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In this paper we discuss two issues, the inter-comparison of four mixed layer mesoscale parameteriza-
tions and the search for the eddy induced velocity for an arbitrary tracer. It must be stressed that our
analysis is limited to mixed layer mesoscales since we do not treat sub-mesoscales and small turbulent
mixing.

As for the first item, since three of the four parameterizations are expressed in terms of a stream func-
tion and a residual flux of the RMT formalism (residual mean theory), while the fourth is expressed in
terms of vertical and horizontal fluxes, we needed a formalism to connect the two formulations. The stan-
dard RMT representation developed for the deep ocean cannot be extended to the mixed layer since its
stream function does not vanish at the ocean’s surface.

We develop a new RMT representation that satisfies the surface boundary condition. As for the general
form of the eddy induced velocity for an arbitrary tracer, thus far, it has been assumed that there is only
the one that originates from the curl of the stream function. This is because it was assumed that the tracer
residual flux is purely diffusive.

On the other hand, we show that in the case of an arbitrary tracer, the residual flux has also a skew
component that gives rise to an additional bolus velocity. Therefore, instead of only one bolus velocity,
there are now two, one coming from the curl of the stream function and other from the skew part of
the residual flux. In the buoyancy case, only one bolus velocity contributes to the mean buoyancy equa-
tion since the residual flux is indeed only diffusive.

Published by Elsevier Ltd.
1 Killworth (2005, K5) was the first to argue that in the ML flows occur mostly
within on horizontal planes and thus the natural representation of the mesoscale
tracer flux is in terms of the horizontal FH and vertical Fv component. K5 solved the
linear mesoscale dynamic equations and showed that Fv is a skew flux, i.e., its
divergence yields an horizontal advection with a bolus-like velocity u⁄, while FH is of
the diffusion type with a mesoscale diffusivity jM. Given the linear character of the
model, K5 was unable to derive the strength of either u⁄ and/or of jM. Recently, K5’s
analysis was extended to include the non-linear terms (C11) and the form of FH and Fv

for an arbitrary tracer in terms of the large scale fields was derived. When the tracer
was the buoyancy field, the parameterization was assessed in several ways, e.g., z-
profile of the eddy kinetic energy vs. WOCE data, surface eddy kinetic energy vs. T/P
altimetry data, dependence of the vertical flux on the mean velocity against eddy
1. Introduction

In this work we discuss two issues: the intercomparison of four
available mixed layer ML mesoscale parameterizations and
whether the eddy induced velocity for buoyancy can also represent
tracers other than buoyancy, for example, passive tracers such CO2,
CFC, etc., that form part of climate studies. We study mixed layer
mesoscales only, with no reference to sub-mesoscales and small
scale turbulent mixing which require parameterizations not dis-
cussed here.

As for the first item, three of the four parameterizations are ex-
pressed in terms of the stream function W and residual flux Fr of
the residual mean theory RMT formalism (Aiki et al., 2004; Ferrari
et al., 2008, 2010, cited as A4, F8, 10), while the fourth one (Canuto
et al., submitted for publication, cited as C11) is expressed in terms
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of the vertical–horizontal mesoscale fluxes (Fv, FH).1 To carry out
the model intercomparison, we need to translate the C11 (Fv, FH) for-
mulation into the corresponding formulation in terms of (W, Fr).
resolving simulation data, etc. The (W, Fr) representation has the advantage of
facilitating the matching with the ocean interior at the bottom of the mixed layer
while the (Fv, FH) representation has a different advantage. Since the dynamic
equation for the EKE (eddy kinetic energy, see e.g., Boning and Budich, 1992) shows
that Fv acts as a source of EKE, one can model the surface eddy kinetic energy by
averaging the vertical buoyancy flux Fv over the mixed layer and then assess the
result against the T/P data (Scharffenberg and Stammer, 2010).
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Since the standard form of (W, Fr) cannot be used in the ML since it
does not satisfy the boundary condition W(0) = 0, we developed a
new RMT formulism valid in the ML. The final result, Eq. (21), ex-
presses (Fv, FH) in terms of (W, Fr).

The results of the four models intercomparison can be summa-
rized as follows: (a) the F8 bolus velocity does not entail ML re-
stratification which is known to exist, (b) the A4, F10 bolus veloc-
ities induce re-stratification but at the lowest order in the small-
ness parameter h/H, A4,F10 are not different (h, H are the ML and
ocean depths, respectively), (c) using the W of A4, F8,10, we con-
struct the corresponding Fr’s; we reproduce the F8 result while
the Fr of A4, F10 are new since they were not given in the original
work, (d) in both A4, F10, Fr is diffusive with a mesoscale diffusivity
that vanishes at the bottom of the ML, as expected, (e) however,
their values at the surface is h/H times smaller than the value ob-
tained by Zhurbas and Oh (2003), and finally, (f) only the C11 mod-
el accounts for wind and mean flow, which affect both the
mesoscale fluxes and their kinetic energy.

Concerning the parameterization of an arbitrary tracer, we ob-
tain the following results. In addition to a diffusive component,
the residual flux exhibits a new feature, a skew component, which
gives rise to an additional bolus velocity. There are therefore two
mesoscale advection terms: one due to the bolus velocity originat-
ing from the stream function and the other from the bolus velocity
originating from the skew part of the residual flux. The common
assumption that there is only one bolus velocity is therefore no
longer tenable (in the case of buoyancy, only the bolus velocity
from the stream function contributes to the mean buoyancy
equation).

2. Inapplicability of the standard RMT to the ML

Consider the model independent dynamical equation for the
mean buoyancy b ¼ �gq�1

0 q (e.g., Ferreira et al., 2005, Eq. (1))

@tbþ U � rbþr � FðbÞ ¼ �r � FSMðbÞ � @zFss þ Q ð1Þ

Here, U ¼ ðu;wÞ is the mean velocity and FðbÞ ¼ U0b0 is the 3D
mesoscale buoyancy flux with horizontal-vertical components
FHðbÞ ¼ u0b0; FvðbÞ ¼ w0b0, U0 = (u0, w0) is the mesoscale velocity field
and r is the 3D nabla operator; the overbar stands for an ensemble
average.2 The first and second terms on the rhs represent the contri-
bution due to sub-mesoscales and small scale (ss) turbulence (which
we write for completeness but which we do not treat in this work),
while Q stands for sources and sinks. The RMT decomposition of the
buoyancy flux F(b) into isopycnal–diapycnal components is as fol-
lows (Andrews and McIntyre, 1976; Treguier et al., 1997; Plumb
and Ferrari, 2005; Ferreira et al., 2005; F8):

FðbÞ � U0b0 ¼ W�rbþ FrðbÞ ð2Þ

where the stream function pseudo-vector W and the residual vector
flux Fr are defined as follows:

W ¼ � FðbÞ � rb

jrbj2
¼ 1

jrbj2
ðFvrHb� N2FHÞ � ez � FH �rHb
h i

ð3Þ
2 The average in the mesoscale flux (1) stems from the non-linear term in the
equation for the instantaneous buoyancy field when averaged over a coarse
resolution grid cell of horizontal scale �100 km. However, averaging over the grid
cell in (1) is not sufficient in, say, testing a mesoscale flux parameterization using high
resolution simulations. The reason is that the diagnosed fluxes are random functions
of the large scale fields which are the ones averaged over the grid cell. To obtain
deterministic functions from high resolution data, one needs to ensemble average the
random functions. If the large scale fields are stationary and/or homogeneous for
sufficiently long time and/or within large area, the diagnosed instantaneous fluxes
averaged over the grid cell may be further averaged over the corresponding time and/
or space intervals instead of ensemble averaging. Below, we imply instantaneous
averages over the grid cell together with ensemble averages.
FrðbÞ ¼
FðbÞ � rb

jrbj2
rb ¼ rHbþ N2ez

jrbj2
FH � rHbþ FvN2
h i

ð4Þ

where ez is the vertical unit vector and N is the Brunt–Vaisala fre-
quency. The first term in (2) representing the isopycnal component
of the buoyancy flux, has the form of a skew flux (Griffies, 1998) and
its divergence leads to an advection:

r � ðW�rbÞ ¼ Uþ � rb ð5aÞ

where U+ is the eddy induced or bolus velocity:

Uþ ¼ r�W; rH � uþ þ @zwþ ¼ 0 ð5bÞ

It follows that the mesoscale buoyancy flux F(b) contributes to Eq.
(1) as an advection and a diffusion:

r � FðbÞ ¼ Uþ � rbþr � Fr ð5cÞ

In a fully adiabatic ocean, that is, one with no diabatic ML, the resid-
ual flux Fr is negligible and thus the main mesoscale effect is repre-
sented by the first, advective, term in (5c). As McDougall and
McIntosh (2001) showed, at the ocean’s surface the stream function
satisfies the boundary condition W(0) = 0. We concentrate on the
horizontal component of this condition:

WHð0Þ ¼ 0 ð6aÞ

since (6a) ensures the vanishing of the vertical component of the
eddy induced velocity (5b) at the ocean’s surface:

wþð0Þ ¼ ez � ½rH �WHð0Þ� ¼ 0 ð6bÞ

Furthermore, condition (6a) leads to the vanishing of the vertical
component of the isopycnal flux at the surface:

Wð0Þ � rb � ez ¼ 0 ð6cÞ

Since the vertical component of the full flux also vanishes at the
surface:

Fð0Þ � ez � Fvð0Þ ¼ 0 ð7Þ

an analogous boundary condition must be satisfied by the residual
flux:

Frð0Þ � ez¼ 0 ð8Þ

How does the presence of the diabatic ML affect conditions (6)–(8)? To
answer the question, we consider WH near surface. Since the last
term in (3) does not contribute to WH and the first term is very
small, strictly, it vanishes at z = 0 because of (7), we consider the
term:

WHðzÞ ¼ �
N2ðzÞFHðzÞ � ez

N4ðzÞ þ jrHbj2
ð9aÞ

Near the surface, the horizontal flux FH does not vanish as it follows
from the observational result by Zhurbas and Oh (2003):

FHð0Þ ¼ �jsrHb; js � jMð0Þ ¼ C‘K1=2ð0Þ ð9bÞ

who arrived at it using data from the Global Drifter Program/Surface
Velocity Program. In (9b), jM(z) is the mesoscale diffusivity and
C = 1.02 ± 0.13; furthermore ‘ = min(rd LR) where rd is the Rossby
deformation radius and LR is the Rhines scale. The surface mesoscale
eddy kinetic energy K(0) can be obtained from the T/P data (Scharf-
fenberg and Stammer, 2010). Since in the ocean, even near the sur-
face, one has s < 1 (typical isopycnal slopes below the ML are of the
order of 10�3 while in the ML they are about an order of magnitude
larger) from (9a,b) we conclude that condition (6a) and therefore
(6b,c), are not satisfied. In addition, the interpretation of the diver-
gence of the skew flux (5a) as an advection becomes problematic. In
fact, in the limit s� 1, from (9a,b) we obtain that the vertical bolus
velocity becomes:



3 To simplify the notation, we have introduced the transverse and longitudinal
components of an arbitrary horizontal vector V which are defined as fol-
lows:V = Vtr + V‘, rHb

��� ���2V‘ ¼ ðV � rHbÞrHb.
4 It is instructive to consider a zonal flow when rHb ¼ @ybey; u0b0 ¼ v0b0ey . Then,

from (14) and (15) we obtain eW ¼ eWex; eFr ¼ eFrey , eFr ¼ v0b0 þ N2 eW. The last relation
links the stream function to the residual flux and coincides with the results of Held
and Schneider (1999) who suggested it using heuristic arguments.
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wþð0Þ ¼ ez � ½rH �WHð0Þ� ¼ �rH � ðjssÞ ð9cÞ

which is a diffusive not advective term.
Next, let us consider the limiting case N2(0) = 0. Although from

(9a) it follows that the (6a) is satisfied, the following difficulty arises.
In the ML, the variables jrHbj � 10�8 s�2 and FHðzÞ ¼ �jMrHb; are
almost z-independent while N2(z) increases from its assumed sur-
face value N2(0) = 0 to N2(�h) � 10�5 s�2 at the bottom of the ML.
It follows that the functionWH vs. N2 given in relation (9a) has a max-
imum at N2 ¼ jrHbj, at a depth denoted by zm:

z ¼ zm N2 ¼ rHb � 10�8 s�2 � N2ð�hÞ � 10�5 s�2 ð10aÞ

Substituting this relation into (9b,a), we obtain:

WHðzmÞ 	
1
2
js
rHb

jrHbj
� ez ð10bÞ

Using this result, we compute the average of the bolus velocity from
the surface to the depth zm:

huþizm
¼ ez� < @zW>zm ¼ ez �WðzmÞ=zm ¼

1
2
js
rHb

jrHbj
z�1

m ð10cÞ

Thus, near the surface, the bolus velocity is estimated to be:

z ¼ 0 : huþizm
¼ 1

2
js

zm
� 10 ms�1 ð10dÞ

where we have taken js � 103 m2 s�1and zm � 100 m. Eq. (10d) is
the difficulty we alluded to earlier since it represents an unphysical
result. In the next section we show that the following modification
of the RMT functions:

W;Fr ! eW; ~Fr ð10eÞ

solves the problem by ensuring the compliance of conditions (6a,c)
and how the stream function eW now varies smoothly from zero at
the surface to |W(�h)| � 1 m2 s�1at the bottom of the ML. This
behavior dispenses with the need to use artificial tapering schemes
(Griffies et al., 2005) whose arbitrariness resulted in a widely vary-
ing characteristics of the simulated flows (Gnanadesikan et al.,
2007; F8). It must also be noted that over the years, several authors
argued for the need of the new (tilde) variables, e.g., Treguier et al.
(1997), Held and Schneider (1999), Plumb and Ferrari (2005) and F8
even though the tilde itself was not explicitly used.

3. Formulation of an RMT for the mixed layer

In order to satisfy W(0) = 0 while keeping (2), we carry out the
following transformations:

W! eW ¼ Wþ A; Fr ! eFr ¼ Fr � A�rb ð11Þ

Here, A is an arbitrary function of space and time for whose deter-
mination we follow the following principles. Since there is no rea-
son to modify the RMT formulated for the deep ocean, we search
for a eW that is almost identical to W in the deep ocean but satisfies
the condition W(0) = 0. This in turn requires that the function A
vanish in the deep ocean and that it cancels W at the surface. Since
the solution of the problem is not unique, additional conditions
must be imposed. We choose eW to be a 2D pseudo-vector and fol-
lowing F10, we introduce the vector Y:eW ¼ Y � ez ð12aÞ

Thus, the eddy induced velocity defined in Eq. (5b) with W ? eW, is
expressed as follows:

uþ ¼ @zY; wþ ¼ �r � Y ð12bÞ

The general form of A that satisfies both the above requirements is
the following:
jrHbj2A ¼ N2Fr � ez þ FH �rHbþ D ð13Þ
where D is an arbitrary 2D pseudo-vector that satisfies the condi-
tion D(0) = 0 and that vanishes in the interior. It is worth mention-
ing that F8 used only the first term in (13). Next, we consider the
D = 0 case and show that it does not satisfy physical requirements
that, in addition to the boundary conditions, must be met. We then
suggest an expression for D that solves the problem.

3.1. The D = 0 case

Substituting (11) and (13) into Eqs. (3) and (4), we obtain the
following results3:

Y ¼ �jrbj�2N2Ftr
H þ jrHbj�2FvrHb ð14Þ

eFr ¼ F‘H þ jrHbj�2FvN2rHbþ jrHbj2jrbj�2Ftr
H ð15Þ

At the surface, both Fv and Ftr
H vanish, the former by construction,

the latter because relation (9b) shows that at z = 0 the flux FH is di-
rected along the horizontal gradient of the mean buoyancy and
thus, has no transverse component. From relations (12a) and (14),
it then follows the desired relation eWð0Þ ¼ 0 which, in terms of
Y(z), becomes Y(0, �H) = 0. Next, if we multiply (14) scalarly by
rHb, we obtain the following two relations:

Fv ¼ Y‘ � rHb; N2Ftr
H ¼ �jrbj2Ytr ð16Þ

which, once substituted into (15), yield the following result:eFr ¼ F‘H þ N2Y‘ þ jrHbj2N�2Ytr ð17Þ

This relation connects the stream function to the residual flux and
shows that the parameterization of the two variables cannot be
chosen independently.4 In the next sections we will discuss the
use of analogous relations to study the A4, F8, 10, C11 models. Final-
ly, we note that in relations (16) and (17), when N2 vanishes, there is
a singularity unless we have that:

YtrðN2 ¼ 0Þ ¼ 0 ð18Þ

As we discuss in Section 4, this condition is indeed satisfied in F8
but not in A4 and F10. Thus, to avoid singularities in the latter cases,
we need to include an appropriate function D into (13).

3.2. The D – 0 case

Let us consider the choice:

jrbj2D ¼ N�2jrHbj2ez � Ftr
H ð19Þ

which is allowed only if Ftr
H vanishes not only at z = 0 for any N but

also when N = 0 for any z. In particular, in the C11 model discussed
in Section 4, this condition is indeed satisfied. Then, instead of rela-
tions (14) and (15), we now have:

Y ¼ �N�2Ftr
H þ FvjrHbj�2rHb ð20aÞ

eFr ¼ F‘H þ FvN2jrHbj�2rHb ð20bÞ
Thus, instead of (16) and (17), we now have the final relations:eW ¼ ðYtr þ Y‘Þ � ez; Ytr ¼ �N�2Ftr

H ;

Y‘ ¼ FvðbÞ
jrHbj2

rHb; eFr ¼ F‘HðbÞ þ N2Y‘ ð21Þ
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The problem of finding the stream function and the residual flux corre-
sponding to a given vertical and horizontal fluxes, is solved. Specifi-
cally, the transverse component of FH and Fv yield the stream
function eW; the longitudinal component of FH then yields the resid-
ual flux. Relations (21) show that the stream function and the resid-
ual flux depend on each other and so do their parameterizations. To
highlight the difference between W and eW, we rewrite them as
follows:

Old RMT : W ¼ aN�4FvrHb� ez � aN�2FH � ez � aN�4FH �rHb

ð22Þ

New RMT : eW ¼ eaN�4FvrHb� ez � N�2FH � ez � eaN�4ðFH � sÞ
� rHb� ez ð23Þ

where a = (1 + s2)�1 and ea ¼ s�2. Within a down-gradient model the
last term in (22) vanishes. Since Fv(0) = 0, the first term in (22) van-
ishes while the second term does not vanish since FH(0) – 0, see
relation (9b). Thus, W(0) – 0, as already discussed. On the other
hand, using a down-gradient model of the type FHðbÞ ¼ �jMrHb;
the last two terms in (23) cancel each other out while the first term
vanishes at z = 0. This results in eWð0Þ ¼ 0, as required.
5 In the Eady case corresponding to N2ðzÞ ¼ N2
I ¼ const: throughout the whole

ocean treated in F10, the solution of Eq. (28b) is given by Eqs. (38) and (39) of F10.
When expanded in power of z/H, the result YEady 	 �jGMAf(tanh p/2 + f/2) coincides
with (29) since in the Eady case 2A = B.
4. Comparison of four parameterizations

4.1. F8. model

This model assumes that between the ML of thickness h and the
deep interior, there is a transition layer (TL) of thickness D < h. In
the ML, the stream function eW is assumed to be linear in z and to
vanish at the surface. In the TL, eW is parameterized as a quadratic
function of z. At the boundary between ML and TL, eW and its z
derivative are required to be continuous while at �zI = H + D ,
which is the boundary between TL and the interior, eW and its z-
derivative are required to match those of the GM model; the hor-
izontal buoyancy flux is assumed to be of the down-gradient type
in all three regimes ML, TL and deep ocean. This assumption al-
lowed the authors to get rid of the vertical and transverse compo-
nents of W before the transformation (11) was carried out. This
feature, in turn made the second and third term in (13) redundant
and thus the definitions of the modified stream function and resid-
ual flux have the forms given by Eqs. (12a), (14), and (15). On this
basis, the model yields (see Eqs. (25) and (28) of F8):

YðzÞ ¼ jGMGðzÞrHb

N2
I

; eFr ¼ �jGM 1� GðzÞN
2ðzÞ
N2

I

" #
rHb ð24Þ

where G(z) is given in Eq. (26) of F8. As one can see, (24) satisfies
relation (17) in which Ytr = 0, as we discussed below Eq. (17). To
make (24) in the ML and TL more transparent, we write the function
G(z) in the limit D�h which is in accordance with F8’s estimates of
D and h given in their Fig. 5a and b. In addition, we assume that
within the TL, the z-derivative of N2 is constant (in the ML, F8 as-
sume that N2 � N2

I is constant). This implies that in the TL,
D�1 � �N�2

I @zN
2. Adopting a rigid lid approximation, relation (26)

of F8 becomes:

�h 6 z 6 0 : GðzÞ 	 �3
2

z
h

; �ðhþ DÞ 6 z 6 �h : GðzÞ

	 �3
2

z
h
� ðzþ hÞ2

2D2 ð25Þ

Substituting (24) and (25) into (12b) and since the main contribu-
tion to the z-derivative comes from the differentiation of G(z), we
obtain that in the ML:
ML : uþ 	 �3
2
jGM
rHb

hN2
I

ð26Þ

which does not depend on z. Using N2 ¼ @b=@z, from Eq. (1) we
obtain:

@N2

@t
¼ �@zðuþ � rbÞ � @zðr � eFrÞ þ � � � ð27Þ

Because both u+ and rb are z- independent, the eddy induced advec-
tion does not contribute to the ML stratification. This result was one of
the motivations for the F10 model we discuss next.

4.2. A4 and F10 models

These models suggest the following differential equations for
Y(z):

A4 : C�1@2
zzY ¼ �rHb; F10 : ðc2@2

zz � N2ÞY ¼ �jGMrHb

ð28a;bÞ

Since at any depth, the solutions of (28a,b) depend on rHb at all
depths and since rHb has different directions at different depths,
Y has both longitudinal and transverse components. As it follows
from (17), in the D = 0 case the transverse component of Y leads
to singularities in Fr. Thus, the A4, F10 models need the choice
(19) which avoids the singularities, as Eqs. (21) show.

As one can see, the difference between the two models is the term
N2(z). In the opinion of the authors of F10, in the A4 model without
such a term, ‘‘information about the background stratification, and
hence about the mixed layer, would be lost.’’ Below, we study analyti-
cally the A4, F10 models and reach the following conclusions: (1) to
the first order in h/H, in both A4 and F10, the ML stream function does
not depend on the stratification N2 and, (2) such a dependence is
present in F10 but it comes into play only to higher orders in h/H
(h, H are the ML and ocean depths). Thus, F10 differs from A4 in those
locations where h � H, while in the rest of the ocean the two models
are quite similar. To carry out the analysis, we employ
N2ðzÞ ¼ N2

I ¼ const: in the ocean’s interior and N2
ML < N2

I . As for the
horizontal buoyancy gradients in the ML and interior, we assume
that they are different rHbM –rHbI but z-independent in their
respective regimes. F10 suggest that the speed c in (28b) be chosen
as the first baroclinic velocity and thus, to the main order in h/H,
we have c = NIH/p. We have found that the ML solution of Eq. (28b)
with the boundary condition Y(0, �H) = 0 is given by5:

Y ¼ �jGMfðaAþ BfÞ; f ¼ pz=H ð29Þ

where the two vectors A, B and the constant a are defined as
follows:

N2
I A ¼ rHbI; N2

I B ¼ 1
2
rHbM; a ¼ tanhp=2 ð30Þ

In (29), we kept the term �f since it is the only one that contributes
to the re-stratification of the ML, as we show below. In the A4 mod-
el, a = p/2. In both models, a was determined by solving the bound-
ary-value problem between the surface and the bottom. To the main
order in h/H, these results do not depend on the ML stratification N. The
bolus velocity and its z-derivative contributing to the ML re-strati-
fication, are obtained from (12a) and (29):

uþ ¼ �pjGMH�1ðaAþ 2BfÞ; �@zuþ � rHb ¼ 4p2jBj2jGM
N2

I

H2 > 0

ð31Þ



6 In the case of buoyancy, the C11 parameterization was assessed in several ways:
z-profile of the eddy kinetic energy vs. WOCE data, surface eddy kinetic energy vs. T/P
altimetry data, dependence of the vertical flux on the full mean velocity field (not only
its geostrophic part) which is affected by wind, overall assessment against eddy
resolving simulation data, etc.
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In contrast to the F8 model, the second of (31) leads to a ML re-
stratification.

Though in A4 and F10 the residual flux was not presented, it can
be found on the basis of our last relation (21) and the solutions of
(28a,b). Though A4 and F10 do not give the residual flux, it can be
found using their stream function. First, we study F‘H and consider
the top of the ocean interior where eFr 	 Fr 	 0. From the fourth of
(21), we then obtain:

z ¼ zI F‘H 	 �N2Y‘ ð32aÞ

On the other hand, since inside the ML the variables u0, b0 and rHb
are almost z-independent, in the region z P zI we may use (9b) and
extend it all the way to the bottom of the ML. Thus, using the
approximate relation:

z P zI : F‘H 	 �jsrHb ð32bÞ

and substituting it into (32a), we can estimate the surface value of
the mesoscale diffusivity:

js 	 N2Y‘ � rHb= rHb
��� ���2����

I
ð32cÞ

where all the variables are computed at the bottom of the mixed
layer. Substituting (32b,c) into the last of (21) we obtain:

A4; F10 : eFr ¼ �jrðzÞrHb ð33aÞ

jr 	 js 1� Y � rHb

YI � rHbI

jrHbIj2

jrHbj2
N2ðzÞ

N2
I

 !
	 js 1þ z

h
N2ðzÞ

N2
I

 !
ð33bÞ

where in the last step we used Eqs. (29) and (30). Thus, the residual
flux Eq. (33) is represented by a horizontal diffusion with a z-depen-
dent mesoscale diffusivity which equals js at the surface and van-
ishes at z = �h. To evaluate js, we substitute (29) and (30) into
(32c) with the results:

jsðF10Þ
jGM

� p½tanhðp=2Þ�ðh=HÞ; jsðA4Þ
jGM

� 1
2
p2ðh=HÞ ð34aÞ

Since relations (34a) were obtained for the particular case when in
the interior the buoyancy gradient is z independent, they should be
viewed as estimates which we indicate by �. These results show
that in the case of a sufficiently shallow ML where h/H� 0.2, we
have:

A4; F10 : js � jGM ð34bÞ

While the commonly used value jGM � 103 m2 s�1 (e.g., Ferreira
et al., 2005) is consistent with the second relation (9b), use of the
typical values rd = 30 km and K = 10�2 m2 s�2 in relation (34b) en-
tails a surface diffusivity much lower than what is observed. This
conclusion deserves some comments. We arrived at (34a,b) thanks
to relations (21) that allows us to relate the stream function of the
A4–F10 models to the horizontal flux which in turn we related to
(9b) derived from observations. Since at the time A4 and F10 were
presented, relation (21) was not known, the translation of W into a
horizontal flux and then the comparison with the data based rela-
tion (9b), was not possible, conclusions (34) could not be reached
and went unnoticed. In conclusion:

(a) the F8 eddy induced velocity does not entail ML re-stratifica-
tion which is known to exist,

(b) the A4 and F10 eddy induced velocities yield re-stratification
but, in spite of their formal difference, at the lowest order in
the small parameter h/H, neither model exhibits a depen-
dence of the re-stratification on the ML N2(z). Therefore,
A4 and F10 are not different,
(c) the residual flux was not presented in A4 and F10. We have
shown that in both A4,F10 it is of the diffusive type with a
mesoscale diffusivity that vanishes at the bottom of the ML,

(d) however, the value of the surface diffusivity in such models
is roughly h/H times smaller than what Zhurbas and Oh
(2003) have derived using drifter data.

4.3. C11 model6

The C11 results for the horizontal and vertical buoyancy fluxes
are:

FHðbÞ ¼ �jMrHb; FvðbÞ ¼ �j � rHb ð35aÞ

where:

j ¼ jMzbFðzÞ ð35bÞ

fr2
d
bFðzÞ ¼ ðbu þ euÞ � ez; euðzÞ ¼ uðzÞ � ud

zbuðzÞ ¼ Z z

0
uðz0Þdz0; h�i �

Z �h

�H
�K1=2ðzÞdz

,Z �h

�H
K1=2ðzÞdz ð35cÞ

The variable ud represents the mesoscale ‘‘drift velocity’’ which in
the f-plane has the following expression:

ud ¼ hui �
1
2

fr2
dez� < @zs > ð35dÞ

The above relations exhibit an interesting physical feature. Since
mesoscale eddies move with their own drift velocity ud, the effec-
tive mean velocity is the one in the frame co-moving with the mes-
oscales and that is why the mean velocity enters as in the second
relation in (35c). Finally, the mesoscale diffusivity is given by:

jMðzÞ ¼ f ðu;KÞ‘K1=2ðzÞ ð36aÞ

where:

f ðu;KÞ ¼ 1þ 3
4K
jeuðzÞj2� ��1

; ‘ ¼minðrd; LRÞ ð36bÞ

When the eddy kinetic energy K is larger than that of the mean flow,
see Fig. 7 of Scharffenberg and Stammer (2010), the function f ðu;KÞ
is close to unity.

To present the C11 parameterization in terms of the RMT for-
malism, we first remark that from (35) and (21) we have:

Ftr
H ¼ 0; Ytr ¼ 0; Y‘ ¼ �j‘ ¼ �j � rHb

jrHbj2
rHb ð37Þ

where j‘ is the longitudinal component of j, see footnote 3. Using
(35b), Y acquires the form:

Y ¼ �zjM

bF � rHb

jrHbj2
rHb ð38aÞ

To link this result with the GM model, we rewrite it as follows:

Y ¼ TðzÞYGMð�hÞ; TðzÞ ¼ �z
N2ð�hÞ
jrHbj2

bF � rHb ð38bÞ

where the function T(z) satisfies the conditions

Tð0Þ ¼ 0; Tð�hÞ ¼ 1 ð38cÞ
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While the first relation is obvious, the second condition comes from
the fact that at the bottom of the ML, the smallness of the measured
diapycnal diffusivities (Ledwell et al., 1998, 2011) implies the van-
ishing of the diapycnal flux:

Fd ¼ FV þ N�2FH � rHb ð39Þ

Two considerations are in order here: (1) relations (38b,c) are anal-
ogous to the default tapering scheme (Griffies et al., 2005; Gnanad-
esikan et al., 2007) with the difference that the tapering function T(z)
is no longer arbitrary but given by the model, as the second relation
in (38b) shows and, (2) we did not impose that at the bottom of the
ML the stream function Y matches that of GM, and yet it does, as the
first of (38b) shows. As for the residual flux, use of (35a,b) in the last
of (21), yields the following results:

eFr ¼ �jrrHb; jr ¼ jM½1� eT ðzÞ�; eT ðzÞ ¼ N2ðzÞ
N2ð�hÞ

TðzÞ ð40aÞ

in which the diffusivity jr vanishes at the bottom of the ML. Eqs.
(38b) also show that in the C11 model, the profile of jr and the
tapering function T(z) relate to one another while within the default
tapering scheme they are independent. Finally, we notice that in
most of the ML, N2 is sufficiently small and thus from (40a) we
have:

z > �h jr 	 jM ð40bÞ

a relation that we use in the next section.
For further analysis, it is convenient to decompose bF into F1 and

F2 components that are governed by the deep ocean and the ML
respectively:bF ¼ F1 þ F2; F1 ¼ �f�1r�2

d ud � ez; F2ðzÞ ¼ f�1r�2
d ðbu þ uÞ � ez

ð41aÞ

and consequently:

Y ¼ Y1 þ Y2; Y1;2 ¼ �jMzF‘1;2 ð41bÞ

Since both terms in (35d) are of the same order of magnitude
�H�1A, where A is given in (30), use of the relation rd = NIH/p|f|
yields (the subscript I refers to the interior):

Y1 � �jM
z
H
ðn � AÞn; n � jrHbj�1rHb ð41cÞ

Thus, the first term of (29) and (41b) are rather similar. As for Y2, we
distinguish three cases.

4.3.1. No wind, geostrophic flow
Using the thermal wind relation, u ¼ zf�1ez �rHbM ¼ 2bu and

rd = NIH/p|f|, we obtain the following expression (the suffix ‘‘g’’
stands for geostrophic):

Y2g ¼ �
3
2
jM
rHbM

N2
I

f2; f ¼ pz
H

ð41dÞ

which, after using (30), is close to the second term in (29). Thus, in
the absence of wind stresses, A4, F10 and C10 yield similar results.

4.3.2. Wind
In the presence of wind, the situation changes significantly

since there are wind stresses and horizontal gradients of the sur-
face pressure which, in turn, result in a geostrophic surface velocity
which, as shown in C11, dominates the production of ML eddy ki-
netic energy. In the presence of a geostrophic surface velocity (de-
noted by the subscript sv), the term Y2 has an additional term that
is not present in the A4, F10 models:

Ysv ¼ �
jM

2fr2
d

zðugs � ez � nÞn ð42aÞ
where ugs is the geostrophic component of the mean surface
velocity.

4.3.3. Ekman layer
The presence of an Ekman layer, represented here for simplicity

by an Ekman spiral, contributes a term given by:

YE ¼ jrHbj�2FErHb; FE ¼ AðgÞs � rHbþ BðgÞrHb� s � ez ð42bÞ

where s is the wind stress, g = z/dE, dE is the thickness of the Ekman
layer and:

AðgÞ ¼ jM
r2

d
f 2q0
ð1� eg cos gÞ þ gegðsin g� cos gÞ

BðgÞ ¼ jM
r2

d
f 2q0
ðf=jf jÞ½gðcos gþ singÞ þ sing�eg ð42cÞ

Thus, the complete form of the stream function is given by:

Y ¼ Y1 þ Y2g þ Ysv þ YE|fflfflfflfflffl{zfflfflfflfflffl}
New terms

ð43Þ

While the terms Y1;Y2g in (41c,d) are similar to the corresponding
terms in A4–F10, the terms Ysv, YE given in (42a,b) are absent in
A4, F10. One should distinguish Ysv, YE from the terms appearing
in the mean buoyancy equation due to the presence of wind depen-
dent terms in the mean velocity. While the latter stem from the di-
rect effect of the wind stresses on the mean momentum equation,
Ysv, YE originate from the non-linear interaction of mesoscales and
mean velocities in the dynamic equations for the mesoscale
velocities.

In summary, the main difference between C11 and A4, F10 is
that in the former case, the surface diffusivity coincides with jM,
Eq. (36), in agreement with observations, whereas in A4, F10 the
surface diffusivity is much smaller than what the data indicate.
The C11 model yields profiles of eW, eFr that are analogous to those
of the default tapering schemes with the difference that the pro-
files are no longer arbitrary but determined within the model.

5. The case of an arbitrary tracer

In the previous sections we considered the ML mesoscale
parameterization for buoyancy. However, OGCMs time step tracers
such as temperature, salinity, CO2, CFC, etc. which cannot be repre-
sented as a buoyancy field. In what follows we show that the eddy
induced velocity for buoyancy and arbitrary tracers are different.
We begin with the equation for an arbitrary tracer:

@tsþ U � rsþr � FðsÞ ¼ �r � FSM � @zFss þ Q ð44aÞ

where the rhs has the same meaning as in Eq.(1). Using the relations
(35) for the case of a tracer:

FHðsÞ ¼ �jMrHs; FvðsÞ ¼ �j � rHs ð44bÞ

we have:

FðsÞ ¼ �jMrHs� ðj � rHsÞez ð44cÞ

Next, consider the second term in the rhs of (44c) which we rewrite
as follows:

�ðj � rHsÞez ¼ �ðj � rsÞez ¼ �ðj� ezÞ � rs� j
@s
@z

¼ FskewðsÞ � j
@s
@z

ð45aÞ

where we have defined the skew flux:

FskewðsÞ � �ðj� ezÞ � rs ð45bÞ

Eq. (44c) then becomes:

FðsÞ ¼ �jMrHs� j
@s
@z
þ FskewðsÞ � FdiffðsÞ þ FskewðsÞ ð45cÞ
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Substituting (45c) into (44a), we obtain:

@tsþ ðUþ U
Þ � rsþr � FdiffðsÞ ¼ �r � FSM � @zFss þ Q ð45dÞ

where the eddy induced velocity U⁄ =(u⁄,w⁄) is given by:

u
 ¼ �
@j
@z

; w
 ¼ rH � j ð45eÞ

We must remark that in the buoyancy case, Eq.(45d) has the form:

@tbþ ðUþ UþÞ � rbþr � FdiffðbÞ ¼ �r � FSM � @zFss þ Q ð46aÞ

where (r � U+ = 0):

uþ � @Y
@z
¼ � @j

‘

@z
; wþ ¼ rH � j‘ ð46bÞ

Since:

uþ ¼ � @j
‘

@z
¼ � @j

@z
þ @j

tr

@z
¼ u
 � u

 ð46cÞ

it follows that

u
 � uþ þ u

 ð46dÞ

Therefore, the so-called ‘‘residual velocities’’ for buoyancy and arbi-
trary tracers in Eqs. (46a) and (45d) are given by:

uresðbÞ ¼ uþ uþ; uresðsÞ ¼ uresðbÞ þ u

 ð46eÞ

The common assumption (e.g., Ferreira and Marshall, 2006) that
there is only one bolus velocity u+ is no longer valid since in the case
of an arbitrary tracer the true bolus velocity is (46d) in which the
new component u⁄⁄ contributes only to tracers other than buoyancy
since in the latter case:

u

 � rHb ¼ 0 ð46fÞ

It is important to note that the same results are obtained using
the RTM formalism. In fact, substituting Eqs. (45c,b), (12a) and (37)
into the definition of the tracer residual flux:eFrðsÞ ¼ FðsÞ � eW �rs ð47aÞ

we obtain:eFrðsÞ ¼ FdiffðsÞ þ eFskewðsÞ ð47bÞ

where:eFskewðsÞ ¼ �jtr �rs ð47cÞ

Therefore, within the C11 model, the residual flux has not only a dif-
fusive component as all previous models, but also a skew one which
gives rise to the additional bolus velocity U⁄⁄. Substituting
FðsÞ ¼ eW �rsþ eFrðsÞ into (44a), together with (12a), (37) and
(47b,c), we obtain the equation:

@tsþ ðUþ Uþ þ U

Þ � rsþrH � Fdiff ¼ �r � FSM � @zFss þ G

ð47dÞ

which, because of (46d), is identical to (45d).

6. Summary and conclusions

In this work, we have compared four recent ML mesoscale
parameterizations. In C11, the parameterization was presented
in terms of the horizontal and vertical mesoscale fluxes FH and
Fv. While FH is given by a down-gradient diffusion, Fv is a skew
flux whose divergence yields an advection. The other three
parameterizations, F8,10 and A4 were formulated in terms of a
stream function and a residual flux of the residual mean theory
RMT, though the last two modeled only the stream function. For
this reason, in the first part, we compared the four parameteriza-
tions for the buoyancy flux only. To compare the C11 results
with the other three models, we had to translate the FH and Fv

fluxes into the mean residual theory formalism, i.e., a stream
function and a residual flux. We began with discussing the fact
that the definition of the latter used for the adiabatic ocean inte-
rior, must be modified in the diabatic ML in order to satisfy the
homogeneous boundary condition of the stream function. The
appropriate modifications and the new stream function and
residual flux were discussed in Section 3. The expressions for
the modified eW and eFr in terms of the V–H fluxes are given in
Eq. (21). These relations allowed us not only to compare C11
with F8,10 and A4, but will be instrumental in matching the
ML mesoscale parameterization with the one in the adiabatic
ocean. We shall treat this problem in subsequent work.

In the absence of the wind stresses, we have shown that the
stream functions of A4, F10 and C11 are similar. In the case of
strong winds, the C11 model yields a stream function that in-
cludes the Ekman and surface velocities whereas these two con-
tributions are absent in the A4, F8, 10 models. The inclusion of
the Ekman flow is important since eddy resolving simulations
(Maltrud et al., 1998) showed that the surface eddy kinetic en-
ergy is contributed quite substantially by the Ekman flow. As
for the re-stratification effects of mesoscales, we have shown
that to the main order in the parameter h/H (which is small
everywhere except in deep convective regimes), the models A4,
F10 give the same result and neither of them exhibits a depen-
dence on the ML stratification.

An interesting result emerges from the new stream function
and residual flux, namely that they are related to each other, see
Eq. (21), and, thus, parameterization of one affects the other, a fea-
ture that did not exist in the deep ocean where the residual flux is
negligible.

We have checked that relation (21) is satisfied in the F8 and C11
models while the A4, F10 do not provide an explicit parameteriza-
tion of the residual flux. We have shown that in order to satisfy
(21), the A4 and F10 models require a surface mesoscale diffusivity
that is much smaller than the results of the observations by Zhur-
bas and Oh (2003).

Concerning the parameterization of an arbitrary tracer, we have
found the following:

(a) for OGCMs that employ vertical-horizontal fluxes in the ML,
the appropriate arbitrary tracer equation is given by an
equation of the form (44a) with the fluxes given by Eqs.
(44b).

(b) for OGCMs that employ the RMT in the ML, the arbitrary tra-
cer equation is Eq. (45d)

(c) within the TRM formalism, and in the case of an arbitrary
tracer, the eddy induced velocity u+ computed as the curl
of the stream function does not represent the full eddy
induced velocity which is given by u⁄.
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