Author Bibliographies
Publications by George Tselioudis
This citation list includes papers published while the author has been on staff at the NASA Goddard Institute for Space Studies. It may include some publications based on research conducted prior to their having joined the institute staff.
In Press / Accepted
Grise, K.M., and Understanding the relationship between cloud controlling factors and the ISCCP weather states. J. Climate, in press, doi:10.1175/JCLI-D-24-0011.1.
, 2024:2024
Tan, I., M.D. Zelinka, Q. Coopman, B.H. Kahn, L. Oreopoulos, Contributions from cloud morphological changes to the interannual shortwave cloud feedback based on MODIS and ISCCP satellite observations. J. Geophys. Res. Atmos., 129, no. 8, e2023JD040540, doi:10.1029/2023JD040540.
, D.T. McCoy, and N. Li, 2024:Oceanic cloud trends during the satellite era and their radiative signatures. Clim. Dyn., early on-line, doi:10.1007/s00382-024-07396-8.
, W.B. Rossow, F. Bender, L. Oreopoulos, and , 2024:2023
Hansen, J.E., Global warming in the pipeline. Oxford Open Clim. Change, 3, no. 1, kgad008, doi:10.1093/oxfclm/kgad008.
, L. Simons, , I. Sangha, P. Kharecha, J.C. Zachos, K. von Schuckmann, N.G. Loeb, M.B. Osman, Q. Jin, , E. Jeong, , , , J. Cao, and J. Li, 2023:Leung, L.R., A. Terando, R. Joseph, Chapter 3. Earth systems processes. In Fifth National Climate Assessment. A.R. Crimmins, C.W. Avery, D.R. Easterling, K.E. Kunkel, B.C. Stewart, and T.K. Maycock, Eds., U.S. Global Change Research Program, doi:10.7930/NCA5.2023.CH3.
, L.M. Bruhwiler, , C. Deser, A. Hall, B.D. Hamlington, A. Hoell, F.M. Hoffman, S. Klein, V. Naik, A.G. Pendergrass, C. Tebaldi, P.A. Ullrich, and M.F. Wehner, 2023:On the impact of a dry intrusion driving cloud-regime transitions in a mid-latitude cold-air outbreak. J. Atmos. Sci., 80, no. 12, 2881-2896, doi:10.1175/JAS-D-23-0040.1.
, , , , , D. Painemal, and , 2023:Zelinka, M., I. Tan, L. Oreopoulos, and Detailing cloud property feedbacks with a regime-based decomposition. Clim. Dyn., 60, no. 9-10, 2983-3003, doi:10.1007/s00382-022-06488-7.
, 2023:2022
Improved representation of atmospheric dynamics in CMIP6 models removes climate sensitivity dependence on Hadley Cell climatological extent. Atmos. Sci. Lett., 23, no. 3, e1073, doi:10.1002/asl.1073.
, , and L. Polvani, 2022:Luo, Z.J., Studies of Cloud, Convection and Precipitation Processes Using Satellite Observations. Lectures in Climate Change, Vol. 3. World Scientific, doi:10.1142/12862.
, and W.B. Rossow (Eds.), 2022:Future climate change under SSP emission scenarios with GISS-E2.1. J. Adv. Model. Earth Syst., 14, no. 7, e2021MS002871, doi:10.1029/2021MS002871.
, , , , , , , , , , , , R. Bleck, , , , T.L. Clune, , C.A. Cruz, , , , , D. Kim, , , , , , , S. McDermid, , L.T. Murray, , , C.P. García-Pando, , , , D.T. Shindell, S. Sun, , , , , and , 2022:Use of satellite observations in climate model evaluation of clouds: A time history based on the NASA/GISS model. In Studies of Cloud, Convection and Precipitation Processes Using Satellite Observations. Z.J. Luo, G. Tselioudis, and W.B. Rossow, Eds., Lectures in Climate Change, vol. 3, World Scientific, pp. 247-262, doi:10.1142/9789811256912_0013.
, 2022:2021
Braun, R.A., A. McComiskey, Cloud, aerosol, and radiative properties over the Western North Atlantic Ocean. J. Geophys. Res. Atmos., 126, no. 14, e2020JD034113, doi:10.1029/2020JD034113.
, , and A. Sorooshian, 2021:CMIP6 historical simulations (1850-2014) with GISS-E2.1. J. Adv. Model. Earth Syst., 13, no. 1, e2019MS002034, doi:10.1029/2019MS002034.
