Author Bibliographies
Publications by Catherine M. Naud
This citation list includes papers published while the author has been on staff at the NASA Goddard Institute for Space Studies. It may include some publications based on research conducted prior to their having joined the institute staff.
2024
Just how river-like are atmospheric rivers? Geophys. Res. Lett., 51, no. 10, e2023GL105828, doi:10.1029/2023GL105828.
, J.F. Booth, , C. Ordaz, and J. Crespo, 2024:A CloudSat-CALIPSO view of cloud and precipitation in the occluded quadrants of extratropical cyclones. Q. J. Roy. Meteorol. Soc., 150, 1336-1356, doi:10.1002/qj.4648.
, P. Ghosh, J.E. Martin, , and D.J. Posselt, 2024:Assessing the impact of climate change on atmospheric rivers: A modeling perspective. J. Geophys. Res. Atmos., 129, no. 12, e2023JD040074, doi:10.1029/2023JD040074.
, J.F. Booth, , and , 2024:Takahashi, H., Systematic differences between the Northern and Southern Hemispheres: Warm frontal ice water path linked to the origin of extratropical cyclones. J. Climate, 37, no. 8, 2491-2504, doi:10.1175/JCLI-D-23-0391.1.
, D.J. Posselt, and G.A. Duffy, 2024:2023
Crespo, J.A., S. Asharaf, D.J. Posselt, CYGNSS Ocean Surface Heat Flux Product development, updates, and applications with extratropical cyclones and atmospheric rivers. In IGARSS 2023 — 2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, pp. 845-847, doi:10.1109/IGARSS52108.2023.10282114.
, and A. Cobb, 2023:Cloud and precipitation in low-latitude extratropical cyclones conditionally sorted on CYGNSS surface latent and sensible heat fluxes. J. Climate, 36, no. 16, 5659-5680, doi:10.1175/JCLI-D-22-0600.1.
, J.A. Crespo, D.J. Posselt, and J.F. Booth, 2023:Automated identification of occluded sectors in midlatitude cyclones: Method and some climatological applications. Q. J. Roy. Meteorol. Soc., 149, no. 754, 1990-2010, doi:10.1002/qj.4491.
, J.E. Martin, P. Ghosh, , and D.J. Posselt, 2023:Dominant cloud controlling factors for low-level cloud fraction: Subtropical versus extratropical oceans. Geophys. Res. Lett., 50, no. 19, e2023GL104496, doi:10.1029/2023GL104496.
, , and J.F. Booth, 2023:2022
Clouds and precipitation in extratropical cyclones: A global satellite climatology for GCM evaluation. In Studies of Cloud, Convection and Precipitation Processes Using Satellite Observations. Z.J. Luo, G. Tselioudis, and W.B. Rossow, Eds., Lectures in Climate Change, vol. 3, World Scientific, pp. 289-313, doi:10.1142/9789811256912_0015.
, 2022:2021
Crespo, J.A., CYGNSS observations and analysis of low-latitude extratropical cyclones. J. Appl. Meteorol. Climatol., 60, no. 4, 527-541, doi:10.1175/JAMC-D-20-0190.1.
, and D.J. Posselt, 2021:On the relationship between CYGNSS surface heat fluxes and the lifecycle of low-latitude ocean extratropical cyclones. J. Appl. Meteorol. Climatol., 60, no. 11, 1575-1590, doi:10.1175/JAMC-D-21-0074.1.
, J.A. Crespo, and D.J. Posselt, 2021:2020
Jeyaratnam, J., Upright convection in extratropical cyclones: A survey using ground-based radar data over the United States. Geophys. Res. Lett., 47, no. 4, e2019GL086620, doi:10.1029/2019GL086620.
, , Z.J. Luo, and C.R. Homeyer, 2020:Lamer, K., Relationships between precipitation properties and large-scale conditions during subsidence at the Eastern North Atlantic observatory. J. Geophys. Res. Atmos., 125, no. 7, e2019JD031848, doi:10.1029/2019JD031848.
, and J.F. Booth, 2020:On the relationship between the marine cold air outbreak M parameter and low-level cloud heights in the midlatitudes. J. Geophys. Res. Atmos., 125, no. 13, e2020JD032465, doi:10.1029/2020JD032465.
, J.F. Booth, K. Lamer, R. Marchand, A. Protat, and G.M. McFarquhar, 2020:Evaluation of modeled precipitation in oceanic extratropical cyclones using IMERG. J. Climate, 33, no. 1, 95-113, doi:10.1175/JCLI-D-19-0369.1.
