Publication Abstracts

Eyring et al. 2013

Eyring, V., J.M. Arblaster, I. Cionni, J. Sedláček, J. Perlwitz, P.J. Young, S. Bekki, D. Bergmann, P. Cameron-Smith, W.J. Collins, G. Faluvegi, K.-D. Gottschaldt, L.W. Horowitz, D.E. Kinnison, J.-F. Lamarque, D.R. Marsh, D. Saint-Martin, D.T. Shindell, K. Sudo, S. Szopa, and S. Watanabe, 2013: Long-term ozone changes and associated climate impacts in CMIP5 simulations. J. Geophys. Res. Atmos., 118, no. 10, 5029-5060, doi:10.1002/jgrd.50316.

Ozone changes and associated climate impacts in the Coupled Model Intercomparison Project Phase 5 (CMIP5) simulations are analyzed over the historical (1960-2005) and future (2006-2100) period under four Representative Concentration Pathways (RCP). In contrast to CMIP3, where half of the models prescribed constant stratospheric ozone, CMIP5 models all consider past ozone depletion and future ozone recovery. Multimodel mean climatologies and long-term changes in total and tropospheric column ozone calculated from CMIP5 models with either interactive or prescribed ozone are in reasonable agreement with observations. However, some large deviations from observations exist for individual models with interactive chemistry, and these models are excluded in the projections. Stratospheric ozone projections forced with a single halogen but four greenhouse gas (GHG) scenarios show largest differences in the northern midlatitudes and in the Arctic in spring (∼20 and 40 DU by 2100, respectively). By 2050 these differences are much smaller and negligible over Antarctica in austral spring. Differences in future tropospheric column ozone are mainly caused by differences in methane concentrations and stratospheric input, leading to ∼10 DU increases compared to 2000 in RCP 8.5. Large variations in stratospheric ozone particularly in CMIP5 models with interactive chemistry drive correspondingly large variations in lower stratospheric temperature trends. The results also illustrate that future SH summer-time circulation changes are controlled by both the ozone recovery rate and the rate of GHG increases, emphasizing the importance of simulating and taking into account ozone forcings when examining future climate projections.

Export citation: [ BibTeX ] [ RIS ]

BibTeX Citation

  author={Eyring, V. and Arblaster, J. M. and Cionni, I. and Sedláček, J. and Perlwitz, J. and Young, P. J. and Bekki, S. and Bergmann, D. and Cameron-Smith, P. and Collins, W. J. and Faluvegi, G. and Gottschaldt, K.-D. and Horowitz, L. W. and Kinnison, D. E. and Lamarque, J.-F. and Marsh, D. R. and Saint-Martin, D. and Shindell, D. T. and Sudo, K. and Szopa, S. and Watanabe, S.},
  title={Long-term ozone changes and associated climate impacts in CMIP5 simulations},
  journal={Journal of Geophysical Research: Atmospheres},

[ Close ]

RIS Citation

ID  - ey01000v
AU  - Eyring, V.
AU  - Arblaster, J. M.
AU  - Cionni, I.
AU  - Sedláček, J.
AU  - Perlwitz, J.
AU  - Young, P. J.
AU  - Bekki, S.
AU  - Bergmann, D.
AU  - Cameron-Smith, P.
AU  - Collins, W. J.
AU  - Faluvegi, G.
AU  - Gottschaldt, K.-D.
AU  - Horowitz, L. W.
AU  - Kinnison, D. E.
AU  - Lamarque, J.-F.
AU  - Marsh, D. R.
AU  - Saint-Martin, D.
AU  - Shindell, D. T.
AU  - Sudo, K.
AU  - Szopa, S.
AU  - Watanabe, S.
PY  - 2013
TI  - Long-term ozone changes and associated climate impacts in CMIP5 simulations
JA  - J. Geophys. Res. Atmos.
JO  - Journal of Geophysical Research: Atmospheres
VL  - 118
IS  - 10
SP  - 5029
EP  - 5060
DO  - 10.1002/jgrd.50316
ER  -

[ Close ]

• Return to 2013 Publications

• Return to Publications Homepage