, , , , , , , , , , R. Bleck, , , , T.L. Clune, , C.A. Cruz, , , , , D. Kim, , , , , J. Marshall, , S. McDermid, , L.T. Murray, , , C. Pérez García-Pando, , , , , D.T. Shindell, S. Sun, , , , , , and , 2021:Painemal, D., A.F. Corral, A. Sorooshian, M.A. Brunke, S. Chellappan, V. Afzali Go rooh, S.-H. Ham, L. O'Neill, W.L. Smith Jr., An overview of atmospheric features over the Western North Atlantic Ocean and North American East Coast — Part 2: Circulation, boundary layer, and clouds. J. Geophys. Res. Atmos., 126, no. 6, e2020JD033423, doi:10.1029/2020JD033423.
, H. Wang, X. Zeng, and P. Zuidema, 2021:Evaluation of clouds, radiation, and precipitation in CMIP6 models using global weather states derived from ISCCP-H cloud property data. J. Climate, 34, 7311-7324, doi:10.1175/JCLI-D-21-0076.1.
, W.B. Rossow, C. Jakob, , , and , 2021:2020
GISS-E2.1: Configurations and climatology. J. Adv. Model. Earth Syst., 12, no. 8, e2019MS002025, doi:10.1029/2019MS002025.
, , , , , , , , , R. Bleck, , , , T.L. Clune, , C.A. Cruz, , , , , D. Kim, , , , , J. Marshall, , S. McDermid, , , L.T. Murray, , , C. Pérez García-Pando, , , , , D.T. Shindell, S. Sun, , , , , , and , 2020:Midlatitude cloud systems. In Clouds and Climate: Climate Science's Greatest Challenge. A.P. Siebesma, S. Bony, C. Jakob, and B. Stevens, Eds., Cambridge University Press, pp. 279-296.
, and K. Grise, 2020:2019
Heinze, C., V. Eyring, P. Friedlingstein, C. Jones, Y. Balkanski, W. Collins, T. Fichefet, S. Gao, A. Hall, D. Ivanova, W. Knorr, R. Knutti, A. Löw, M. Ponater, M.G. Schultz, M. Schulz, P. Siebesma, J. Teixeira, Climate feedbacks in the Earth system and prospects for their evaluation. Earth Syst. Dyn., 10, 379-452, doi:10.5194/esd-10-379-2019.
, and M. Vancoppenolle, 2019:Sorooshian, A., B. Anderson, Aerosol-cloud-meteorology interaction airborne field investigations: Using lessons learned from the US West Coast in the design of ACTIVATE off the US East Coast. Bull. Amer. Meteorol. Soc., 100, no. 8, 1511-1528, doi:10.1175/BAMS-D-18-0100.1.
, R.A. Braun, , E. Crosbie, H. Dadashazar, G. Diskin, R. Ferrare, R.C. Flagan, J. Hair, C. Hostetler, H.H. Jonsson, M.M. Kleb, H. Liu, A.B. MacDonald, A. McComiskey, R. Moore, D. Painemal, L.M. Russell, J.H. Seinfeld, M. Shook, W.L. Smith, K. Thornhill, , H. Wang, X. Zeng, B. Zhang, L. Ziemba, and P. Zuidema, 2019:2018
Model uncertainty in cloud-circulation coupling, and cloud-radiative response to increasing CO2, linked to biases in climatological circulation. J. Climate, 31, no. 24, 10013-10020, doi:10.1175/JCLI-D-17-0665.1.
, A. Voigt, , and L.M. Polvani, 2018:2017
Lipat, B.R., CMIP5 models' shortwave cloud radiative response and climate sensitivity linked to the climatological Hadley cell extent. Geophys. Res. Lett., 44, no. 11, 5739-5748, doi:10.1002/2017GL073151.
, K.M. Grise, and L.M. Polvani, 2017:Use of cloud radar Doppler spectra to evaluate stratocumulus drizzle size distributions in large-eddy simulations with size-resolved microphysics. J. Appl. Meteorol. Climatol., 56, no. 12, 3263-3283, doi:10.1175/JAMC-D-17-0100.1.
, , , , P. Kollias, D.B. Mechem, H.E. Chandler, E. Luke, R. Wood, M.K. Witte, P.Y. Chuang, and J.K. Ayers, 2017:The 'storm curtain' effect: Poleward shift of clouds, their radiative effects, and the role of midlatitude storms. In Perspectives on Atmospheric Sciences. T. Karacostas, A. Bais, and P.T. Nastos, Eds., Springer Atmospheric Sciences, Springer, pp. 725-731, doi:10.1007/978-3-319-35095-0_104.