, J. Jeyaratnam, J.F. Booth, M. Zhao, and A. Gettelman, 2020:2019
Lamraoui, F., J.F. Booth, The interaction between boundary layer and convection schemes in a WRF simulation of post-cold-frontal clouds over the ARM East North Atlantic site. J. Geophys. Res. Atmos., 124, no. 8, 4699-4721, doi:10.1029/2018JD029370.
, M.P. Jensen, and K.L. Johnson, 2019:Maloney, E.D., A. Gettelman, Y. Ming, J.D. Neelin, D. Barrie, A. Mariotti, C.-C. Chen, D.R.B. Coleman, Y.-H. Kuo, B. Singh, H. Annamalai, A. Berg, J.F. Booth, S.J. Camargo, A. Dai, A. Gonzalez, J. Hafner, X. Jiang, X. Jing, D. Kim, A. Kumar, Y. Moon, Process-oriented evaluation of climate and weather forecasting models. Bull. Amer. Meteorol. Soc., 100, no. 9, 1665-1686, doi:10.1175/BAMS-D-18-0042.1.
, A.H. Sobel, K. Suzuki, F. Wang, J. Wang, A.A. Wing, X. Xu, and M. Zhao, 2019:Extratropical cyclone clouds in the GFDL climate model: Diagnosing biases and the associated causes. J. Climate, 32, 6685-6701, doi:10.1175/JCLI-D-19-0421.1.
, J.F. Booth, J. Jeyaratnam, L.J. Donner, C.J. Seman, M. Zhao, H. Guo, and Y. Ming, 2019:2018
Evaluation of extratropical cyclone precipitation in the North Atlantic Basin: An analysis of ERA-Interim, WRF, and two CMIP5 models. J. Climate, 31, no. 6, 2345-2360, doi:10.1175/JCLI-D-17-0308.1.
, , and J. Willison, 2018:Extratropical cyclone precipitation life cycles: A satellite-based analysis. Geophys. Res. Lett., 45, no. 16, 8647-8654, doi:10.1029/2018GL078977.
, , and J. Jeyaratnam, 2018:Lamraoui, F., J.F. Booth, and WRF hindcasts of cold front passages over the ARM Eastern North Atlantic Site: A sensitivity study. Mon. Weather Rev., 146, no. 8, 2417-2432, doi:10.1175/MWR-D-17-0281.1.
, 2018:Observational constraint for precipitation in extratropical cyclones: Sensitivity to data sources. J. Appl. Meteorol. Climatol., 57, no. 4, 991-1009, doi:10.1175/JAMC-D-17-0289.1.
, , M. Lebsock, and M. Grecu, 2018:Reply to comments on 'A CloudSat-CALIPSO view of cloud and precipitation properties across cold fronts over the global oceans'. J. Climate, 31, no. 7, 2969-2975, doi:10.1175/JCLI-D-17-0777.1.
, D.J. Posselt, and S. van den Heever, 2018:Post cold frontal clouds at the ARM Eastern North Atlantic site: An examination of the relationship between large-scale environment and low-level cloud properties. J. Geophys. Res. Atmos., 123, no. 21, 12117-12132, doi:10.1029/2018JD029015.
, , and F. Lamraoui, 2018:Wong, S., Coupling of precipitation and cloud structures in oceanic extratropical cyclones to large-scale moisture flux convergence. J. Climate, 31, no. 23, 9565-0584, doi:10.1175/JCLI-D-18-0115.1.
, B.H. Karhn, L. Wu, and E.J. Fetzer, 2018:2017
Crespo, J.A., D.J. Posselt, Assessing CYGNSS's potential to observe extratropical fronts and cyclones. J. Appl. Meteorol. Climatol., 56, no. 7, 2027-2034, doi:10.1175/JAMC-D-17-0050.1.
, and C. Bussy-Virat, 2017:Observed covariations of aerosol optical depth and cloud cover in extratropical cyclones. J. Geophys. Res. Atmos., 122, no. 19, 10338-10356, doi:10.1002/2017JD027240.
, D.J. Posselt, and S.C. van den Heever, 2017:2016
The relationship between boundary layer stability and cloud cover in the post-cold frontal region. J. Climate, 29, no. 22, 8129-8149, doi:10.1175/JCLI-D-15-0700.1.
, , and , 2016:Aerosol optical depth distribution in extratropical cyclones over the Northern Hemisphere oceans. Geophys. Res. Lett., 43, no. 19, 10504-10511, doi:10.1002/2016GL070953.
, D.J. Posselt, and S. van den Heever, 2016:2015
Thermodynamic phase and ice cloud properties in northern hemisphere winter extratropical cyclones observed by Aqua AIRS. J. Appl. Meteorol. Climatol., 54, no. 11, 2283-2303, doi:10.1175/JAMC-D-15-0045.1.
, and B.M. Kahn, 2015:A CloudSat-CALIPSO view of cloud and precipitation properties across cold fronts over the global oceans. J. Climate, 28, no. 17, 6743-6762, doi:10.1175/JCLI-D-15-0052.1.
, D.J. Posselt, and S.C. van den Heever, 2015:A satellite view of the radiative impact of clouds on surface downward fluxes in the Tibetan Plateau. J. Appl. Meteorol. Climatol., 54, no. 2, 479-493, doi:10.1175/JAMC-D-14-0183.1.
, I. Rangwala, M. Xu, and J.R. Miller, 2015:2014
Comparison of the sensitivity of surface downward longwave radiation to changes in water vapor at two high elevation sites. Environ. Res. Lett., 9, no. 11, 114015, doi:10.1088/1748-9326/9/11/114015.
, , I. Rangwala, C.C. Landry, and J.R. Miller, 2014:Kahn, B.H., F.W. Irion, V.T. Dang, E.M. Manning, S.L. Nasiri, The Atmospheric Infrared Sounder version 6 cloud products. Atmos. Chem. Phys., 14, 399-426, doi:10.5194/acp-14-399-2014.
, J.M. Blaisdell, M.M. Schreier, Q. Yue, K.W. Bowman, E.J. Fetzer, G.C. Hulley, K.N. Liou, D. Lubin, S.C. Ou, J. Susskind, Y. Takano, B. Tian, and J.R. Worden, 2014:Evaluation of ERA-interim and MERRA cloudiness in the Southern Ocean. J. Climate, 27, no. 5, 2109-2124, doi:10.1175/JCLI-D-13-00432.1.
, , and , 2014:2013
Diagnosing warm frontal cloud formation in a GCM: A novel approach using conditional subsetting. J. Climate, 26, 5827-5845, doi:10.1175/JCLI-D-12-00637.1.
, , and , 2013:Igel, A.L., S.C. van den Heever, Sensitivity of warm-frontal processes to cloud-nucleating aerosol concentrations. J. Atmos. Sci., 70, 1768-1783, doi:10.1175/JAS-D-12-0170.1.
, S.M. Saleeby, and D.J. Posselt, 2013:Multiple satellite observations of cloud cover in extratropical cyclones. J. Geophys. Res. Atmos., 118, no. 17, 9982-9996, doi:10.1002/jgrd.50718.
, , D.J. Posselt, and S.C. van den Heever, 2013:Sensitivity of downward longwave surface radiation to moisture and cloud changes in a high elevation region. J. Geophys. Res. Atmos., 118, no. 17, 10072-10081, doi:10.1002/jgrd.50644.
, , I. Rangwala, and J.R. Miller, 2013:2012
Using satellites to investigate the sensitivity of longwave downward radiation to water vapor at high elevations. J. Geophys. Res., 117, no. D5, D05101, doi:10.1029/2011JD016917.
, J.R. Miller, and C. Landry, 2012:Observational analysis of cloud and precipitation in midlatitude cyclones: Northern versus southern hemisphere warm fronts. J. Climate, 25, 5135-5151, doi:10.1175/JCLI-D-11-00569.1.
, D.J. Posselt, and S.C. van den Heever, 2012:2010
Assessment of ISCCP cloudiness over the Tibetan Plateau using CloudSat-CALIPSO. J. Geophys. Res., 115, D10203, doi:10.1029/2009JD013053.
, and , 2010:Thermodynamic phase profiles of optically thin midlatitude clouds and their relation to temperature. J. Geophys. Res., 115, D11202, doi:10.1029/2009JD012889.
, , M. Haeffelin, Y. Morille, V. Noel, J.-C. Dupont, D.D. Turner, C. Lo, and J. Comstock, 2010:Cloud vertical distribution across warm and cold fronts in CloudSat-CALIPSO data and a general circulation model. J. Climate, 23, 3397-3415, doi:10.1175/2010JCLI3282.1.
