Author Bibliographies
Publications by Grégory V. Cesana
This citation list includes papers published while the author has been on staff at the NASA Goddard Institute for Space Studies. It may include some publications based on research conducted prior to their having joined the institute staff.
Submitted / In Review
Using machine learning to generate a GISS ModelE calibrated physics ensemble (CPE). J. Adv. Model. Earth Syst., submitted.
, , Q. Yang, , , , , , , A. Behrangi, S.J. Camargo, , , , and J.D.O. Strong, 2024:In Press / Accepted
Li, J.-L.F., K.-M. Xu, J.H. Jiang, W.-L. Lee, J.-Y. Yu, J.-D. Chern, Investigating the "too bright" issue pertaining to non-PBL clouds over the South Pacific trade-wind region in CMIP6 global climate models. Geophys. Res. Lett., accepted.
, L. Wu, and G. Stephens, 2024:The relative importance of forced and unforced temperature patterns in driving the time variation of low-cloud feedback. J. Climate, in press, doi:10.1175/JCLI-D-24-0014.1.
, , C. Proistosescu, M.D. Zelinka, and K.C. Armour, 2024:2024
Observational constraint on a feedback from supercooled clouds reduces projected warming uncertainty. Commun. Earth Environ., 5, 181, doi:10.1038/s43247-024-01339-1.
, , , I. Silber, , M. Zelinka, H. Chepfer, T. Khadir, and R. Roehrig, 2024:Cloud-radiation interactions and cloud-climate feedbacks from an active-sensor satellite perspective. In Clouds and Their Climatic Impact: Radiation, Circulation, and Precipitation. S. Sullivan and C. Hoose, Eds., Geophysical Monograph Series, vol. 281, American Geophysical Union, pp. 87-102, doi:10.1002/9781119700357.ch4.
, , T. Vaillant de Guélis, and D.S. Henderson, 2024:Better constraining supercooled clouds could reduce projected warming spread. In Radiation Processes in the Atmosphere and Ocean, 4–8 July 2022, Thessaloniki, Greece, AIP Conference Proceedings, vol. 2988, AIP Publishing, p. 070009, doi:10.1063/5.0183626.
, , , I. Silber, , M.D. Zelinka, and H. Chepfer, 2024:The correlation between Arctic sea ice, cloud phase and radiation using A-train satellites. Atmos. Chem. Phys., 24, no. 13, 7899-7909, doi:10.5194/acp-24-7899-2024.
, , , , and , 2024:Gonzalez, A.O., I. Ganguly, M. Osterloh, Dynamical importance of the trade wind inversion in suppressing the southeast Pacific ITCZ. J. Geophys. Res. Atmos., 129, no. 24, e2023JD039571, doi:10.1029/2023JD039571.
, and C.A. DeMott, 2024:2023
An observation-based method to assess tropical stratocumulus and shallow cumulus clouds and feedbacks in CMIP6 and CMIP5 models. Environ. Res. Commun., 5, no. 4, 045001, doi:10.1088/2515-7620/acc78a.
, , , R. Pincus, and H. Chepfer, 2023:Evaluating the representation of tropical stratocumulus and shallow cumulus clouds as well as their radiative effects in CMIP6 models using satellite observations. J. Geophys. Res. Atmos., 128, no. 23, e2022JD038437, doi:10.1029/2022JD038437.
, , and R. Pincus, 2023:Li, J.-L.F., Comparisons of simulated radiation, surface wind stress and SST fields over tropical Pacific by the GISS CMIP6 versions of global climate models with observations. Environ. Res. Commun., 5, no. 1, 015005, doi:10.1088/2515-7620/aca9ab.
, K.-M. Xu, M. Richardson, H. Takahashi, and J. Jiang, 2023:Earth-system-model evaluation of cloud and precipitation occurrence for supercooled and warm clouds over the Southern Ocean's Macquarie Island. Atmos. Chem. Phys., 23, no. 16, 9037-9069, doi:10.5194/acp-23-9037-2023.
, , I. Silber, , , J. Mülmenstädt, A. Protat, S. Alexander, and A. McDonald, 2023:2022
Southern Ocean solar reflection biases in CMIP6 models linked to cloud phase and vertical structure representations. Geophys. Res. Lett., 49, no. 22, e2022GL099777, doi:10.1029/2022GL099777.