, and D. Konsta, 2017:Webb, M.J., T. Andrews, A. Bodas-Salcedo, S. Bony, C.S. Bretherton, R. Chadwick, H. Chepfer, H. Douville, P. Good, J.E. Kay, S.A. Klein, R. Marchand, B. Medeiros, A.P. Siebesma, C.B. Skinner, B. Stevens, The Cloud Feedback Model Intercomparison Project (CFMIP) contribution to CMIP6. Geosci. Model Dev., 10, 359-384, doi:10.5194/gmd-10-359-2017.
, Y. Tsushima, and M. Watanabe, 2017:2016
A new climatology for investigating storm influences in and on the extratropics. J. Appl. Meteorol. Climatol., 55, no. 5, 1287-1303, doi:10.1175/JAMC-D-15-0245.1.
, , and W.B. Rossow, 2016:Hansen, J., M. Sato, P. Hearty, Ice melt, sea level rise and superstorms: Evidence from paleoclimate data, climate modeling, and modern observations that 2°C global warming could be dangerous. Atmos. Chem. Phys., 16, 3761-3812, doi:10.5194/acp-16-3761-2016.
, , V. Masson-Delmotte, , , J. Cao, E. Rignot, I. Velicogna, B. Tormey, B. Donovan, E. Kandiano, K. von Schuckmann, , , , and , 2016:Atmospheric diabatic heating in different weather states and the general circulation. J. Climate, 29, no. 3, 1059-1065, doi:10.1175/JCLI-D-15-0760.1.
, , and , 2016:Midlatitude cloud shifts, their primary link to the Hadley cell, and their diverse radiative effects. Geophys. Res. Lett., 43, no. 9, 4594-4601, doi:10.1002/2016GL068242.
, , D. Konsta, K. Grise, and L. Polvani, 2016:2015
Cloud regime variability over the Azores and its application to climate model evaluation. J. Climate, 28, no. 24, 9707-9720, doi:10.1175/JCLI-D-15-0066.1.
, and , 2015:Stephens, G., C. Jakobs, and The GEWEX Process Evaluation Study: GEWEX-PROES. GEWEX News, 27, no. 4, 4-5.
, 2015:Tan, J., C. Jakob, W.B. Rossow, and Increases in tropical rainfall driven by changes in frequency of organized deep convection. Nature, 519, 451-454, doi:10.1038/nature14339.
, 2015:Wood, R., M. Wyant, C.S. Bretherton, Clouds, aerosol, and precipitation in the marine boundary layer: An ARM Mobile Facility deployment. Bull. Amer. Meteorol. Soc., 96, no. 3, 419-440, doi:10.1175/BAMS-D-13-00180.1.
, P. Kollias, J. Fletcher, J. Stemmler, S. deSzoeke, S. Yuter, M. Miller, D. Mechem, , C. Chiu, J. Mann, E. O'Connor, R. Hogan, X. Dong, M. Miller, V. Ghate, A. Jefferson, Q. Min, P. Minnis, R. Palinkonda, B. Albrecht, E. Luke, C. Hannay, and Y. Lin, 2015:2014
Teleconnections, midlatitude cyclones and Aegean Sea turbulent heat flux variability on daily through decadal time scales. Reg. Environ. Change, 14, no. 5, 1713-1723, doi:10.1007/s10113-013-0545-0.
, , , and , 2014:2013
Grise, K.M., L.M. Polvani, The ozone hole indirect effect: Cloud-radiative anomalies accompanying the poleward shift of the eddy-driven jet in the Southern Hemisphere. Geophys. Res. Lett., 40, 3688-3692, doi:10.1002/grl.50675.
, Y. Wu, and M.D. Zelinka, 2013:Kapsomenakis, J., P.T. Nastos, K. Douvis, C.M. Philandras, Regional climate models' future simulations of mean air temperature in Greece. In Advances in Meteorology, Climatology and Atmospheric Physics. C.G. Helmis and P.T. Nastos, Eds., Springer Atmospheric Sciences, Springer-Verlag, pp. 493-499, doi:10.1007/978-3-642-29172-2_70.
, and C.S. Zerefos, 2013:Global weather states and their properties from passive and active satellite cloud retrievals. J. Climate, 26, 7734-7746, doi:10.1175/JCLI-D-13-00024.1.
, W. Rossow, , and D. Konsta, 2013:2012
Bender, F.A.-M., V. Ramanathan, and Changes in extratropical storm track cloudiness 1983-2008: Observational support for a poleward shift. Clim. Dyn., 38, 2037-2053, doi:10.1007/s00382-011-1065-6.
, 2012:Atmospheric forcing of the Eastern Mediterranean Transient by midlatitude cyclones. Geophys. Res. Lett., 39, L03703, doi:10.1029/2011GL050298.
