Publication Abstracts

Thornhill et al. 2021

Thornhill, G.D., W.J. Collins, R.J. Kramer, D. Olivié, R.B. Skeie, F. O'Connor, N.L. Abraham, R. Checa-Garcia, S.E. Bauer, M. Deushi, L. Emmons, P. Forster, L. Horowitz, B. Johnson, J. Keeble, J.-F. Lamarque, M. Michou, M. Mills, J.P. Mulcahy, G. Myhre, P. Nabat, V. Naik, N. Oshima, M. Schulz, C. Smith, T. Takemura, S. Tilmes, T. Wu, G. Zeng, and J. Zhang, 2021: Effective Radiative forcing from emissions of reactive gases and aerosols — A multimodel comparison. Atmos. Chem. Phys., 21, no. 2, 853-874, doi:10.5194/acp-21-853-2021.

This paper quantifies the pre-industrial (1850) to present-day (2014) effective radiative forcing (ERF) of anthropogenic emissions of NOX, volatile organic compounds (VOCs; including CO), SO2, NH3, black carbon, organic carbon, and concentrations of methane, N2O and ozone-depleting halocarbons, using CMIP6 models. Concentration and emission changes of reactive species can cause multiple changes in the composition of radiatively active species: tropospheric ozone, stratospheric ozone, stratospheric water vapour, secondary inorganic and organic aerosol, and methane. Where possible we break down the ERFs from each emitted species into the contributions from the composition changes. The ERFs are calculated for each of the models that participated in the AerChemMIP experiments as part of the CMIP6 project, where the relevant model output was available.

The 1850 to 2014 multi-model mean ERFs (± standard deviations) are -1.03±0.37 w/m2 for SO2 emissions, -0.25±0.09 w/m2 for organic carbon (OC), 0.15±0.17 w/m2 for black carbon (BC) and -0.07±0.01 w/m2 for NH3. For the combined aerosols (in the piClim-aer experiment) it is -1.01±0.25 w/m2. The multi-model means for the reactive well-mixed greenhouse gases (including any effects on ozone and aerosol chemistry) are 0.67±0.17 w/m2 for methane (CH4), 0.26±0.07 w/m2 for nitrous oxide (N2O) and 0.12±0.2 w/m2 for ozone-depleting halocarbons (HC). Emissions of the ozone precursors nitrogen oxides (NOx), volatile organic compounds and both together (O3) lead to ERFs of 0.14±0.13, 0.09±0.14 and 0.20±0.07 w/m2 respectively. The differences in ERFs calculated for the different models reflect differences in the complexity of their aerosol and chemistry schemes, especially in the case of methane where tropospheric chemistry captures increased forcing from ozone production.

Export citation: [ BibTeX ] [ RIS ]

BibTeX Citation

  author={Thornhill, G. D. and Collins, W. J. and Kramer, R. J. and Olivié, D. and Skeie, R. B. and O'Connor, F. and Abraham, N. L. and Checa-Garcia, R. and Bauer, S. E. and Deushi, M. and Emmons, L. and Forster, P. and Horowitz, L. and Johnson, B. and Keeble, J. and Lamarque, J.-F. and Michou, M. and Mills, M. and Mulcahy, J. P. and Myhre, G. and Nabat, P. and Naik, V. and Oshima, N. and Schulz, M. and Smith, C. and Takemura, T. and Tilmes, S. and Wu, T. and Zeng, G. and Zhang, J.},
  title={Effective Radiative forcing from emissions of reactive gases and aerosols — A multimodel comparison},
  journal={Atmos. Chem. Phys.},

[ Close ]

RIS Citation

ID  - th02200w
AU  - Thornhill, G. D.
AU  - Collins, W. J.
AU  - Kramer, R. J.
AU  - Olivié, D.
AU  - Skeie, R. B.
AU  - O'Connor, F.
AU  - Abraham, N. L.
AU  - Checa-Garcia, R.
AU  - Bauer, S. E.
AU  - Deushi, M.
AU  - Emmons, L.
AU  - Forster, P.
AU  - Horowitz, L.
AU  - Johnson, B.
AU  - Keeble, J.
AU  - Lamarque, J.-F.
AU  - Michou, M.
AU  - Mills, M.
AU  - Mulcahy, J. P.
AU  - Myhre, G.
AU  - Nabat, P.
AU  - Naik, V.
AU  - Oshima, N.
AU  - Schulz, M.
AU  - Smith, C.
AU  - Takemura, T.
AU  - Tilmes, S.
AU  - Wu, T.
AU  - Zeng, G.
AU  - Zhang, J.
PY  - 2021
TI  - Effective Radiative forcing from emissions of reactive gases and aerosols — A multimodel comparison
JA  - Atmos. Chem. Phys.
VL  - 21
IS  - 2
SP  - 853
EP  - 874
DO  - 10.5194/acp-21-853-2021
ER  -

[ Close ]

• Return to 2021 Publications

• Return to Publications Homepage