Publication Abstracts

Colose et al. 2019

Colose, C.M., A.D. Del Genio, and M.J. Way, 2019: Enhanced habitability on high obliquity bodies near the outer edge of the Habitable Zone of Sun-like stars. Astrophys. J., 884, no. 2, 138, doi:10.3847/1538-4357/ab4131.

High obliquity planets represent potentially extreme limits of terrestrial climate, as they exhibit large seasonality, a reversed annual-mean pole-to-equator gradient of stellar heating, and novel cryospheres. A suite of 3-D global climate model simulations with a dynamic ocean is performed with Earthlike atmospheres for low and high obliquity planets with various stellar fluxes, CO2 concentrations, and initial conditions to explore the propensity for high obliquity climates approaching the outer edge of the Habitable Zone to undergo global glaciation. We also simulate planets with thick CO2 or H2 atmospheres, such as those expected to develop near or beyond the outer edge of the Habitable Zone.

We show that high obliquity planets are hotter than their low obliquity counterparts due to ice-albedo feedbacks for cold climates, and water vapor in warm climates. We suggest that the water vapor greenhouse trapping is greater on high obliquity bodies due to the different dynamical regimes that occur between the two states.

While equatorial ice-belts are stable at high obliquity in some climate regimes, it is harder to achieve global glaciation than for a low obliquity planet. Temperate polar conditions can be present at high obliquity at forcings for which low obliquity planets would be in a hard snowball state. We suggest the conditions on high obliquity planets are likely to be more favorable for a robust biosphere to develop approaching the outer edge of the HZ. However, the influence of obliquity diminishes for dense atmospheres, in agreement with calculations from 1-D Energy Balance Models.

Export citation: [ BibTeX ] [ RIS ]

BibTeX Citation

@article{co01110h,
  author={Colose, C. M. and Del Genio, A. D. and Way, M. J.},
  title={Enhanced habitability on high obliquity bodies near the outer edge of the Habitable Zone of Sun-like stars},
  year={2019},
  journal={Astrophysical Journal},
  volume={884},
  number={2},
  pages={138},
  doi={10.3847/1538-4357/ab4131},
}

[ Close ]

RIS Citation

TY  - JOUR
ID  - co01110h
AU  - Colose, C. M.
AU  - Del Genio, A. D.
AU  - Way, M. J.
PY  - 2019
TI  - Enhanced habitability on high obliquity bodies near the outer edge of the Habitable Zone of Sun-like stars
JA  - Astrophys. J.
JO  - Astrophysical Journal
VL  - 884
IS  - 2
SP  - 138
DO  - 10.3847/1538-4357/ab4131
ER  -

[ Close ]

• Return to 2019 Publications

• Return to Publications Homepage