, , , and , 2012:Does dynamical downscaling introduce novel information in climate model simulations of precipitation change over a complex topography region? Int. J. Climatol., 32, 1572-1578, doi:10.1002/joc.2360.
, C. Douvis, and C. Zerefos, 2012:2011
Haynes, J.M., C. Jakob, Major characteristics of Southern Ocean cloud regimes and their effects on the energy budget. J. Climate, 24, 5061-5080, doi:10.1175/2011JCLI4052.1.
, , and J. Brown, 2011:Philandras, C.M., P.T. Nastos, J. Kapsomenakis, K.C. Douvis, Long term precipitation trends and variability within the Mediterranean region. Nat. Hazards Earth Syst. Sci., 11, 3235-3250, doi:10.5194/nhess-11-3235-2011.
, and C.S. Zerefos, 2011:Time scales of variability of the tropical atmosphere derived from cloud-defined weather states. J. Climate, 24, 602-608, doi:10.1175/2010JCLI3574.1.
, and , 2011:2010
Evaporation-precipitation variability over the Mediterranean and the Black Seas from satellite and reanalysis estimates. J. Climate, 23, 5268-5287, doi:10.1175/2010JCLI3525.1.
, , C.S. Zerefos, C.-A. Clayson, J.A. Curry, and A. Andersson, 2010:Decadal changes in tropical convection suggest effects on stratospheric water vapor. Geophys. Res. Lett., 37, L14806, doi:10.1029/2010GL044092.
, E. Tromeur, , and C.S. Zerefos, 2010:2009
Saad-Lessler, J., and Storms, climate change, and the US economy: A national analysis. Reg. Sector. Econ. Stud., 9, no. 1, 1.
, 2009:Zerefos, C.S., K. Eleftheratos, C. Meleti, S. Kazadzis, Solar dimming and brightening over Thessaloniki, Greece, and Beijing, China. Tellus B, 61B, 657-665, doi:10.1111/j.1600-0889.2009.00425.x.
, C. Ichoku, , and A. Bais, 2009:2007
Eleftheratos, K., C.S. Zerefos, P. Zanis, D.S. Balis, A study on natural and manmade global interannual fluctuations of cirrus cloud cover for the period 1984-2004. Atmos. Chem. Phys., 7, 2631-2642, doi:10.5194/acp-7-2631-2007.
, K. Gierens, and R. Sausen, 2007:Kollias, P., Cloud climatology at the Southern Great Plains and the layer structure, drizzle, and atmospheric modes of continental stratus. J. Geophys. Res., 112, D09116, doi:10.1029/2006JD007307.
, and B.A. Albrecht, 2007:Evaluation of ECMWF cloud type simulations at the ARM Southern Great Plains site using a new cloud type climatology. Geophys. Res. Lett., 34, L03803, doi:10.1029/2006GL027314.
, and P. Kollias, 2007:Williams, K.D., and GCM intercomparison of global cloud regimes: Present-day evaluation and climate change response. Clim. Dyn., 29, 231-250, doi:10.1007/s00382-007-0232-2.
, 2007:Zerefos, C.S., K. Eleftheratos, P. Zanis, D.S. Balis, and Search for man-made cirrus contrails over Southeast Asia. Terr. Atmos. Ocean. Sci., 18, 459-474, doi:10.3319/TAO.2007.18.3.459(EA).
, 2007:2006
Bony, S., R. Colman, V.M. Kattsov, R.P. Allan, C.S. Bretherton, J.-L. Dufresne, A. Hall, S. Hallegatte, M.M. Holland, W. Ingram, D.A. Randall, D.J. Soden, How well do we understand and evaluate climate change feedback processes? J. Climate, 19, 3445-3482, doi:10.1175/JCLI3819.1.
, and M.J. Webb, 2006:Climate feedback implied by observed radiation and precipitation changes with midlatitude storm strength and frequency. Geophys. Res. Lett., 33, L02704, doi:10.1029/2005GL024513.
, and , 2006:2005
Jakob, C., The radiative, cloud, and thermodynamic properties of the major tropical Western Pacific cloud regimes. J. Climate, 8, 1203-1215, doi:10.1175/JCLI3326.1.
, and T. Hume, 2005:Tropical climate described as a distribution of weather states indicated by distinct mesoscale cloud property mixtures. Geophys. Res. Lett., 32, L21812, doi:10.1029/2005GL024584.
, , A. Polak, and C. Jakob, 2005:2004
The Data Integration for Model Evaluation web site: A one-stop shop for model evaluation. Bull. Amer. Meteorol. Soc., 85, 830-835, doi:10.1175/BAMS-85-6-830.
