/acp-8-4965-2008.
, F. Wittrock, A. Richter, C. Brühl, R. Volkamer, J.P. Burrows, and M. Kanakidou, 2008:2007
Secondary organic aerosol importance in the future atmosphere. Atmos. Environ., 41, 4682-4692, doi:10.1016/j.atmosenv.2007.03.045.
, and M. Kanakidou, 2007:2006
Change in global aerosol composition since preindustrial times. Atmos. Chem. Phys., 6, 5143-5162, doi:10.5194/acp-6-5143-2006.
, M. Krol, F.J. Dentener, Y. Balkanski, J. Lathière, S. Metzger, D.A. Hauglustaine, and M. Kanakidou, 2006:2005
Kanakidou, M., J.H. Seinfeld, S.N. Pandis, I. Barnes, F.J. Dentener, M.C. Facchini, R. Van Dingenen, B. Ervens, A. Nenes, C.J. Nielsen, E. Swietlicki, J.P. Putaud, Y. Balkanski, S. Fuzzi, J. Horth, G.K. Moortgat, R. Winterhalter, C.E.L. Myhre, Organic aerosol and global climate modelling: A review. Atmos. Chem. Phys., 5, 1053-1123, doi:10.5194/acp-5-1053-2005.
, E. Vignati, E.G. Stephanou, and J. Wilson, 2005:Naturally driven variability in the global secondary organic aerosol over a decade. Atmos. Chem. Phys., 5, 1891-1904, doi:10.5194/acp-5-1891-2005.
, J. Lathière, M. Kanakidou, and D.A. Hauglustaine, 2005:2003
Global modelling of secondary organic aerosol in the troposphere: A sensitivity analysis. Atmos. Chem. Phys., 3, 1849-1869, doi:10.5194/acp-3-1849-2003.
, and M. Kanakidou, 2003:2002
Gros, V., Factors controlling the diurnal variation of CO above a forested area in southeast Europe. Atmos. Environ., 36, 3127-3135, doi:10.1016/S1352-2310(02)00237-6.
, B. Bonsang, M. Kanakidou, and C. Pio, 2002:Importance of volatile organic compounds photochemistry over a forested area in central Greece. Atmos. Environ., 36, 3137-3146, doi:10.1016/S1352-2310(02)00234-0.
, and M. Kanakidou, 2002:2000
Kanakidou, M., Human-activity-enhanced formation of organic aerosols by biogenic hydrocarbon oxidation. J. Geophys. Res., 105, 9243-9354, doi:10.1029/1999JD901148.
, F.J. Dentener, and P.J. Crutzen, 2000:Kouvarakis, G., Temporal variations of surface regional background ozone over Crete Island in the southeast Mediterranean. J. Geophys. Res., 105, 4399-4407, doi:10.1029/1999JD900984.
, M. Kanakidou, and N. Mihalopoulos, 2000: