Publication Abstracts

Turbet et al. 2022

Turbet, M., T.J. Fauchez, D.E. Sergeev, I.A. Boutle, K. Tsigaridis, M.J. Way, E.T. Wolf, S.D. Domagal-Goldman, F. Forget, J. Haqq-Misra, R.K. Kopparapu, F.H. Lambert, J. Manners, N.J. Mayne, and L. Sohl, 2022: The TRAPPIST-1 Habitable Atmosphere Intercomparison (THAI). Part I: Dry cases — The fellowship of the GCMs. Planet. Sci. J., 3, no. 9, 211, doi:10.3847/PSJ/ac6cf0.

With the commissioning of powerful, new-generation telescopes such as the James Webb Space Telescope (JWST) and the ground-based Extremely Large Telescopes, the first characterization of a high molecular weight atmosphere around a temperate rocky exoplanet is imminent. Atmospheric simulations and synthetic observables of target exoplanets are essential to prepare and interpret these observations. Here we report the results of the first part of the TRAPPIST-1 Habitable Atmosphere Intercomparison (THAI) project, which compares 3D numerical simulations performed with four state-of-the-art global climate models (ExoCAM, LMD-Generic, ROCKE-3D, Unified Model) for the potentially habitable target TRAPPIST-1e. In this first part, we present the results of dry atmospheric simulations. These simulations serve as a benchmark to test how radiative transfer, subgrid-scale mixing (dry turbulence and convection), and large-scale dynamics impact the climate of TRAPPIST-1e and consequently the transit spectroscopy signature as seen by JWST. To first order, the four models give results in good agreement. The intermodel spread in the global mean surface temperature amounts to 7K (6K) for the N2-dominated (CO2-dominated) atmosphere. The radiative fluxes are also remarkably similar (intermodel variations less than 5%), from the surface (1 bar) up to atmospheric pressures ∼5 mbar. Moderate differences between the models appear in the atmospheric circulation pattern (winds) and the (stratospheric) thermal structure. These differences arise between the models from (1) large-scale dynamics, because TRAPPIST-1e lies at the tipping point between two different circulation regimes (fast and Rhines rotators) in which the models can be alternatively trapped, and (2) parameterizations used in the upper atmosphere such as numerical damping.

Export citation: [ BibTeX ] [ RIS ]

BibTeX Citation

@article{tu04300i,
  author={Turbet, M. and Fauchez, T. J. and Sergeev, D. E. and Boutle, I. A. and Tsigaridis, K. and Way, M. J. and Wolf, E. T. and Domagal-Goldman, S. D. and Forget, F. and Haqq-Misra, J. and Kopparapu, R. K. and Lambert, F. H. and Manners, J. and Mayne, N. J. and Sohl, L.},
  title={The TRAPPIST-1 Habitable Atmosphere Intercomparison (THAI). Part I: Dry cases — The fellowship of the GCMs},
  year={2022},
  journal={Planetary Science Journal},
  volume={3},
  number={9},
  pages={211},
  doi={10.3847/PSJ/ac6cf0},
}

[ Close ]

RIS Citation

TY  - JOUR
ID  - tu04300i
AU  - Turbet, M.
AU  - Fauchez, T. J.
AU  - Sergeev, D. E.
AU  - Boutle, I. A.
AU  - Tsigaridis, K.
AU  - Way, M. J.
AU  - Wolf, E. T.
AU  - Domagal-Goldman, S. D.
AU  - Forget, F.
AU  - Haqq-Misra, J.
AU  - Kopparapu, R. K.
AU  - Lambert, F. H.
AU  - Manners, J.
AU  - Mayne, N. J.
AU  - Sohl, L.
PY  - 2022
TI  - The TRAPPIST-1 Habitable Atmosphere Intercomparison (THAI). Part I: Dry cases — The fellowship of the GCMs
JA  - Planet. Sci. J.
JO  - Planetary Science Journal
VL  - 3
IS  - 9
SP  - 211
DO  - 10.3847/PSJ/ac6cf0
ER  -

[ Close ]

• Return to 2022 Publications

• Return to Publications Homepage