, , A.N. Gentilcore, and J. Katzfey, 2004:2003
Jakob, C., and Objective identification of cloud regimes in the Tropical Western Pacific. Geophys. Res. Lett., 30, no. 21, 2082, doi:10.1029/2003GL018367.
, 2003:Randall, D., S. Krueger, C. Bretherton, J. Curry, Duynkerke, M. Moncireff, B. Ryan, D. Starr, M. Miller, Confronting models with data: The GEWEX Cloud Systems Study. Bull. Amer. Meteorol. Soc., 84, 455-469, doi:10.1175/BAMS-84-4-455.
, , and B. Wielicki, 2003:Zerefos, C.S., K. Eleftheratos, D.S. Balis, P. Zanis, Evidence of impact of aviation on cirrus cloud formation. Atmos. Chem. Phys., 3, 1633-1644, doi:10.5194/acp-3-1633-2003.
, and C. Meleti, 2003:2002
Balis, D.S., C.S. Zerefos, A. Kazantzidis, K. Elefteratos, C. Meleti, and Effects of different types of contrails to the photolysis rates of J(O1D) and J(N02). In Ultraviolet Ground- and Space-based Measurements, Models, and Effects, 29 July-3 August, 2001, San Dievgo, California. J.R Slusser, J.R. Herman, and W. Gao, Eds., Proc. SPIE, vol. 4482, pp. 224-233, doi:10.1117/12.452922.
, 2002:Menon, S., GCM simulations of the aerosol indirect effect: Sensitivity to cloud parameterization and aerosol burden. J. Atmos. Sci., 59, 692-713, doi:10.1175/1520-0469(2002)059<0692:GSOTAI>2.0.CO;2.
, D. Koch, and , 2002:Evaluation of midlatitude cloud properties in a weather and a climate model: Dependence on dynamic regime and spatial resolution. J. Geophys. Res., 107, no. D24, 4781, doi:10.1029/2002JD002259.
, and C. Jakob, 2002:2000
Lohmann, U., Why is the cloud albedo-particle size relationship different in optically thick and optically thin clouds? Geophys. Res. Lett., 27, 1099-1102, doi:10.1029/1999GL011098.
, and C. Tyler, 2000:Ryan, B.F., J.J. Katzfey, D.J. Abbs, C. Jakob, U. Lohmann, B. Rockel, L.D. Rotstayn, R.E. Stewart, K.K. Szeto, Simulations of a cold front by cloud-resolving, limited-area, and large-scale models, and a model evaluation using in situ and satellite observations. Mon. Weather Rev., 128, 3218-3235, doi:10.1175/1520-0493(2000)128<3218:SOACFB>2.0.CO;2.
, and M.K. Yau, 2000:Cloud and radiation variations associated with northern midlatitude low and high sea level pressure regimes. J. Climate, 13, 312-327, doi:10.1175/1520-0442(2000)013<0312:CARVAW>2.0.CO;2.
, , and , 2000:1999
Parikh, J.A., J.S. DaPonte, J.N. Vitale, and An evolutionary system for recognition and tracking of synoptic-scale storm systems. Pattern Recogn. Lett., 20, 1389-1396.
, 1999:1998
Temperature dependence of low cloud optical thickness in the GISS GCM: Contributing mechanisms and climate implications. J. Climate, 11, 3268-3281, doi:10.1175/1520-0442(1998)011<3268:TDOLCO>2.0.CO;2.
, , , and , 1998:1997
Parikh, J.A., J.S. DaPonte, J.N. Vitale, and Comparison of genetic algorithm systems with neural network and statistical techniques for analysis of cloud structures in midlatitude storm systems. Pattern Recogn. Lett., 18, 1347-1351, doi:10.1016/S0167-8655(97)00115-3.
, 1997:1994
Global, multiyear variations of optical thickness with temperature in low and cirrus clouds. Geophys. Res. Lett., 21, 2211-2214, doi:10.1029/94GL02004.
, and , 1994:1993
Potential effects of cloud optical thickness on climate warming. Nature, 366, 670-672, doi:10.1038/366670a0.
, , , and , 1993:1992
Global Patterns of Cloud Optical Thickness Variation with Temperature and the Implication for Climate Change. Ph.D. thesis. Columbia University.
, 1992:Global patterns of cloud optical thickness variation with temperature. J. Climate, 5, 1484-1495, doi:10.1175/1520-0442(1992)005<1484:GPOCOT>2.0.CO;2.
, , and , 1992: