Publication Abstracts
Bauer et al. 2020
, , , , , , , , and , 2020: Historical (1850-2014) aerosol evolution and role on climate forcing using the GISS ModelE2.1 contribution to CMIP6. J. Adv. Model. Earth Syst., 12, no. 8, e2019MS001978, doi:10.1029/2019MS001978.
The Earth's climate is rapidly changing. Over the past centuries, aerosols, via their ability to absorb or scatter solar radiation and alter clouds, played an important role in counterbalancing some of the greenhouse gas (GHG) caused global warming. The multi-century anthropogenic aerosol cooling effect prevented present-day climate from reaching even higher surface air temperatures and subsequent more dramatic climate impacts. Trends in aerosol concentrations and optical depth show that in many polluted regions such as Europe and the United States of America, aerosol precursor emissions decreased back to levels of the 1950s. More recent polluting countries such as China may have reached a turning point in recent years as well, while India still follows an upward trend. Here we study aerosol trends in the CMIP6 simulations of the GISS ModelE2.1 climate model using a fully coupled atmosphere composition configuration, including interactive gas-phase chemistry, and either an aerosol microphysical (MATRIX) or a mass-based (OMA) aerosol module. Results show that whether global aerosol radiative forcing is already declining depends on the aerosol scheme used. Using the aerosol microphysical scheme, where the aerosol system reacts more strongly to the trend in sulfur dioxide (SO2) emissions, global peak direct aerosol forcing was reached in the 1980s, whereas the mass-based scheme simulates peak direct aerosol forcing around 2010.
- Go to journal article webpage
- View pre-print on NASA NTRS. Please note that the linked text is a pre-print and probably is not the final, accepted text.
Export citation: [ BibTeX ] [ RIS ]
BibTeX Citation
@article{ba02600k, author={Bauer, S. E. and Tsigaridis, K. and Faluvegi, G. and Kelley, M. and Lo, K. K. and Miller, R. L. and Nazarenko, L. and Schmidt, G. A. and Wu, J.}, title={Historical (1850-2014) aerosol evolution and role on climate forcing using the GISS ModelE2.1 contribution to CMIP6}, year={2020}, journal={J. Adv. Model. Earth Syst.}, volume={12}, number={8}, pages={e2019MS001978}, doi={10.1029/2019MS001978}, }
[ Close ]
RIS Citation
TY - JOUR ID - ba02600k AU - Bauer, S. E. AU - Tsigaridis, K. AU - Faluvegi, G. AU - Kelley, M. AU - Lo, K. K. AU - Miller, R. L. AU - Nazarenko, L. AU - Schmidt, G. A. AU - Wu, J. PY - 2020 TI - Historical (1850-2014) aerosol evolution and role on climate forcing using the GISS ModelE2.1 contribution to CMIP6 JA - J. Adv. Model. Earth Syst. VL - 12 IS - 8 SP - e2019MS001978 DO - 10.1029/2019MS001978 ER -
[ Close ]