Publication Abstracts

Danabasoglu et al. 2016

Danabasoglu, G., S.G. Yeager, W.M. Kim, E. Behrens, M. Bentsen, D. Bi, A. Biastoch, R. Bleck, C. Böning, A. Bozec, V.M. Canuto, C. Cassou, E. Chassignet, A.C. Coward, S. Danilov, N. Diansky, H. Drange, R. Farneti, E. Fernandez, P.G. Fogli, G. Forget, Y. Fujii, S.M. Griffies, A. Gusev, P. Heimbach, A. Howard, M. Ilicak, T. Jung, A.R. Karspeck, M. Kelley, W.G. Large, A. Leboissetier, J. Lu, G. Madec, S.J. Marsland, S. Masina, A. Navarra, A.J.G. Nurser, A. Pirani, A. Romanou, D. Salas y Mélia, B.L. Samuels, M. Scheinert, D. Sidorenko, S. Sun, A.-M. Treguier, H. Tsujino, P. Uotila, S. Valcke, A. Voldoire, Q. Wang, and I. Yashayaev, 2016: North Atlantic Simulations in Coordinated Ocean-ice Reference Experiments phase II (CORE-II). Part II: Inter-annual to decadal variability. Ocean Model., 96, 65-90, doi:10.1016/j.ocemod.2015.11.007.

Simulated inter-annual to decadal variability and trends in the North Atlantic for the 1958-2007 period from twenty global ocean — sea-ice coupled models are presented. These simulations are performed as contributions to the second phase of the Coordinated Ocean-ice Reference Experiments (CORE-II). The study is Part II of our companion paper (Danabasoglu et al., 2014) which documented the mean states in the North Atlantic from the same models. A major focus of the present study is the representation of Atlantic meridional overturning circulation (AMOC) variability in the participating models. Relationships between AMOC variability and those of some other related variables, such as subpolar mixed layer depths, the North Atlantic Oscillation (NAO), and the Labrador Sea upper-ocean hydrographic properties, are also investigated. In general, AMOC variability shows three distinct stages. During the first stage that lasts until the mid- to late-1970s, AMOC is relatively steady, remaining lower than its long-term (1958.2007) mean. Thereafter, AMOC intensifies with maximum transports achieved in the mid- to late-1990s. This enhancement is then followed by a weakening trend until the end of our integration period. This sequence of low frequency AMOC variability is consistent with previous studies. Regarding strengthening of AMOC between about the mid-1970s and the mid-1990s, our results support a previously identified variability mechanism where AMOC intensification is connected to increased deep water formation in the subpolar North Atlantic, driven by NAO-related surface fluxes. The simulations tend to show general agreement in their representations of, for example, AMOC, sea surface temperature (SST), and subpolar mixed layer depth variabilities. In particular, the observed variability of the North Atlantic SSTs is captured well by all models. These findings indicate that simulated variability and trends are primarily dictated by the atmospheric datasets which include the influence of ocean dynamics from nature superimposed onto anthropogenic effects. Despite these general agreements, there are many differences among the model solutions, particularly in the spatial structures of variability patterns. For example, the location of the maximum AMOC variability differs among the models between Northern and Southern Hemispheres.

Export citation: [ BibTeX ] [ RIS ]

BibTeX Citation

  author={Danabasoglu, G. and Yeager, S. G. and Kim, W. M. and Behrens, E. and Bentsen, M. and Bi, D. and Biastoch, A. and Bleck, R. and Böning, C. and Bozec, A. and Canuto, V. M. and Cassou, C. and Chassignet, E. and Coward, A. C. and Danilov, S. and Diansky, N. and Drange, H. and Farneti, R. and Fernandez, E. and Fogli, P. G. and Forget, G. and Fujii, Y. and Griffies, S. M. and Gusev, A. and Heimbach, P. and Howard, A. and Ilicak, M. and Jung, T. and Karspeck, A. R. and Kelley, M. and Large, W. G. and Leboissetier, A. and Lu, J. and Madec, G. and Marsland, S. J. and Masina, S. and Navarra, A. and Nurser, A. J. G. and Pirani, A. and Romanou, A. and Salas y Mélia, D. and Samuels, B. L. and Scheinert, M. and Sidorenko, D. and Sun, S. and Treguier, A.-M. and Tsujino, H. and Uotila, P. and Valcke, S. and Voldoire, A. and Wang, Q. and Yashayaev, I.},
  title={North Atlantic Simulations in Coordinated Ocean-ice Reference Experiments phase II (CORE-II). Part II: Inter-annual to decadal variability},
  journal={Ocean Model.},

[ Close ]

RIS Citation

ID  - da02200w
AU  - Danabasoglu, G.
AU  - Yeager, S. G.
AU  - Kim, W. M.
AU  - Behrens, E.
AU  - Bentsen, M.
AU  - Bi, D.
AU  - Biastoch, A.
AU  - Bleck, R.
AU  - Böning, C.
AU  - Bozec, A.
AU  - Canuto, V. M.
AU  - Cassou, C.
AU  - Chassignet, E.
AU  - Coward, A. C.
AU  - Danilov, S.
AU  - Diansky, N.
AU  - Drange, H.
AU  - Farneti, R.
AU  - Fernandez, E.
AU  - Fogli, P. G.
AU  - Forget, G.
AU  - Fujii, Y.
AU  - Griffies, S. M.
AU  - Gusev, A.
AU  - Heimbach, P.
AU  - Howard, A.
AU  - Ilicak, M.
AU  - Jung, T.
AU  - Karspeck, A. R.
AU  - Kelley, M.
AU  - Large, W. G.
AU  - Leboissetier, A.
AU  - Lu, J.
AU  - Madec, G.
AU  - Marsland, S. J.
AU  - Masina, S.
AU  - Navarra, A.
AU  - Nurser, A. J. G.
AU  - Pirani, A.
AU  - Romanou, A.
AU  - Salas y Mélia, D.
AU  - Samuels, B. L.
AU  - Scheinert, M.
AU  - Sidorenko, D.
AU  - Sun, S.
AU  - Treguier, A.-M.
AU  - Tsujino, H.
AU  - Uotila, P.
AU  - Valcke, S.
AU  - Voldoire, A.
AU  - Wang, Q.
AU  - Yashayaev, I.
PY  - 2016
TI  - North Atlantic Simulations in Coordinated Ocean-ice Reference Experiments phase II (CORE-II). Part II: Inter-annual to decadal variability
JA  - Ocean Model.
VL  - 96
SP  - 65
EP  - 90
DO  - 10.1016/j.ocemod.2015.11.007
ER  -

[ Close ]

• Return to 2016 Publications

• Return to Publications Homepage