Publication Abstracts

Janssen et al. 2017

Janssen, M.A., J.E. Oswald, S.T. Brown, S. Gulkis, S.M. Levin, S.J. Bolton, M.D. Allison, S.K. Atreya, D. Gautier, A.P. Ingersoll, J.I. Lunine, G.S. Orton, T.C. Owen, P.G. Steffes, V. Adumitroaie, A. Bellotti, L.A. Jewell, C. Li, L. Li, S. Misra, F.A. Oyafuso, D. Santos-Costaz, E. Sarkissian, R. Williamson, J.K. Arballo, A. Kitiyakaral, A. Ulloa-Severino, J.C. Chen, F.W. Maiwald, A.S. Sahakian, P.J. Pingree, Lee. K.A., A.S. Mazer, R. Redick, R.E. Hodges, R.C. Hughes, G. Bedrosian, D.E. Dawson, W.A. Hatch, D.S. Russell, N.F. Chamberlain, M.S. Zawadskil, B. Khayatianl, B.R. Franklin, H.A. Conley, J.G. Kempenaar, M.S. Lool, E.T. Sunada, V. Vorperion, and C.C. Wang, 2017: MWR: Microwave radiometer for the Juno mission to Jupiter. Space Sci. Rev., 213, 139-185, doi:10.1007/s11214-017-0349-5.

The Juno Microwave Radiometer (MWR) is a six-frequency scientific instrument designed and built to investigate the deep atmosphere of Jupiter. It is one of a suite of instrutnents on NASA's New Frontiers Mission Juno launched to Jupiter on August 5, 2011. The focus of this paper is the description of the scientific objectives of the MWR investigation along with the experimental design, observational approach, and calibration that will achieve these objectives, based on the Juno mission plan up to Jupiter orbit insertion on July 4, 2016. With frequencies distributed approximately by octave from 600 MHz to 22 GHz, the MWR will sample the atmospheric thermal radiation from depths extending from the ammonia cloud region at around 1 bar to pressure levels as deep as 1000 bars. The primary scientific objectives of the MWR investigation are to determine the presently unknown dynamical properties of Jupiter's subcloud atmosphere and to determine the global abundance of oxygen and nitrogen, present in the atmosphere as water and ammonia deep below their respective cloud decks. The MWR experiment is designed to measure both the thermal radiation from Jupiter and its emission-angle dependence at each frequency relative to the atmospheric local normal with high accuracy. The antennas at the four highest frequencies (21.9, 10.0, 5.2, and 2.6 GHz) have ∼12° beamwidths and will achieve a spatial resolution approaching 600 km near perijove. The antennas at the lowest frequencies (0.6 and 1.25 GHz) are constrained by physical size limitations and have 20° beamwidths, enabling a spatial resolution of as high as 1000 km to be obtained. The MWR will obtain Jupiter's brightness temperature and its emission-angle dependence at each point along the sub spacecraft track, over angles up to 60° from the normal over n1ost latitudes, during at least six peri jove passes after orbit insertion. The emission-angle dependence will be obtained for all frequencies to an accuracy of better than one part in 103, sufficient to detect small variations in atn1ospheric temperature and absorber concentration profiles that distinguish dynamical and compositional properties of the deep Jovian atmosphere.

Export citation: [ BibTeX ] [ RIS ]

BibTeX Citation

  author={Janssen, M. A. and Oswald, J. E. and Brown, S. T. and Gulkis, S. and Levin, S. M. and Bolton, S. J. and Allison, M. D. and Atreya, S. K. and Gautier, D. and Ingersoll, A. P. and Lunine, J. I. and Orton, G. S. and Owen, T. C. and Steffes, P. G. and Adumitroaie, V. and Bellotti, A. and Jewell, L. A. and Li, C. and Li, L. and Misra, S. and Oyafuso, F. A. and Santos-Costaz, D. and Sarkissian, E. and Williamson, R. and Arballo, J. K. and Kitiyakaral, A. and Ulloa-Severino, A. and Chen, J. C. and Maiwald, F. W. and Sahakian, A. S. and Pingree, P. J. and Lee. K. A. and Mazer, A. S. and Redick, R. and Hodges, R. E. and Hughes, R. C. and Bedrosian, G. and Dawson, D. E. and Hatch, W. A. and Russell, D. S. and Chamberlain, N. F. and Zawadskil, M. S. and Khayatianl, B. and Franklin, B. R. and Conley, H. A. and Kempenaar, J. G. and Lool, M. S. and Sunada, E. T. and Vorperion, V. and Wang, C. C.},
  title={MWR: Microwave radiometer for the Juno mission to Jupiter},
  journal={Space Science Reviews},

[ Close ]

RIS Citation

ID  - ja02300g
AU  - Janssen, M. A.
AU  - Oswald, J. E.
AU  - Brown, S. T.
AU  - Gulkis, S.
AU  - Levin, S. M.
AU  - Bolton, S. J.
AU  - Allison, M. D.
AU  - Atreya, S. K.
AU  - Gautier, D.
AU  - Ingersoll, A. P.
AU  - Lunine, J. I.
AU  - Orton, G. S.
AU  - Owen, T. C.
AU  - Steffes, P. G.
AU  - Adumitroaie, V.
AU  - Bellotti, A.
AU  - Jewell, L. A.
AU  - Li, C.
AU  - Li, L.
AU  - Misra, S.
AU  - Oyafuso, F. A.
AU  - Santos-Costaz, D.
AU  - Sarkissian, E.
AU  - Williamson, R.
AU  - Arballo, J. K.
AU  - Kitiyakaral, A.
AU  - Ulloa-Severino, A.
AU  - Chen, J. C.
AU  - Maiwald, F. W.
AU  - Sahakian, A. S.
AU  - Pingree, P. J.
AU  - Lee. K. A.
AU  - Mazer, A. S.
AU  - Redick, R.
AU  - Hodges, R. E.
AU  - Hughes, R. C.
AU  - Bedrosian, G.
AU  - Dawson, D. E.
AU  - Hatch, W. A.
AU  - Russell, D. S.
AU  - Chamberlain, N. F.
AU  - Zawadskil, M. S.
AU  - Khayatianl, B.
AU  - Franklin, B. R.
AU  - Conley, H. A.
AU  - Kempenaar, J. G.
AU  - Lool, M. S.
AU  - Sunada, E. T.
AU  - Vorperion, V.
AU  - Wang, C. C.
PY  - 2017
TI  - MWR: Microwave radiometer for the Juno mission to Jupiter
JA  - Space Sci. Rev.
JO  - Space Science Reviews
VL  - 213
SP  - 139
EP  - 185
DO  - 10.1007/s11214-017-0349-5
ER  -

[ Close ]

• Return to 2017 Publications

• Return to Publications Homepage