Publication Abstracts

Marvel et al. 2013

Marvel, K., B. Kravitz, and K. Caldeira, 2013: Geophysical limits to global wind power. Nat. Clim. Change, 3, no. 2, 118-121, doi:10.1038/NCLIMATE1683.

There is enough power in Earth's winds to be a primary source of near-zero-emission electric power as the global economy continues to grow through the twenty-first century. Historically, wind turbines are placed on Earth's surface, but high-altitude winds are usually steadier and faster than near-surface-winds, resulting in higher average power densities. Here, we use a climate model to estimate the amount of power that can be extracted from both surface and high-altitude winds, considering only geophysical limits. We find wind turbines placed on Earth's surface could extract kinetic energy at a rate of at least 400 TW, whereas high-altitude wind power could extract more than 1,800 TW. At these high rates of extraction, there are pronounced climatic consequences. However, we find that at the level of present global primary power demand (similar to 18 TW, uniformly distributed wind turbines are unlikely to substantially affect the Earth's climate. It is likely that wind power growth will be limited by economic or environmental factors, not global geophysical limits.

Export citation: [ BibTeX ] [ RIS ]

BibTeX Citation

  author={Marvel, K. and Kravitz, B. and Caldeira, K.},
  title={Geophysical limits to global wind power},
  journal={Nature Climate Change},

[ Close ]

RIS Citation

ID  - ma07010d
AU  - Marvel, K.
AU  - Kravitz, B.
AU  - Caldeira, K.
PY  - 2013
TI  - Geophysical limits to global wind power
JA  - Nat. Clim. Change
JO  - Nature Climate Change
VL  - 3
IS  - 2
SP  - 118
EP  - 121
DO  - 10.1038/NCLIMATE1683
ER  -

[ Close ]

• Return to 2013 Publications

• Return to Publications Homepage