, , , and , 2010:2009
Kokhanovsky, A.A., Intercomparison of ground-based radar and satellite cloud-top height retrievals for overcast single-layered cloud fields. IEEE Trans. Geosci. Remote Sens., 47, 1901-1908, doi:10.1109/TGRS.2008.2010455.
, and A. Devasthale, 2009:2008
Impact of dynamics and atmospheric state on cloud vertical overlap. J. Climate, 21, 1758-1770, doi:10.1175/2007JCLI1828.1.
, , G.G. Mace, S. Benson, E.E. Clothiaux, and P. Kollias, 2008:2007
Muller, J.-P., M.-A. Denis, R.D. Dundas, K.L. Mitchell, Stereo cloud-top heights and cloud fraction retrieval from ATSR-2. Int. J. Remote Sens., 28, 1921-1938, doi:10.1080/01431160601030975.
, and H. Mannstein, 2007:Comparison between ATSR-2 stereo, MOS O2-A band and ground-based cloud top heights. Int. J. Remote Sens., 28, 1969-1987, doi:10.1080/01431160600641806.
, K.L. Mitchell, J.-P. Muller, E.E. Clothiaux, P. Albert, R. Preusker, J. Fischer, and R.J. Hogan, 2007:Comparison of MISR and MODIS cloud-top heights in the presence of cloud overlap. Remote Sens. Environ., 107, 200-210, doi:10.1016/j.rse.2006.09.030.
, B. Baum, M. Pavolonis, A. Heidinger, R. Frey, and H. Zhang, 2007:2006
Observational constraints on cloud thermodynamic phase in midlatitude storms. J. Climate, 19, 5273-5288, doi:10.1175/JCLI3919.1.
, , and , 2006:Assessment of multispectral ATSR2 stereo cloud-top height retrievals. Remote Sens. Environ., 104, 337-345, doi:10.1016/j.rse.2006.05.008.
, J.-P. Muller, and E.E. Clothiaux, 2006:2005
Haeffelin, M., L. Barthès, O. Bock, C. Boitel, S. Bony, D. Bouniol, H. Chepfer, M. Chiriaco, J. Cuesta, J. Delanoë, P. Drobinski, J.-L. Dufresne, C. Flamant, M. Grall, A. Hodzic, F. Hourdin, F. Lapouge, Y. Lemaître, A. Mathieu, Y. Morille, SIRTA, a ground-based atmospheric observatory for cloud and aerosol research. Ann. Geophys., 23, 253-275, doi:10.5194/angeo-23-253-2005.
, V. Noël, W. O'Hirok, J. Pelon, C. Pietras, A. Protat, B. Romand, G. Scialom, and R. Vautard, 2005:On the use of ICESAT-GLAS measurements for MODIS and SEVIRI cloud-top height accuracy assessment. Geophys. Res. Lett., 32, L19815, doi:10.1029/2005GL023275.
, J.-P. Muller, and P. de Valk, 2005:Assessment of the performance of the Chilbolton 3-GHz Advanced Meteorological Radar for cloud-top-height retrieval. J. Appl. Meteorol., 44, 876-877, doi:10.1175/JAM2244.1.
, J.-P. Muller, E.C. Slack, C.L. Wrench, and E.E. Clothiaux, 2005:Intercomparison of multiple years of MODIS, MISR and radar cloud-top heights. Ann. Geophys., 23, 2415-2424, doi:10.5194/angeo-23-2415-2005.
, J.P. Muller, E.E. Clothiaux, B.A. Baum, and W.P. Menzel, 2005:2004
Assessment of MISR and MODIS cloud top heights through inter-comparison with a back-scattering lidar at SIRTA. Geophys. Res. Lett., 31, L04114, doi:10.1029/2003GL018976.
, J.-P. Muller, M. Haeffelin, Y. Morille, and A. Delaval, 2004:2003
Comparison between active sensor and radiosonde cloud boundaries over the ARM Southern Great Plains site. J. Geophys. Res., 108, no. D4, 4140, doi:10.1029/2002JD002887.
, J.-P. Muller, and E.E. Clothiaux, 2003:2002
Comparison of cloud top heights derived from MISR stereo and MODIS CO2-slicing. Geophys. Res. Lett., 29, no. 16, 1795, doi:10.1029/2002GL015460.
, J.-P. Muller, and E.E. Clothiaux, 2002: