Publication Abstracts

Rampino and Caldeira 2005

Rampino, M., and K. Caldeira, 2005: Major perturbation of ocean chemistry and a 'Strangelove Ocean' after the end-Permian mass extinction. Terra Nova, 17, 554-559, doi:10.1111/j.1365-3121.2005.00648.x.

The severe mass extinction of marine and terrestrial organisms at the end of the Permian Period (c. 251 Ma) was accompanied by a rapid (>100,000 years and possibly >10,000 years) negative excursion of c. 3‰ in the δ13C of the global surface oceans and atmosphere that persisted for some 500,000 years into the Early Triassic. Simulations with an ocean-atmosphere/carbon-cycle model suggest that the isotope excursion can be explained by collapse of ocean primary productivity, and changes in the delivery and cycling of carbon in the oceans and on land. Model results suggest that severe reduction of marine productivity led to an increase in surface-ocean dissolved inorganic carbon and a rapid, short-term increase in atmospheric pCO2 (from a Late Permian base of 850 ppm to c. 2500 ppm). Increase in surface ocean alkalinity may have stimulated the widespread microbial and abiotic shallow-water carbonate deposition seen in the earliest Triassic. The model is also consistent with a long-term (>1 Ma) decrease in sedimentary burial of organic carbon in the early Triassic.

Export citation: [ BibTeX ] [ RIS ]

BibTeX Citation

@article{ra01500p,
  author={Rampino, M. and Caldeira, K.},
  title={Major perturbation of ocean chemistry and a 'Strangelove Ocean' after the end-Permian mass extinction},
  year={2005},
  journal={Terra Nova},
  volume={17},
  pages={554--559},
  doi={10.1111/j.1365-3121.2005.00648.x},
}

[ Close ]

RIS Citation

TY  - JOUR
ID  - ra01500p
AU  - Rampino, M.
AU  - Caldeira, K.
PY  - 2005
TI  - Major perturbation of ocean chemistry and a 'Strangelove Ocean' after the end-Permian mass extinction
JA  - Terra Nova
VL  - 17
SP  - 554
EP  - 559
DO  - 10.1111/j.1365-3121.2005.00648.x
ER  -

[ Close ]

• Return to 2005 Publications

• Return to Publications Homepage