Publication Abstracts

Huang et al. 2021

Huang, X., D. Lu, D.M. Ricciuto, P.J. Hanson, A.D. Richardson, X. Lu, E. Weng, S. Nie, L. Jiang, E. Hou, I.F. Steinmacher, and Y. Luo, 2021: A model-independent data assimilation (MIDA) module and its applications in ecology. Geosci. Model Dev., 14, no. 8, 5217-5238, doi:10.5194/gmd-14-5217-2021.

Models are an important tool to predict Earth system dynamics. An accurate prediction of future states of ecosystems depends on not only model structures but also parameterizations. Model parameters can be constrained by data assimilation. However, applications of data assimilation to ecology are restricted by highly technical requirements such as model-dependent coding. To alleviate this technical burden, we developed a model-independent data assimilation (MIDA) module. MIDA works in three steps including data preparation, execution of data assimilation, and visualization. The first step prepares prior ranges of parameter values, a defined number of iterations, and directory paths to access files of observations and models. The execution step calibrates parameter values to best fit the observations and estimates the parameter posterior distributions. The final step automatically visualizes the calibration performance and posterior distributions. MIDA is model independent, and modelers can use MIDA for an accurate and efficient data assimilation in a simple and interactive way without modification of their original models. We applied MIDA to four types of ecological models: the data assimilation linked ecosystem carbon (DALEC) model, a surrogate-based energy exascale earth system model: the land component (ELM), nine phenological models and a stand-alone biome ecological strategy simulator (BiomeE). The applications indicate that MIDA can effectively solve data assimilation problems for different ecological models. Additionally, the easy implementation and model-independent feature of MIDA breaks the technical barrier of applications of data-model fusion in ecology. MIDA facilitates the assimilation of various observations into models for uncertainty reduction in ecological modeling and forecasting.

Export citation: [ BibTeX ] [ RIS ]

BibTeX Citation

@article{hu05200z,
  author={Huang, X. and Lu, D. and Ricciuto, D. M. and Hanson, P. J. and Richardson, A. D. and Lu, X. and Weng, E. and Nie, S. and Jiang, L. and Hou, E. and Steinmacher, I. F. and Luo, Y.},
  title={A model-independent data assimilation (MIDA) module and its applications in ecology},
  year={2021},
  journal={Geosci. Model Dev.},
  volume={14},
  number={8},
  pages={5217--5238},
  doi={10.5194/gmd-14-5217-2021},
}

[ Close ]

RIS Citation

TY  - JOUR
ID  - hu05200z
AU  - Huang, X.
AU  - Lu, D.
AU  - Ricciuto, D. M.
AU  - Hanson, P. J.
AU  - Richardson, A. D.
AU  - Lu, X.
AU  - Weng, E.
AU  - Nie, S.
AU  - Jiang, L.
AU  - Hou, E.
AU  - Steinmacher, I. F.
AU  - Luo, Y.
PY  - 2021
TI  - A model-independent data assimilation (MIDA) module and its applications in ecology
JA  - Geosci. Model Dev.
VL  - 14
IS  - 8
SP  - 5217
EP  - 5238
DO  - 10.5194/gmd-14-5217-2021
ER  -

[ Close ]

• Return to 2021 Publications

• Return to Publications Homepage