Author Bibliographies
Publications by Clara Orbe
This citation list includes papers published while the author has been on staff at the NASA Goddard Institute for Space Studies. It may include some publications based on research conducted prior to their having joined the institute staff.
Submitted / In Review
Winter patterns of the Hadley Circulation's response to increased CO2 are distinct between the upper and lower troposphere. J. Atmos. Sci., submitted.
, and , 2024:Ming, A., P. Hitchcock, Phase and amplitude relationships between ozone, temperature and circulation in the Quasi-biennial Oscillation. J. Geophys. Res. Atmos., submitted.
, and K. Dube, 2024:Mitevski, I., L.M. Polvani, H. He, G.A. Vecchi, State dependence of CO2 Effective Radiative Forcing from 1/16× to 16×CO2. J. Climate, submitted.
, B.J. Soden, and , 2024:Changes in stratospheric climate and age-of-air in recent GEOS systems since MERRA-2. J. Adv. Model. Earth Syst., submitted.
, L.L. Takacs, A. El Akkraoui, K. Wargan, A. Molod, and S. Pawson, 2024:Zhang, X., D.W. Waugh, I. Mitevski, Decreased Northern Hemisphere precipitation from consecutive CO2 doublings is associated with significant AMOC weakening. Environ. Res. Lett., submitted.
, and L.M. Polvani, 2024:2024
Severe global cooling after volcanic super-eruptions? The answer hinges on unknown aerosol size. J. Climate, 37, no. 4, 1449-1464, doi:10.1175/JCLI-D-23-0116.1.
, , L. Polvani, , , and , 2024:Mitevski, I., R. Chemke, Southern Hemisphere winter storm tracks respond differently to low and high CO2 forcings. J. Climate, 37, no. 20, 5355-5372, doi:10.1175/JCLI-D-23-0758.1.
, and L.M. Polvani, 2024:Coupled stratospheric ozone and Atlantic Meridional Overturning Circulation feedbacks on the Northern Hemisphere midlatitude jet response to 4×CO2. J. Climate, 37, no. 10, 2897-2917, doi:10.1175/JCLI-D-23-0119.1.
, , D. Waugh, , X. Zhang, G. Chiodo, , and , 2024:Zheng, C., Y. Wu, M. Ting, and Influence of atmospheric circulation on the interannual variability of transport from global and regional emissions into the Arctic. Atmos. Chem. Phys., 24, no. 12, 6965-6985, doi:10.5194/acp-24-6965-2024.
, 2024:Exploring the ENSO modulation of the QBO periods with GISS E2.2 models. Atmos. Chem. Phys., 24, no. 1, 509-532, doi:10.5194/acp-24-509-2024.
, , , , , , , and , 2024:2023
Understanding model-observation discrepancies in satellite retrievals of atmospheric temperature using GISS ModelE. J. Geophys. Res. Atmos., 128, no. 1, e2022JD037523, doi:10.1029/2022JD037523.
, , , , , , , and D.T. Shindell, 2023:Ding, X., G. Chen, P. Zhang, D. Domeisen, and Extreme stratospheric wave activity as harbingers of cold events over North America. Commun. Earth Environ., 4, 187, doi:10.1038/s43247-023-00845-y.
, 2023:Martin, Z.K., I.R. Simpson, P. Lin, The lack of a QBO-MJO connection in climate models with a nudged stratosphere. J. Geophys. Res. Atmos., 128, no. 17, e2023JD038722, doi:10.1029/2023JD038722.
, Q. Tang, J.M. Caron, C.-C. Chen, H. Kim, L.R. Leung, J.H. Richter, and S. Xie, 2023:Connections between upper tropospheric and lower stratospheric circulation responses to increased CO2. J. Climate, 36, no. 12, 4101-2112, doi:10.1175/JCLI-D-22-0851.1.
, D. Waugh, and , 2023:Non-monotonic feedback dependence under abrupt CO2 forcing due to a North Atlantic pattern effect. Geophys. Res. Lett., 50, no. 14, e2023GL103617, doi:10.1029/2023GL103617.
