Publication Abstracts

Li et al. 2023, in press

Li, Q., J. Marshall, C.D. Rye, A. Romanou, D. Rind, and M. Kelley, 2023: Global climate impacts of Greenland and Antarctic meltwater: A comparative study. J. Climate, in press, doi:10.1175/JCLI-D-22-0433.1.

Both the Greenland and Antarctic ice sheets have been melting at an accelerating rate over recent decades. Meltwater from Greenland might be expected to initiate a climate response which is distinct, and perhaps different from, that associated with Antarctic meltwater. Which one might elicit a greater climate response, and what mechanisms are involved? To explore these questions, we apply "Climate Response Functions (CRFs)" to guide a series of meltwater perturbation experiments using a fully-coupled climate model. In both hemispheres, meltwater drives atmospheric cooling, sea-ice expansion, and strengthened Hadley and Ferrel cells. Greenland meltwater induces a slowdown of the Atlantic Meridional Overturning Circulation (AMOC) and a cooling of the subsurface ocean in the northern high-latitudes. Antarctic meltwater, instead, induces a slowdown of the Antarctic Bottom Water formation and a warming of the subsurface ocean around Antarctica. For melt-rates up to 2000 Gt/yr, the climate response is rather linear. However, as melt-rates increase to 5000 Gt/yr, the climate response becomes non-linear. Due to a collapsed AMOC, the climate response is super-linear at high Greenland melt-rates. Instead, the climate response is sub-linear at high Antarctic melt-rates, due to the halting of the northward expansion of Antarctic sea ice by warm surface waters. Finally, in the linear limit, we use CRFs and linear convolution theory to make projections of important climate parameters in response to meltwater scenarios, which suggest that Antarctic meltwater will become a major driver of climate change, dominating that of Greenland meltwater, as the current century proceeds.

Export citation: [ BibTeX ] [ RIS ]

BibTeX Citation

  author={Li, Q. and Marshall, J. and Rye, C. D. and Romanou, A. and Rind, D. and Kelley, M.},
  title={Global climate impacts of Greenland and Antarctic meltwater: A comparative study},
  journal={J. Climate},
  note={Manuscript accepted for publication}

[ Close ]

RIS Citation

ID  - li04310e
AU  - Li, Q.
AU  - Marshall, J.
AU  - Rye, C. D.
AU  - Romanou, A.
AU  - Rind, D.
AU  - Kelley, M.
PY  - 2023
TI  - Global climate impacts of Greenland and Antarctic meltwater: A comparative study
JA  - J. Climate
DO  - 10.1175/JCLI-D-22-0433.1
ER  -

[ Close ]

• Return to In-Press / Accepted Publications

• Return to Publications Homepage