, T. Khadir, H. Chepfer, and M. Chiriaco, 2022:Future climate change under SSP emission scenarios with GISS-E2.1. J. Adv. Model. Earth Syst., 14, no. 7, e2021MS002871, doi:10.1029/2021MS002871.
, , , , , , , , , , , , R. Bleck, , , , T.L. Clune, , C.A. Cruz, , , , , D. Kim, , , , , , , S. McDermid, , L.T. Murray, , , C.P. García-Pando, , , , D.T. Shindell, S. Sun, , , , , and , 2022:2021
Observational constraint on cloud feedbacks suggests moderate climate sensitivity. Nat. Clim. Change, 11, no. 3, 213-218, doi:10.1038/s41558-020-00970-y.
, and , 2021:Snow reconciles observed and simulated phase partitioning and doubles cloud feedback. Geophys. Res. Lett., 48, no. 20, e2021GL094876, doi:10.1029/2021GL094876.
, , , I. Silber, and , 2021:CMIP6 historical simulations (1850-2014) with GISS-E2.1. J. Adv. Model. Earth Syst., 13, no. 1, e2019MS002034, doi:10.1029/2019MS002034.
, , , , , , , , , , R. Bleck, , , , T.L. Clune, , C.A. Cruz, , , , , D. Kim, , , , , J. Marshall, , S. McDermid, , L.T. Murray, , , C. Pérez García-Pando, , , , , D.T. Shindell, S. Sun, , , , , , and , 2021:Silber, I., The prevalence of precipitation from polar supercooled clouds. Atmos. Chem. Phys., 21, no. 5, 3949-3971, doi:10.5194/acp-21-3949-2021.
, J. Verlinde, , , and D.A. Knopf, 2021:2020
GISS-E2.1: Configurations and climatology. J. Adv. Model. Earth Syst., 12, no. 8, e2019MS002025, doi:10.1029/2019MS002025.
, , , , , , , , , R. Bleck, , , , T.L. Clune, , C.A. Cruz, , , , , D. Kim, , , , , J. Marshall, , S. McDermid, , , L.T. Murray, , , C. Pérez García-Pando, , , , , D.T. Shindell, S. Sun, , , , , , and , 2020:2019
The Cumulus And Stratocumulus CloudSat-CALIPSO Dataset (CASCCAD). Earth Syst. Sci. Data, 11, 1745-1764, doi:10.5194/essd-11-1745-2019.
, , and H. Chepfer, 2019:Evaluating models' response of tropical low clouds to SST forcings using CALIPSO observations. Atmos. Chem. Phys., 19, 2813-2832, doi:10.5194/acp-19-2813-2019.
, , , , , , , and , 2019:The vertical structure of radiative heating rates: A multimodel evaluation using A-Train satellite observations. J. Climate, 32, no. 5, 1573-1590, doi:10.1175/JCLI-D-17-0136.1.
, D.E. Waliser, D. Henderson, T.S. L'Ecuyer, X. Jiang, and J-L.F. Li, 2019:2018
Constraining the models' response of tropical clouds to SST forcings using CALIPSO observations. In Remote Sensing and Modeling of the Atmosphere, Oceans, and Interactions VII, 24-26 September 2018, Honolulu, Hawaii. G. Liu and Z.S. Haddad, Eds., Proc. SPIE, vol. 10782, p. 107820A, doi:10.1117/12.2324800.
, , and , 2018:Kim, J., D.E. Waliser, Cloud and radiative heating profiles associated with the boreal summer intraseasonal oscillation. Clim. Dyn., 50, no. 5-6, 1485-1494, doi:10.1007/s00382-017-3700-3.
, X. Jiang, T. L'Ecuyer, and J.M. Neena, 2018:Myers, T.A., C.R. Mechoso, Cloud feedback key to marine heatwave off Baja California. Geophys. Res. Lett., 45, no. 9, 4345-4352, doi:10.1029/2018GL078242.
, M.J. DeFlorio, and D.E. Waliser, 2018:2017
Evaluation of radiative heating rate profiles in eight GCMs using A-train satellite observations. In Radiation Processes in the Atmosphere and Ocean (IRS2016): Proceedings of the International Radiation Symposium (IRC/IAMAS), 16–22 April 2016, Auckland, New Zealand, AIP Conference Proceedings, vol. 1810, p. 070001, doi:10.1063/1.4975522.
, D.E. Waliser, T. L'Ecuyer, X. Jiang, and J.-L. Li, 2017:On the dependence of cloud feedbacks on physical parameterizations in WRF aquaplanet simulations. Geophys. Res. Lett., 44, no. 20, 10762-10771, doi:10.1002/2017GL074820.
, K. Suselj, and F. Brient, 2017:Improving climate projections by understanding how cloud phase affects radiation. J. Geophys. Res. Atmos., 122, no. 8, 4594-4599, doi:10.1002/2017JD026927.
, and T. Storelvmo, 2017:Guzman, R., H. Chepfer, V. Noel, T. Vaillant de Guélis, J.E. Kay, P. Raberanto, Direct atmosphere opacity observations from CALIPSO provide new constraints on cloud-radiation interactions. J. Geophys. Res. Atmos., 122, no. 2, 1066-1085, doi:10.1002/2016JD025946.
, M.A. Vaughan, and D.M. Winker, 2017:Kikuchi, M., H. Okamoto, K. Sato, K. Suzuki, Development of algorithm for discriminating hydrometeor particle types with a synergistic use of CloudSat and CALIPSO. J. Geophys. Res. Atmos., 122, no. 20, 11022-11044, doi:10.1002/2017JD027113.
, Y. Hagihara, N. Takahashi, T. Hayasaka, and R. Oki, 2017:2016
Using in situ airborne measurements to evaluate three cloud phase products derived from CALIPSO. J. Geophys. Res. Atmos., 121, no. 10, 5788-5808, doi:10.1002/2015JD024334.
, H. Chepfer, D. Winker, B. Getzewich, X. Cai, O. Jourdan, G. Mioche, H. Okamoto, Y. Hagihara, V. Noel, and M. Reverdy, 2016:Characterizing and understanding systematic biases in the vertical structure of clouds in CMIP5/CFMIP2 models. Geophys. Res. Lett., 43, no. 19, 10538-10546, doi:10.1002/2016GL070515.
, and D.E. Waliser, 2016:Hoareau, C., V. Noel, H. Chepfer, J. Vidot, M. Chiriaco, S. Bastin, M. Reverdy, and Remote sensing ice supersaturation inside and near cirrus clouds: A case study in the subtropics. Atmos. Sci. Lett., 17, no. 12, 639-645, doi:10.1002/asl.714.
, 2016:Kay, J.E., T. L'Ecuyer, H. Chepfer, N. Loeb, A. Morrison, and Recent advances in Arctic cloud and climate research. Curr. Clim. Change Rep., 2, no. 4, 159-169, doi:10.1007/s40641-016-0051-9.
, 2016:Konsta, D., J.-L. Dufresne, H. Chepfer, A. Idelkadi, and Use of A-train satellite observations (CALIPSO-PARASOL) to evaluate tropical cloud properties in the LMDZ5 GCM. Clim. Dyn., 47, no. 3, 1263-1284, doi:10.1007/s00382-015-2900-y.
, 2016:2015
Bonne, J.-L., H.C. Steen-Larsen, C. Risi, M. Werner, H. Sodemann, J.-L. Lacour, X. Fettweis, The summer 2012 Greenland heat wave: In situ and remote sensing observations of water vapor isotopic composition during an atmospheric river event. J. Geophys. Res. Atmos., 120, no. 7, 2970-2989, doi:10.1002/2014JD022602.
, M. Delmotte, O. Cattani, P. Vallelonga, H.A. Kjær, C. Clerbaux, Á.E. Sveinbjörnsdóttir, and V. Masson-Delmotte, 2015:Multimodel evaluation of cloud phase transition using satellite and reanalysis data. J. Geophys. Res. Atmos., 120, no. 15, 7871-7892, doi:10.1002/2014JD022932.
, D.E. Waliser, X. Jiang, and J.-L.F. Li, 2015:He, Y., C. Risi, J. Gao, V. Masson-Delmotte, T. Yao, C.-T. Lai, Y. Ding, J. Worden, C. Frankenberg, H. Chepfer, and Impact of atmospheric convection on south Tibet summer precipitation isotopologue composition using a combination of in situ measurements, satellite data, and atmospheric general circulation modeling. J. Geophys. Res. Atmos., 120, no. 9, 3852-3871, doi:10.1002/2014JD022180.