, Y. Dong, L.M. Polvani, M. Rugenstein, and , 2023:Atmospheric response to a collapse of the North Atlantic circulation under a mid-range future climate scenario: A regime shift in Northern Hemisphere dynamics. J. Climate, 36, no. 19, 6669-6693, doi:10.1175/JCLI-D-22-0841.1.
, , , , , , , , and , 2023:Raiter, D., L.M. Polvani, I. Mitevski, A.G. Pendergrass, and Little change in apparent hydrological sensitivity at large CO2 forcing. Geophys. Res. Lett., 50, no. 18, e2023GL104954, doi:10.1029/2023GL104954.
, 2023:Stochastic bifurcation of the North Atlantic Circulation under a mid-range future climate scenario with the NASA-GISS ModelE. J. Climate, 36, no. 18, 6141-6161, doi:10.1175/JCLI-D-22-0536.1.
, , , , , , , , , and , 2023:Zhang, X., D.W. Waugh, and Dependence of Northern Hemisphere tropospheric transport on the midlatitude jet under abrupt CO2 increase. J. Geophys. Res. Atmos., 128, no. 13, e2022JD038454, doi:10.1029/2022JD038454.
, 2023:2022
Chemke, R., L. Zanna, The future intensification of North Atlantic winter storms: The key role of dynamic ocean coupling. J. Climate, 35, no. 8, 2407-2421, doi:10.1175/JCLI-D-21-0407.1.
, L.T. Sentman, and L.M. Polvani, 2022:Asymmetric warming/cooling response to CO2 increase/decrease due to non-logarithmic forcing, not feedbacks. Geophys. Res. Lett., 49, no. 5, e2021GL097133, doi:10.1029/2021GL097133.
, L. Polvani, and , 2022:Future climate change under SSP emission scenarios with GISS-E2.1. J. Adv. Model. Earth Syst., 14, no. 7, e2021MS002871, doi:10.1029/2021MS002871.
, , , , , , , , , , , , R. Bleck, , , , T.L. Clune, , C.A. Cruz, , , , , D. Kim, , , , , , , S. McDermid, , L.T. Murray, , , C.P. García-Pando, , , , D.T. Shindell, S. Sun, , , , , and , 2022:Zheng, C., M. Ting, Y. Wu, N. Kurtz, Turbulent heat flux, downward longwave radiation and large-scale atmospheric circulation associated with the wintertime Barents-Kara Sea extreme sea ice loss events. J. Climate, 35, no. 12, 3747-3765, doi:10.1175/JCLI-D-21-0387.1.
, , R. Seager, and , 2022:2021
Abalos, M., N. Calvo, S. Benito-Barca, H. Garny, S.C. Hardiman, P. Lin, M.B. Andrews, N. Butchart, R. Garcia, The Brewer-Dobson circulation in CMIP6. Atmos. Chem. Phys., 21, no. 17, 13571-13591, doi:10.5194/acp-21-13571-2021.
, D. Saint-Martin, S. Watanabe, and K. Yoshida, 2021:Chemke, R., L.M. Polvani, J.E. Kay, and Quantifying the role of ocean coupling in Arctic amplification and sea-ice loss over the 21st century. NPJ Clim. Atmos. Sci., 4, 46, doi:10.1038/s41612-021-00204-8.
, 2021:Dynamical and trace gas responses of the Quasi-Biennial Oscillation to increased CO2. J. Geophys. Res. Atmos., 126, no. 6, e2020JD034151, doi:10.1029/2020JD034151.
, , , , and , 2021:Response of the Quasi-Biennial Oscillation to historical volcanic eruptions. Geophys. Res. Lett., 48, no. 20, e2021GL095412, doi:10.1029/2021GL095412.
, , , , and , 2021:Martin, Z.K., The MJO-QBO relationship in a GCM with stratospheric nudging. J. Climate, 34, no. 11, 4603-4624, doi:10.1175/JCLI-D-20-0636.1.
, S. Wang, and A. Sobel, 2021:CMIP6 historical simulations (1850-2014) with GISS-E2.1. J. Adv. Model. Earth Syst., 13, no. 1, e2019MS002034, doi:10.1029/2019MS002034.
, , , , , , , , , , R. Bleck, , , , T.L. Clune, , C.A. Cruz, , , , , D. Kim, , , , , J. Marshall, , S. McDermid, , L.T. Murray, , , C. Pérez García-Pando, , , , , D.T. Shindell, S. Sun, , , , , , and , 2021:Non-monotonic response of the climate system to abrupt CO2 forcing. Geophys. Res. Lett., 48, no. 6, e2020GL090861, doi:10.1029/2020GL090861.
, , R. Chemke, , and L.M. Polvani, 2021:Murray, L.T., E.M. Liebensperger, GCAP 2.0: A global 3-D chemical-transport model framework for past, present, and future climate scenarios. Geosci. Model Dev., 14, no. 9, 5789-5823, doi:10.5194/gmd-14-5789-2021.
, L.J. McKinley, and M. Sulprizio, 2021:Tropospheric age-of-air: Influence of SF6 emissions on recent surface trends and model biases. J. Geophys. Res. Atmos., 126, no. 10, e2021JD035451, doi:10.1029/2021JD035451.
, D.W. Waugh, S. Montzka, E.J. Dlugokencky, S.E. Strahan, S.D. Steenrod, S. Strode, J.W. Elkins, B. Hall, C. Sweeney, E.J. Hinsta, F.L. Moore, and E. Penafiel, 2021:Zheng, C., Y. Wu, M. Ting, Summertime transport pathways from different Northern Hemisphere regions into the Arctic. J. Geophys. Res. Atmos., 126, no. 4, e2020JD033811, doi:10.1029/2020JD033811.
, X. Wang, and S. Tilmes, 2021:2020
Abalos, M., Future trends in stratosphere-to-troposphere transport in CCMI models. Atmos. Chem. Phys., 20, no. 11, 6883-6901, doi:10.5194/acp-20-6883-2020.
, D.E. Kinnison, D. Plummer, L.D. Oman, P. Jöckel, O. Morgenstern, R.R. Garcia, G. Zeng, K.A. Stone, and M. Dameris, 2020:Ayarzagüena, B., A.J. Charlton-Perez, A.H. Butler, P. Hitchcock, I.R. Simpson, L.M. Polvani, N. Butchart, E.P. Gerber, L. Gray, B. Hassler, P. Lin, F. Lott, E. Manzini, R. Mizuta, Uncertainty in the response of sudden stratospheric warmings and stratosphere-troposphere coupling to quadrupled CO2 concentrations in CMIP6 models. J. Geophys. Res. Atmos., 125, no. 6, e2019JD032345, doi:10.1029/2019JD032345.
, S. Osprey, D. Saint-Martin, M. Sigmond, M. Taguchi, E.M. Volodin, and S. Watanabe, 2020:GISS-E2.1: Configurations and climatology. J. Adv. Model. Earth Syst., 12, no. 8, e2019MS002025, doi:10.1029/2019MS002025.
, , , , , , , , , R. Bleck, , , , T.L. Clune, , C.A. Cruz, , , , , D. Kim, , , , , J. Marshall, , S. McDermid, , , L.T. Murray, , , C. Pérez García-Pando, , , , , D.T. Shindell, S. Sun, , , , , , and , 2020:GISS Model E2.2: A climate model optimized for the middle atmosphere. Part 2: Validation of large-scale transport and evaluation of climate response. J. Geophys. Res. Atmos., 125, no. 24, e2020JD033151, doi:10.1029/2020JD033151.
, , , , , L.T. Murray, D.T. Shindell, , , , and , 2020:Representation of modes of variability in 6 U.S. climate models. J. Climate, 33, no. 17, 7591-7617, doi:10.1175/JCLI-D-19-0956.1.
, L. Van Roekel, Á. Adames, G. Danabasoglu, A. Dezfuli, J. Fasullo, P.J. Gleckler, J. Lee, W. Li, , , K. Sperber, and M. Zhao, 2020:Mechanisms linked to recent ozone decreases in the Northern Hemisphere lower stratosphere. J. Geophys. Res. Atmos., 125, no. 9, e2019JD031631, doi:10.1029/2019JD031631.
, K. Wargan, S. Pawson, and L.D. Oman, 2020:Description and evaluation of the Specified-Dynamics Experiment in the Chemistry-Climate Model Initiative (CCMI). Atmos. Chem. Phys., 20, 3809-3840, doi:10.5194/acp-20-3809-2020.
, D.A. Plummer, D.W. Waugh, H. Yang, P. Jöckel, D.E. Kinnison, B. Josse, V. Marecal, M. Deushi, N.L. Abraham, A.T. Archibald, M.P. Chipperfield, S. Dhomse, W. Feng, and S. Bekki, 2020:GISS Model E2.2: A climate model optimized for the middle atmosphere — Model structure, climatology, variability and climate sensitivity. J. Geophys. Res. Atmos., 125, no. 10, e2019JD032204, doi:10.1029/2019JD032204.
, , , , , , , D. Shindell, , , , , , and , 2020:Wu, Y., Fast transport pathways into the Northern Hemisphere upper troposphere and lower stratosphere during northern summer. J. Geophys. Res. Atmos., 125, no. 3, e2019JD031552, doi:10.1029/2019JD031552.
, S. Tilmes, M. Abalos, and X. Wang, 2020:Yang, H., D.W. Waugh, Dependence of atmospheric transport into the Arctic on the meridional extent of the Hadley cell. Geophys. Res. Lett., 47, no. 20, e2020GL090133, doi:10.1029/2020GL090133.
, and G. Chen, 2020:2019
Yang, H., D.W. Waugh, Large-scale transport into the Arctic: the roles of the midlatitude jet and the Hadley Cell. Atmos. Chem. Phys., 19, 5511-5528, doi:10.5194/acp-19-5511-2019.
, G. Zeng, O. Morgenstern, D.E. Kinnison, J.-F. Lamarque, S. Tilmes, D.A. Plummer, P. Jöckel, S.E. Strahan, K.A. Stone, and R. Schofield, 2019:Yang, H., D.W. Waugh, Evaluating simulations of interhemispheric transport: Interhemispheric exchange time versus SF6 age. Geophys. Res. Lett., 46, no. 2, 1113-1120, doi:10.1029/2018GL080960.
, P. Patra, P. Jöckel, J.-F. Lamarque, S. Tilmes, D. Kinnison, J. Elkins, and E. Dlugokencky, 2019:2018
Large-scale tropospheric transport in the Chemistry Climate Model Initiative (CCMI) simulations. Atmos. Chem. Phys., 18, 7217-7235, doi:10.5194/acp-18-7217-2018.
, H. Yang, D.W. Waugh, G. Zeng, O. Morgenstern, D.E. Kinnison, J.-F. Lamarque, S. Tilmes, D.A. Plummer, J.F. Scinnoca, B. Josse, V. Marecal, P. Jöckel, L.D. Oman, S.E. Strahan, M. Deushi, T.Y. Tanaka, K. Yoshida, H. Akiyoshi, Y. Yamashita, A. Stenke, L. Revell, T. Sukhodolov, E. Rozanov, G. Pitari, D. Visioni, K.A. Stone, R. Schofield, and A. Banerjee, 2018:Wang, X., Y. Wu, W.-W. Tung, J.H. Richter, A.A. Glanville, S. Tilmes, The simulation of stratospheric water vapor over the Asian summer monsoon region in CESMl(WACCM) models. J. Geophys. Res. Atmos., 123, no. 20, 11377-11391, doi:10.1029/2018JD028971.
, Y. Huang, Y. Xia, and D.E. Kinnison, 2018:Wargan, K., Recent decline in lower stratospheric ozone attributed to circulation changes. Geophys. Res. Lett., 45, no. 10, 5166-5176, doi:10.1029/2018GL077406.
, S. Pawson, J.R. Ziemke, L.D. Oman, M. Olsen, L. Coy, and K.E. Knowland, 2018:Wu, X., H. Yang, D.W. Waugh, Spatial and temporal variability of interhemispheric transport times. Atmos. Chem. Phys., 18, 7439-7452, doi:10.5194/acp-18-7439-2018.
, S. Tilmes, and J.-F. Lamarque, 2018:2017
Chen, G., The role of monsoon-like zonally asymmetric heating in interhemispheric transport. J. Geophys. Res. Atmos., 122, no. 6, 3282-3298, doi:10.1002/2016JD026427.
, and D. Waugh, 2017:Doherty, R.M., Multi-model impacts of climate change on pollution transport from global emission source regions. Atmos. Chem. Phys., 17, 14219-14237, doi:10.5194/acp-17-14219-2017.
, G. Zeng, D.A. Plummer, M.J. Prather, O. Wild, M. Lin, D.T. Shindell, and I.A. Mackenzie, 2017:Large-scale atmospheric transport in GEOS replay simulations. J. Adv. Model. Earth Syst., 9, no. 7, 2545-2560, doi:10.1002/2017MS001053.
, L.D. Oman, S.E. Strahan, D.W. Waugh, S. Pawson, L.L. Takacs, and A.M. Molod, 2017:Tropospheric transport differences between models using the same large-scale meteorological fields. Geophys. Res. Lett., 44, no. 2, 1068-1078, doi:10.1002/2016GL071339.
, D.W. Waugh, H. Yang, J.-F. Lamarque, S. Tilmes, and D.E. Kinnison, 2017:2016
Barnes, E.A., N. Parazoo, Isentropic transport and the seasonal cycle amplitude of CO2. J. Geophys. Res. Atmos., 121, no. 13, 8106-8124, doi:10.1002/2016JD025109.
, and A.S. Denning, 2016:The transit-time distribution from the Northern Hemisphere midlatitude surface. J. Atmos. Sci., 73, no. 10, 3785-3802, doi:10.1175/JAS-D-15-0289.1.
, D.W. Waugh, P.A. Newman, and S. Steenrod, 2016:2015
Air-mass origin in the Arctic. Part II: Response to increases in greenhouse gases. J. Climate, 28, no. 23, 9105-9120, doi:10.1175/JCLI-D-15-0296.1.
, P.A. Newman, D.W. Waugh, M. Holzer, L.D. Oman, F. Li, and L.M. Polvani, 2015:Airmass origin in the Arctic. Part I: Seasonality. J. Climate, 28, no. 12, 4997-5014, doi:10.1175/JCLI-D-14-00720.1.
, P.A. Newman, D.W. Waugh, M. Holzer, L.D. Oman, F. Li, and L.M. Polvani, 2015:Air-mass origin in the tropical lower stratosphere: The influence of Asian boundary layer air. Geophys. Res. Lett., 42, no. 10, 4240-4248, doi:10.1002/2015GL063937.
, D.W. Waugh, and P.A. Newman, 2015:2014
Seasonal ventilation of the stratosphere: Robust diagnostics from one-way flux distributions. J. Geophys. Res. Atmos., 119, no. 1, 293-306, doi:10.1002/2013JD020213.
, M. Holzer, L.M. Polvani, D.W. Waugh, F. Li, L.D. Oman, and P.A. Newman, 2014:2013
Orbe, C., M. Holzer, L.M. Polvani, and D. Waugh, 2013: Air-mass origin as a diagnostic of tropospheric transport. J. Geophys. Res. Atmos., 118, no. 3, 1459-1470, doi:10.1002/jgrd.50133.
2012
Holzer, M., C. Orbe, and F.W. Primeau, 2012: Stratospheric mean residence time and mean age on the tropopause: Connections and implications for observational constraints. J. Geophys. Res., 117, no. D12, doi:10.1029/2012JD017547.
Orbe, C., M. Holzer, and L.M. Polvani, 2012: Flux distributions as robust diagnostics of stratosphere-troposphere exchange. J. Geophys. Res., 117, no. D1, doi:10.1029/2011JD016455.
2009
Gerber, E.P., C. Orbe, and L.M. Polvani, 2009: Stratospheric influence on the tropospheric circulation revealed by idealized ensemble forecasts. Geophys. Res. Lett., 36, no. 24, doi:10.1029/2009GL040913.