, 2015:Reverdy, M., H. Chepfer, D. Donovan, V. Noel, An EarthCARE/ATLID simulator to evaluate cloud description in climate models. J. Geophys. Res. Atmos., 120, no. 21, 11090-11113, doi:10.1002/2015JD023919.
, C. Hoareau, M. Chiriaco, and S. Bastin, 2015:2014
Noel, V., H. Chepfer, C. Hoareau, M. Reverdy, and Edffects of solar activity on noise in CALIOP profiles above the South Atlantic Anomaly. Atmos. Meas. Tech., 7, no. 6, 1597-1603, doi:10.5194/amt-7-1597-2014.
, 2014:2013
Evaluation of the cloud thermodynamic phase in a climate model using CALIPSO-GOCCP. J. Geophys. Res. Atmos., 118, no. 14, 7922-7937, doi:10.1002/jgrd.50376.
, and H. Chepfer, 2013:Chepfer, H., Comparison of two different cloud climatologies derived from CALIOP-attenuated backscattered measurements (Level 1): The CALIPSO-ST and the CALIPSO-GOCCP. J. Atmos. Ocean. Technol., 30, no. 4, 725-744, doi:10.1175/JTECH-D-12-00057.1.
, D. Winker, B. Getzewich, M. Vaughan, and Z. Liu, 2013:Stubenrauch, C.J., W.B. Rossow, S. Kinne, S. Ackerman, Assessment of global cloud datasets from satellites: Project and database initiated by the GEWEX Radiation Panel. Bull. Amer. Meteorol. Soc., 94, no. 7, 1031-1049, doi:10.1175/BAMS-D-12-00117.1.
, H. Chepfer, L. Di Girolamo, B. Getzewich, A. Guignard, A. Heidinger, B.C. Maddux, W.P. Menzel, P. Minnis, C. Pearl, S. Platnick, C. Poulsen, J. Riedi, S. Sun-Mack, A. Walther, D. Winker, S. Zeng, and G. Zhao, 2013:Stubenrauch, C., W.B. Rossow, S. Kinne, S. Ackerman, GEWEX cloud assessment: A review. In Radiation Processes in the Atmosphere and Ocean (IRS2012): Proceedings of the International Radiation Symposium (IRC/IAMAS). R.F. Cahalan and J. Fischer, Eds., AIP Conference Proceedings, vol. 1531, American Institute of Physics, pp. 404-407, doi:10.1063/1.4804792.
, H. Chepfer, L. Di Girolamo, B. Getzewich, A. Guignard, A. Heidinger, B. Maddux, P. Menzel, P. Minnis, C. Pearl, S. Platnick, C. Poulsen, J. Riedi, A. Sayer, S. Sun-Mack, A. Walther, D. Winker, S. Zeng, and G. Zhao, 2013:2012
How well do climate models simulate cloud vertical structure? A comparison between CALIPSO-GOCCP satellite observations and CMIP5 models. Geophys. Res. Lett., 39, no. 20, L20803, doi:10.1029/2012GL053153.
, and H. Chepfer, 2012:Ubiquitous low-level liquid-containing Arctic clouds: New observations and climate model constraints from CALIPSO-GOCCP. Geophys. Res. Lett., 39, no. 20, L20804, doi:10.1029/2012GL053385.
, J.E. Kay, H. Chepfer, J.M. English, and G. de Boer, 2012:Stromatas, S., S. Turquety, L. Menut, H. Chepfer, J.C. Péré, Lidar signal simulation for the evaluation of aerosols in chemistry transport models. Geosci. Model Dev., 5, no. 6, 1543-1564, doi:10.5194/gmd-5-1543-2012.
, and B. Bessagnet, 2012:2010
Chepfer, H., S. Bony, D. Winker, The GCM-Oriented CALIPSO Cloud Product (CALIPSO-GOCCP). J. Geophys. Res., 115, no. D4, D00H16, doi:10.1029/2009JD012251.
, J.L. Dufresne, P. Minnis, C.J. Stubenrauch, and S. Zeng, 2010:2009
Vuolo, M.R., H. Chepfer, L. Menut, and Comparison of mineral dust layers vertical structures modeled with CHIMERE-DUST and observed with the CALIOP lidar. J. Geophys. Res., 114, no. D9, D09214, doi:10.1029/2008JD011219.
, 2009: