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We present a new method for the evolution of inextensible vesicles immersed in a Stoke-
sian fluid. We use a boundary integral formulation for the fluid that results in a set of non-
linear integro-differential equations for the vesicle dynamics. The motion of the vesicles is
determined by balancing the non-local hydrodynamic forces with the elastic forces due to
bending and tension. Numerical simulations of such vesicle motions are quite challenging.
On one hand, explicit time-stepping schemes suffer from a severe stability constraint due
to the stiffness related to high-order spatial derivatives and a milder constraint due to a
transport-like stability condition. On the other hand, an implicit scheme can be expensive
because it requires the solution of a set of nonlinear equations at each time step. We pres-
ent two semi-implicit schemes that circumvent the severe stability constraints on the time
step and whose computational cost per time step is comparable to that of an explicit
scheme. We discretize the equations by using a spectral method in space, and a multistep
third-order accurate scheme in time. We use the fast multipole method (FMM) to effi-
ciently compute vesicle–vesicle interaction forces in a suspension with a large number
of vesicles. We report results from numerical experiments that demonstrate the conver-
gence and algorithmic complexity properties of our scheme.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Vesicle flows model numerous biophysical phenomena that involve deforming particles interacting with a Stokesian fluid.
The evolution dynamics are characterized by a competition between membrane elastic energy, inextensibility, and non-local
hydrodynamic forces. Inextensible vesicles have received a lot of attention in the physics community as they are considered
good models of biological cells. In this paper, our goal is to develop efficient numerical schemes for such flows. In the case
where the fluids both inside and outside of the vesicle are the same, the equations that govern the motion of a single vesicle
are
@x
@t
¼ v1 þ S½fb þ fr� ðvesicle position evolutionÞ

xs � ðS½fr�Þs ¼ �xs � ðv1 þ S½fb�Þs ðinextensibilityÞ;
ð1Þ
. All rights reserved.
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where s is the arclength parameter, xðs; tÞ is the interfacial position, fr ¼ ðrxsÞs (the subscript s denotes differentiation with
respect to arclength) fb ¼ �jBxssss, r is the tension, jB is the bending modulus, v1 is the far-field velocity of the bulk fluid,
and S is the single-layer potential Stokes operator, defined in Section 2. The first equation in (1) describes the motion of the
vesicle boundary; the second equation expresses the local inextensibility of the interface. As in the case of most biological
membranes at mesoscopic length scales, vesicles can be modeled by smooth periodic curves [37]. In the rest of the paper, we
assume that x is a C1 function of s for all times. An example of motion of multiple vesicles is given in Fig. 1.

In contrast to stencil-based formulations, like finite element and finite difference methods, integral equation formulations
avoid discretization of the overall domain and instead, only discretize the vesicle boundaries. This is the main reason that
integral equations have been used extensively for vesicle, and more generally, particulate and interfacial flow simulations
[32]. Despite their success, several issues remain with respect to their numerical implementation. In particular, an efficient
numerical scheme for (1), should address the following issues:

� Stability. The bending force, which involves high-order spatial derivatives, makes the evolution Eq. (1) numerically stiff.
Consequently, a fully explicit scheme in time leads to stringent restrictions on the time step size.

� Ill-conditioning. If an implicit scheme were to be used, ‘‘inverting” the associated Jacobians would be computationally
expensive due to ill-conditioning (Section 3).

� Accuracy. The convergence rate of the overall numerical solution is governed by the accuracy of the discretization scheme
in time, the quadrature rule to compute the single-layer potentials, and the evaluation of spatial derivatives; to achieve
high convergence rates all of these components must be chosen carefully.
t = 0

t = 0.1

t = 0.2

t = 0.5

t = 1.0

Fig. 1. In this figure, we demonstrate the capabilities of our method, in particular the running times per time step and the ability to resolve complex
interactions between multiple vesicles. We simulated the motion of 256 vesicles driven by an external flow that has a parabolic profile. In this simulation,
we used 64 discretization points per vesicle and we took a total of 1000 time steps. The wall-clock time per time step was 40 s (on average) on a Xeon
workstation. The computations were performed using MATLAB, accelerated by external FFT, FMM, and LAPACK libraries. In the left column, we show four
snapshots of the overall simulation and in the right column, we zoom in the region marked by the broken-line square to show the details on the shapes of
individual vesicles. Here, t is a nondimensional time t 2 ð0;1Þ. The initial state is a rectangular array of vesicles in a non-equilibrium shape configuration
(top row). Due to bending, the vesicle shapes are quickly smoothed. Then, the vesicles are dispersed by the shear of the background flow. We resolve high
curvature regions (e.g., fourth row, second column), conserve vesicle areas and lengths, and compute the hydrodynamic interactions with sufficient
accuracy to avoid collisions without employing a collision detection algorithm. Details on the accuracy and complexity of our method are presented in later
Sections.
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� Algorithmic complexity. Computing the single-layer potential at M target locations fxkgM
k¼1 from given source locations

(quadrature nodes) fyjg
M
j¼1 isOðM2Þ. This would severely limit the scope of computation, when one wants to simulate large

number of vesicles and/or for large number of time steps.

Synopsis of our method. Inspired by the work of Hou et al. [16], Kropinski [23], and Tornberg and Shelley [41] on fast, high-
accuracy solvers for problems with moving interfaces, we propose two computational schemes for simulating the motion of
inextensible vesicles in two-dimensions. Our schemes address all of the issues outlined above but the accuracy in time. Both
schemes are based on Lagrangian tracking of marker particles placed on the membrane of the vesicle and a semi-implicit
time discretization, which, experimentally, appears to have no time-stepping stability constraints. High-order accuracy in
space is ensured by using a Fourier basis discretization for all functions and computing derivatives in Fourier domain,
and special high-order Gauss-trapezoidal quadrature rules, introduced by Alpert [1], designed to resolve the logarithmic sin-
gularities that appear in single-layer potentials. For the position update in time, we use two variants of a semi-implicit
marching scheme first derived for advection–diffusion equations [3] and then applied on integral equation based fluid-struc-
ture interaction problems in [41] (for rod dynamics modeled by slender-body theory integral formulations – a different for-
mulation from the one we use for vesicles); for certain flow regimes both schemes attain high-order accuracy. The time-
marching schemes require the solution a linear system of equations for each time step, which is solved using a Krylov iter-
ative method (GMRES) [35]. The problem of poor conditioning is addressed by a preconditioner based on the analytically
obtained spectrum of the operators in (1) for the special case (unit circle). The complexity of matrix–vector multiplication
for the dense system is reduced to linear in the number of variables using FMM. As a result, we are able to achieve high-accu-
racy while using a small number of unknowns per vesicle for the spatial discretization, while taking large time steps with
relatively low computational cost per each time step. These improvements enable the simulation a large number of inter-
acting vesicles, as described in Section 5 and depicted in Fig. 1.

Contributions. We would like to emphasize that the use of boundary spectral representations, semi-implicit schemes, and
fast summation schemes in the context of interface problems is not novel. However, we are not aware of any previous anal-
ysis and application of implicit time-stepping schemes combined with fast solvers to vesicles suspended in Stokesian fluids.
Two features distinguishing vesicles from droplets and bubbles are the bending forces related to curvature and the surface
inextensibility constraint.

The contributions of this paper are: (1) the spectral analysis of the different operators related to vesicle dynamics for the
unit circle and their use to derive preconditioning techniques; (2) the extension of the techniques developed in [16,23,40] to
vesicle flows; (3) the numerical investigation of the stability and accuracy of the time-stepping schemes; and (4) a prelimin-
ary validation of our methodology by comparing our results to results in the literature.

Limitations. We restrict our attention to dilute suspension of vesicles in fluids with unbounded domains. The model of
vesicle flows we consider here does not include forces due to gravity, electrostatics or adhesion, or inertial effects due to
the mass of the fluid or the membrane. Also, we do not consider topological changes, which are often present in many bio-
physical phenomena involving vesicles.

Maintaining high-accuracy for vesicles closely approaching each other requires incorporation of specialized quadrature
rules for nearly-singular integrals, as well as appropriate models for short-range interaction forces and efficient collision
detection schemes. We do not consider such cases here, which is an important limitation. For an example of related work
on this topic see [21].

In our examples, we assume that the interior and exterior of the vesicles are filled with the same liquid. The algorithm
extends to the more general case, which requires evaluation of double layer potentials [32].

Our numerical experiments indicate a time step stability that is proportional to the shear rate, but it is independent of the
spatial discretization size; experimentally, we have observed that the overall accuracy of our method is dictated by the accu-
racy of the time stepping scheme and is up to third-order for non-vanishing shear rates.

1.1. Related work

Vesicles (also known as fluid membranes) attracted the attention of scientists and engineers as they are present in many
biological phenomena [19] and can be used experimentally to understand properties of biological membranes [12]. In addi-
tion, vesicle mechanics have been used as models for red blood cells [26,28] and drug-carrying capsules [38].

Vesicle simulations have been based both on molecular dynamics models [25] and on continuum mechanics models of
the fluid and the vesicle membrane. Here, we focus on numerical schemes for continuum models of vesicle dynamics. We
start by briefly reviewing the more general topic of Stokesian particulate flows. Numerical methods for Stokesian flows
can be classified to unstructured finite element methods, Cartesian-grid based methods, and integral equation methods.
We refer to [5] for a review of these methods for boundary value problems. Integral equation methods have been used exten-
sively for the simulation of Stokesian particulate flows. Integral equations were introduced in Youngren and Acrivos [17] for
a flow past a rigid particle of arbitrary shape. The same authors used integral equations to study the shape of a bubble in an
extensional flow. Our work is based on a formulation derived by Rallison and Acrivos [33] for two fluids separated by an
interface with surface forces. For a detailed presentation of the theory of integral equations for Stokes flows see [27,29].

Typical spatial discretizations of integral equation formulations are based on Galerkin or collocation projection schemes
using polynomial bases – also referred as boundary element methods (BEM). Such methods have been used extensively
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[24,28,30,31,44,6] to study the dynamics of a single vesicle (with compressible interfaces) suspended in Stokes flow. Most
existing numerical methods use relatively low-order representation of the interface boundary, at most second order (circular
arcs) or third order (cubic splines) [29,31,32], together with consistent quadrature rules. Spectral representations for two-
dimensional interfacial flows with stiffness appeared in [4,16]. In the context of Stokesian flows, the closest work to ours
is that in [23,22] for extensible interfaces without bending energy. Another spectral approach has been used in [44] in which
the tension is calculated to enforce inextensibility but the position of the vesicle is updated explicitly. Also, a low-accuracy
representation is used for the boundary, so the overall accuracy is of low-order. One advantage to our approach is its high-
order of spatial accuracy and its ability to treat very large numbers of vesicles with a smaller number of marker points per
vesicle.

One of the greatest challenges in numerical schemes for vesicle dynamics is the numerical stiffness. The overwhelming
majority of work on particulate flows uses explicit schemes that pose severe restrictions on the time step. A powerful meth-
od in treating stiffness is related to the so-called ‘‘small-scale decomposition” [4,16,23] in which appropriate linearizations
reveal the higher derivative terms that are responsible for the numerical stiffness; these terms are treated implicitly whereas
the remaining terms are treated explicitly. In our work, we use a related but different idea, in which we analytically construct
a partial-linearization Jacobian in the spectral domain for the case of a circle and then, we use it as a preconditioner in the
two semi-implicit schemes we propose in which we treat only the higher order terms implicitly. Another approach that al-
lows stable time-stepping is to use Newton’s method with exact Jacobians [9] but such an approach will have quite large
computational costs per time step. To our knowledge, no work on implicit schemes exists for incompressible vesicles.

The literature on numerical methods for incompressible vesicles appears to be somewhat limited; only three papers dis-
cussing numerical schemes for such problems: Kraus et al. [20], Zhou and Pozrikidis [44], and Sukumaran and Seifert [39]. All
these works use the forward Euler discretization method in time, which is computationally inefficient because (1) is stiff. In
problems with vesicles, the elastic and incompressibility properties of the membranes must be taken into account and the
numerical schemes must be modified in order to solve the resulting set of boundary integral equations. Details of the BEM for
elastic interfaces and incompressible vesicles can be found in [6,44]. In the present study, we will use the model of [20,39] for
the bending energy and for the surface tension.

Other related work includes methods to compute the vesicle shape that corresponds to an elastic equilibrium (minimum
L2-norm of curvature) under area and length (volume and area in 3D) constraints without hydrodynamic interactions (this
methods consider a single vesicle). Examples include a phase field method, proposed in [10,11], that can handle topological
changes and [13] that uses a shell finite element based algorithm.

1.2. Contents

In Section 2, we present a summary of the derivation of the integro-differential equations (1) that govern vesicle dynam-
ics. A qualitative understanding of stiffness can be obtained from the knowledge of the spectrum of the Jacobian of (1). Parts
of the Jacobian can be analytically computed using the Fourier transform on the unit circle. We discuss the behavior of the
spectrum in Section 2.1. The source of the high-order stiffness will be evident from this analysis.

In Section 3, we present two numerical schemes that overcome the high-order stiffness, are spectrally accurate in space
and, for certain flow regimes, attain high-order accuracy in time; we extend these schemes to deal with multiple vesicles.
Both schemes lead to systems of linear equations that need to be solved at each time step. The spectral analysis of the prob-
lem on the unit circle is used to construct preconditioners for the iterative linear solvers required in the time-stepping
schemes.

In Section 5, we present numerical results for a number of problems involving single and multiple vesicles suspended in a
viscous fluid. We conduct numerical experiments to investigate the stability and convergence order of different time-step-
ping schemes.

2. Problem formulation

Consider a single vesicle suspended in a 2D viscous fluid domain X and whose membrane is denoted by c. Assume that
the interior of the vesicle is filled with the same fluid. The fluid flow is modeled by the Stokes equations,
rp� lMv ¼ f; divv ¼ 0 in X n c; ð2Þ
where pðxÞ and v(x) are the pressure and velocity fields, and l is the viscosity of the fluid. The no-slip boundary condition at
the vesicle boundaries and the free-space boundary condition require that
vðxÞ ¼ _x on c and limx!1vðxÞ � v1ðxÞ ¼ 0; ð3Þ
where _x is the velocity of a point on c and v1 is the far-field fluid velocity.
The elastic energy of the membrane is given by eðj;rÞ ¼

R
cðsÞ

1
2 jBj2 þ rds where j is its curvature, r is the tension, and

jB is the bending modulus. The forces due to bending, fb, and tension, fr, are obtained by taking the L2-gradient of e with
respect to xðsÞ (Appendix A). The total force, fb þ fr is balanced by the jump of the fluid stress vector across the vesicle mem-
brane, f, across the vesicle membrane. We assume that no other forces (e.g., gravitational) are present in the system. Using
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potential theory [27], the solution of (2) can be written as vðxÞ ¼ v1ðxÞ þ S½fb þ fr�ðxÞ. The single-layer potential S½f� is de-
fined as S½f�ðxÞ ¼

R
c Gðx; yÞfðyÞdcðyÞ, where the 2D Stokes free-space kernel, G, is given by
1 By
Gðx; yÞ ¼ 1
4pl

� ln qIþ r� r
q2

� �
; r ¼ x� y; q ¼ krk2: ð4Þ
Enforcing the no-slip boundary condition, we get the first equation in (1). The tension r can be viewed as a Lagrange mul-
tiplier that enforces the local inextensibility constraint. It is computed by requiring the ‘surface’ divergence, divc of the inter-
facial velocity field is zero, that is, xs � vsðxÞ ¼ 0.1 This leads to the second equation in (1).

To construct and analyze our numerical scheme, we introduce the operators B; T ;D;L;M, defined on the interface xðsÞ,
for any point y 2 R2; f is a smooth vector field on c and r is a smooth scalar field on c:
Bðy;xÞf :¼ �S½fssss�ðyÞ;
T ðy;xÞr :¼ S½ðrxsÞs�ðyÞ;
DðxÞf :¼ xs � fs; ð5Þ
LðxÞ :¼ DðxÞT ðx;xÞ;
MðxÞ :¼ T ðxÞL�1ðxÞDðxÞ:
If f ¼ jBx, Bf gives the single-layer potential at y due to the bending force on the interface. Similarly, T r gives the single-
layer potential due to the tension force. We define BðxÞ ¼ Bðx;xÞ and T ðxÞ ¼ T ðx;xÞ. Following this notation, we can rewrite
the governing equations for a single vesicle as
_x ¼ v1ðxÞ þ jBBðxÞxþ T ðxÞr; LðxÞr ¼ �DðxÞ½v1ðxÞ þ jBBðxÞx�: ð6Þ
Alternatively, we can eliminate the equation for the surface tension.
_x ¼ v1ðxÞ þ jBBðxÞx� T ðxÞL�1ðxÞDðxÞ½v1ðxÞ þ jBBðxÞx�;¼ ð1�MðxÞÞ½v1ðxÞ þ jBBðxÞx�; ð7Þ
where theM operator, which we call stretching operator, modifies the interface velocity field _x to enforce the inextensibility
constraint.

Scaling. In most of our numerical experiments we focus in the case in which v1 is a simple shear flow. Following the anal-
ysis of [20], we define different scales as follows. The velocity is given by v1 ¼ vðx2;0Þ, where v is the shear rate. The length
scale R0 is determined by the perimeter L of the boundary, given by R0 ¼ L=2p, which is the radius of circle having the same
perimeter. Then, the time scale s is defined by s ¼ lR3

0=jB. The dimensionless shear rate is defined by ~v ¼ _clR3
0=jB. The gov-

erning equation in the nondimensional form, for a vesicle suspended in simple shear flow, becomes
_~x ¼ ~v1 þ Bð~xÞ~xþ T ð~xÞ~r; ð8Þ
where ~x ¼ x
R0
; ~r ¼ R2

0r
jB

and ~v1 ¼ ~vð~x2;0Þ. Hence, ~v and s characterize the vesicle dynamics. From now on, unless stated other-
wise, all the equations are written in nondimensional form and for simplicity of notation and we suppress ‘ �’ in the nota-
tion. Another parameter that we use is the so-called reduced area denoted by m and defined as m ¼ A

pR2
0
¼ 4 Ap

L2 , where A is the
area of the vesicle. It is the ratio of the vesicle area over the area of circle of the same perimeter. It is used extensively in the
literature to classify vesicle shapes.

Multiple vesicles. If K vesicles are suspended in the shear flow, equations (1) can be expanded into the following equations
for the evolution of the jth vesicle:
_xj ¼ v1ðxjÞ þ BðxjÞxj þ T ðxjÞrj þ
XK

k¼1
k–j

Bðxj;xkÞxk þ T ðxj;xkÞrk; ð9Þ

LðxjÞrj ¼ �DðxjÞ½v1ðxjÞ þ BðxjÞxj� � DðxjÞ
XK

k¼1
k–j

Bðxj;xkÞxk þ T ðxj;xkÞrk: ð10Þ
The fluid velocity at a point x away from the vesicle boundaries is computed by
vðxÞ ¼ v1ðxÞ þ
XK

k¼1

Bðx;xkÞxk þ T ðx;xkÞrk: ð11Þ
definition, divc ¼ Trace½s� srv� ¼ ðrvÞs � s ¼ vs � xs , with s ¼ xs being the unit tangent vector.



Table 1
The maximum eigenvalue of J for different spatial discretizations. Asymptotically, we observe that kmin behaves as Oð�M3Þ.

M 32 64 128 256

kmin �7.25e+01 �7.55e+02 �6.56e+03 �5.40e+04
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2.1. Spectral properties

The choice of a computationally-efficient time-stepping scheme depends on whether (7) is stiff or not ([2] p. 50). In this
section, we present an approximate stiffness analysis for (7) by constructing the spectrum of its Jacobian.2 We discuss the
case of v1 ¼ 0 and jB ¼ 1, in which (7) becomes
2 We
incomp
should
_x ¼ BðxÞx�MðxÞBðxÞx or _x ¼ QðxÞx:
The stiffness of this dynamical system can be characterized by minkReðkðJ ÞÞ [15], where J ðxÞ ¼ @QðxÞx
@x and k is an eigenvalue

of Q. In particular,
J ðx0Þ ¼
@QðxÞ
@x

����
x¼x0

½x0� þ ð1�Mðx0ÞÞBðx0Þ:
We constructM and B analytically in the spectral domain and we evaluate @Q
@x numerically. Using the analytic expressions,

the symbol of the operators S, B, L, and M behaves as
for S (single-layer potential operator),
have computed the Jacobian numerically for different mesh sizes and we discovered that it is a non-normal operator. Thus, the eigenva
lete picture of the stability properties. For a more accurate analysis of the numerical stability of the linearized case the pseudospectrum of
be considered [34].
Oðjkj�1Þ;

for L (inextensibility operator),
 Oð�jkjÞ;

for B (bending force potential operator),
 Oð�jkj3Þ;

for M (stretching operator),
 Oð1Þ
for large k, where k is the Fourier-mode index. A derivation of these results is presented in Appendix B. While S is a smooth-
ing operator, B and L are ill-conditioned operators, with B having the higher stiffness.

To account for the additional @Q
@x term, we compute the eigenvalues of J numerically, by constructing J using finite dif-

ferences. For a small parameter �, the ith column of J i is given by
J i ¼
ðQðxÞxÞjx0þ�ei

� ðQðxÞxÞjx0��ei

2�
;

where ei is the ith coordinate unit vector. The results are given in Table 1. We can see that the overall stiffness is dominated
by the stiffness of B. We conclude that, an implicit time-stepping method is essential for computational efficiency.

Solving (7) using an implicit scheme requires using a nonlinear solver and calculating rather complicated operator deriv-
atives if exact Jacobians are to be used. An alternative is to use a linearly-implicit scheme [15], with ð1�MÞB being used as
an inexact Jacobian in place of J . Stiffness implies a rapid growth of the condition number of J . To efficiently solve linear
systems involving ð1�MÞB we use an iterative Krylov method, which requires preconditioning. It turns out that the in-
verses of the analytically obtained operators on the unit circle yield good results when used as preconditioners for the oper-
ators defined on general geometries. The details on the time-stepping and the linear solvers are given in the following
section.

3. Numerical scheme

In this section, we present numerical schemes for (1) and discuss extensions to multiple vesicles. First, we discuss the
discretization in time and then, the discretization in space along with preconditioning. We conclude with a discussion for
the case of multiple vesicles and pseudo-code for the overall algorithm.

3.1. Discretization in time

The existing literature on vesicle simulations is based on explicit-time stepping schemes for (1). Such schemes are ex-
pected to suffer from severe stability constraints the size of time step. Here, we discuss two semi-implicit schemes that avoid
such stringent constraints.
lues give an
the Jacobian



Table 2
The semi-implicit BDF coefficients stated in equation (18) for the second, third, and fourth-order accurate schemes.

Order b xo xe

2 3
2 2xn � 1

2 xn�1 2xn � xn�1

3 11
6 3xn � 3

2 xn�1 þ 1
3 xn�2 3xn � 3xn�1 þ xn�2

4 25
12 4xn � 3xn�1 þ 4

3 xn�2 � 1
4 xn�3 4xn � 6xn�1 þ 4xn�2 � xn�3
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There are several ways of tracking the one-dimensional interface. (1) One can track points uniformly-distributed in the
arclength [41], which requires resampling at each time step. (2) The shape of the interface is altered only by the normal com-
ponent of the velocity field. Hence, an arbitrary tangential velocity can be imposed without altering the shape. This is often
used to maintain good sampling on the interface [16]. (3) A Lagrangian formulation, in which, we always track the motion of
the initial set of material points on the interface.

We have adopted a Lagrangian formulation for several reasons. First, due to the local inextensibility of the interface, point
clustering does not happen. If the parametrization at time t ¼ 0 is uniform in the arclength, it remains so for all times – up to
discretization errors. Second, it simplifies implementation of high-order multistep schemes since it does not require inter-
polation. Third and most important, methods requiring resampling are far more difficult to extend to surfaces. Next, we de-
scribe two variants of a semi-implicit first-order scheme. The first variant has more work per time step but better stability
properties.

Scheme I. Let Mt be the time step size and let xnðaÞ be a point on the vesicle interface at nMt. Then, a first order semi-im-
plicit scheme to compute its position at ðnþ 1ÞMt is given by
1
Mt
ðxnþ1 � xnÞ ¼ v1 þ BðxnÞxnþ1 þ T ðxnÞrnþ1; ð12Þ

LðxnÞrnþ1 ¼ �DðxnÞ½v1 þ BðxnÞxnþ1�; where ð13Þ

BðxnÞxnþ1ða0Þ ¼ �
Z 2p

0
Gðxnða0Þ;xnðaÞÞ 1

jxn
aðaÞj

1
jxn

aðaÞj
xnþ1

a ðaÞ
jxn

aðaÞj

� �
a

� �
a

� �
a

da; and ð14Þ

T ðxnÞrnþ1ða0Þ ¼
Z 2p

0
Gðxnða0Þ;xnðaÞÞ rnþ1ðaÞ xn

aðaÞ
jxn

aðaÞj

� �
a

da: ð15Þ
Since the vesicle is locally-inextensible, the Jacobian sa ¼j xa j is time-independent; this fact motivates the explicit treatment
of j xa j. Equations (12) and (13) are solved simultaneously for rnþ1 and xnþ1. We do this by eliminating the equation for r or
working on its Schur complement: if we consider a background velocity field v1ðxÞ ¼ Ax, where A is a constant operator,
then each update for xnþ1 requires inverting 1� Dtð1�MÞðAþ BÞ.

Scheme II. This scheme is inspired by the scheme proposed in [41] for the simulation of flexible fibers in viscous flows. The
difference with the first scheme is that we treat the tension differently. That is, we first compute rnþ1 by
LðxnÞrnþ1 ¼ �DðxnÞ½v1 þ BðxnÞxn�: ð16Þ
and then we update xnþ1 by
1
Mt
ðxnþ1 � xnÞ ¼ v1 þ BðxnÞxnþ1 þ T ðxnÞrnþ1: ð17Þ
At each time step, this scheme requires solving linear systems with the operators L and 1� DtB. Its main advantage over
Scheme I is that the discrete equation for the tension is decoupled from the evolution equation. In our numerical experi-
ments, we have observed that the stability properties of Scheme II are somewhat inferior to that of scheme I for certain flow
regimes. Despite this, however, we found Scheme II quite attractive in the case of high-shear flows in which both schemes
require time steps of similar sizes for stability. Finally, notice that in both schemes, the dependence of all linear operators on
x is treated explicitly.

High-order schemes. We use the high-order, semi-implicit, backward difference formula (BDF) introduced in [3] and used
in [41] for the motion of inextensible filaments in a Stokes flow. A high-order equivalent scheme for (12) can be written as
bxnþ1 � xo ¼ Mt½v1 þ BðxeÞxnþ1 þ T ðxeÞrnþ1�; ð18Þ
where xe is the interfacial position obtained by extrapolation from previous time steps. In Table 2, we list b;xo and xe for
second through fourth-order schemes.

We do not have a theoretical analysis for the accuracy or stability of the first- and higher order semi-implicit schemes.
Numerical experiments demonstrating the properties of our schemes are presented in Section 5.

3.2. Spatial discretization

We use a Fourier basis to represent the interface. Assuming that the point positions xðaÞ are given at M uniformly-dis-
tributed points fak ¼ 2pðk� 1Þ=MgM

k¼1 in the parametric domain, we write
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Table 3
The condition number of the discrete operator LM defined on the five-armed starfish vesicle shown in Fig. 2. Asymptotically, we observe that the condition
number increases as OðMÞ. Hence, the matrix LM is ill-conditioned.

M 64 128 256 512 1024

condðLMÞ 3.13e+01 9.19e+01 2.47e+02 5.87e+02 1.31e+03

5 For
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xðaÞ ¼
XM=2�1

k¼�M=2

x̂ðkÞe�ika and xa ¼
XM=2�1

k¼�M=2

ð�ikÞx̂ðkÞe�ika; a 2 ½0;2p�: ð19Þ
FFTs are used to switch between x and x̂. The arclength s is given by sðaÞ ¼
R a

0 jxajda. Derivatives with respect to the arclength
are computed as xs ¼ xa

sa
. Given r at uniform locations fakgM

k¼1, fr is computed similarly. Since the vesicle boundary is as-
sumed to be smooth, computing derivatives in this manner yields spectral accuracy.

Quadrature rule. The single-layer potential S½f� is computed by the hybrid Gauss–trapezoidal quadrature rules of [1],
which were designed to handle logarithmic singularity3 (Table 8 in [1]). Let x 2 c, then we write
S½f�ðxÞ �
XMþm

k¼1

wkGðx; yðakÞÞfðyðakÞÞjyaðakÞj: ð20Þ
Here, M is the number of nodes used in the trapezoidal rule and m is the fixed number of quadrature nodes (determined by
the convergence order). These m nodes correct the trapezoidal rule to yield high-order convergence. The convergence order
of these quadrature rules is up to 32. Since derivatives are computed spectrally and quadrature rule (20) is governed by the
singularity correction. In our implementation, we use the 16th-order correction rule from Table 8 in [1] to calculate the
right-hand side of (1).

Fast summation. Direct evaluation (20) at M points on the boundary requires OðM2 þMmÞ work. This cost can be reduced
to OðM þMmÞ by using the FMM. In [43,40], fast summation schemes for summing Stokeslets were proposed based on fast
multipole methods for the Poisson problem. Here, we adopt a similar algorithm for (20), which we describe in Appendix D.

3.3. Preconditioners

As discussed, the time-stepping Schemes I and II require solution of systems with the operators L;1� DtðA þ BÞ, and
1� Dtð1�MÞðA þ BÞ. Based on our spectral analysis, the corresponding condition numbers should be behave as OðMÞ,
OðM3=NÞ, and OðM3=NÞ, where M is the number of modes in space, and N is the number of time steps.4

We propose low-cost preconditioners for these operators: the inverses of the corresponding operators for the unit circle.
For example, the discretized inextensibility constraint has the form
LMrM ¼ fM : ð21Þ
where M is the number of discretization points. We have shown in Section 2.1 that the eigenvalues of L are given by
kk ¼ jkj4 ; k 2 Z. Hence, on a circle, the condition number of LM is OðMÞ, assuming the null space is removed. We conducted
numerical experiments to test how good an approximation the L spectrum on the unit circle is to the spectrum of L on a
general boundary (Table 3). Fig. 2 shows the spectrum of LM for different boundary configurations that have the same perim-
eter. We observe that the spectrum agrees quite well with the spectrum of a circle of same perimeter. This motivates the
following preconditioner for (21):
P ¼ F�1K�1
c F ; Kc ¼ diag k�M

2
; k�M

2þ1; . . . ; kM
2�1

n o
; ð22Þ
where kk is the kth-eigenvalue of LM defined on unit circle (we set k0 ¼ 1) and F is the Fourier transform operator i.e., F f ¼ f̂ .
Since the entries of Kc are known (Section 2.1) and FFT can be used for accelerating F f , the cost of applying P is OðM log MÞ
per GMRES iteration. Tables 4 and 7 show the effectiveness of P. Without any preconditioner, the number of GMRES itera-
tions increases with M (roughly as Oð

ffiffiffiffiffi
M
p
Þ). When using the preconditioner, the number of GMRES iterations for a fixed tol-

erance remains approximately the same.
Next, we present a preconditioner to solve (12). Let us write (12) as
½I� Mtð1�MÞðA þ BÞ�xnþ1 ¼ xn; ð23Þ
where the operator A gives the far-field velocity,5 v1 ¼ Ax.
quadrature rules of [1] are designed to compute integrals of the form IðxÞ ¼
R 1

0 /1ðxÞ log xþ /2ðxÞdx. The integral operators that we compute are of the
Þ ¼

R 1
0 /1ðxÞ logðwðxÞÞ þ /2ðxÞdx, where wðxÞ is a smooth function with wð0Þ ¼ 0. We can show that we still get the expected order of convergence. For

see Appendix C.
e that if we had bending only, we would expect an M4=N behavior; the convolution with the Stokes single-layer potential has a smoothing effect.
general v1 , A can be defined as @v1

@x

��
x¼xn

.
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Fig. 2. The spectrum of LM with M ¼ 128 for different shapes of unit perimeter. The boundaries are shown (not to scale) with corresponding color of their
spectrum plot.

Table 4
The number of GMRES iterations required to solve the incompressibility Eq. (21) with and without preconditioning. Here, � is the relative GMRES tolerance and
we solve (21). This case corresponds to a vesicle having a five-armed starfish shape (shown in 2). The shear rate is zero.

Preconditioner None P

M � ¼ 10�6 � ¼ 10�12 � ¼ 10�6 � ¼ 10�12

64 21 35 12 22
128 30 55 13 25
256 41 74 12 28
512 59 102 11 30

1024 91 123 10 28
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We construct the operators analytically on the unit circle. The inverses of B and L are known analytically since they are
diagonal; the unit circle representations of A andM are sparse with small bandwidth (ten for M) and their factorizations
can be computed and applied in OðMÞ time. Again, the cost of applying the preconditioner on (23) is OðM log MÞ per
GMRES iteration. In our numerical experiments, we have found that using M does not result in significant improvements
and we have not included it in our implementation. We present results on the performance of this preconditioner in Ta-
bles 7 and 8.

3.4. Multiple vesicles

The semi-implicit schemes can be extended in a straightforward manner to deal with multiple vesicles. We restrict our
discussion to the extension of Scheme II since empirically it has similar stability properties with Scheme I but is less expen-
sive computationally (see Section 5). We discretize each of the K vesicles with M points. The spatial derivatives and convo-
lutions are computed as described in Section 3.2. We discretize (9), (10) by first solving for frn

j g
K
j¼1
6 We
introdu
Lðxn�1
j Þrn

j þDðxn�1
j Þ

XK

k¼1
k–j

T ðxn�1
j ;xn�1

k Þrn
k ¼ �Dðxn�1

j Þv1 �Dðxn�1
j Þ

XK

k¼1

Bðxn�1
j ;xn�1

k Þxn�1
k ; ð24Þ
and then updating the positions fxnþ1gK
j¼1
1
Mt
ðxnþ1

j � xn
j Þ ¼ v1 þ Bðxn

j Þxnþ1
j þ T ðxn

j Þrn
j þ

XK

k¼1
k–j

Bðxn
j ;x

n
kÞxn

k þ T ðxn
j ;x

n
kÞrn

k : ð25Þ
Note that the inter-vesicle coupling is treated implicitly in the tension calculation and explicitly in the force calculation.6 We
construct a block diagonal preconditioner ðPbÞ for (24). Each of its block diagonal entry is set to P, defined in (22). We can
solve (25) on each vesicle separately because of the explicit treatment of the interactions and can use the single vesicle pre-
conditioner. When the suspension is dilute (i.e., the distance between vesicles is typically significantly more than the vesicle
size), we found that (25), (24) would still have the same stability constraint as the one for single vesicle. We use the trap-
ezoidal rule to compute the interaction component Sk½fr þ fb�ðxjÞ in (25) and (24).
conducted numerical experiments in which inter-vesicle tension forces were treated explicitly in (24), but we discovered that such an approach
ces significant violations of the inextensibility constraint.
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4. Summary

In this section we summarize the algorithm for multiple vesicles. The input includes the positions of M points per vesicle
for K vesicles, the material parameters jB and l, the background velocity v1 (for shear flows parametrized by the shear rate),
the time horizon T, and the number of time steps N. The output is the interfacial tension and position of all the vesicles at
fkMtgN

k¼1.

Algorithm 1. Time-marching scheme II for multiple vesicles in shear flow
for n ¼ 1 : N � 1 do
r ¼ ComputeTensionðxÞ givenpositions x, computetension
for k = 1 to K do

fb
k ¼ �jBComputeDerivativeðxk;xk;4Þ traction jump due to bending

tk ¼ ComputeDerivativeðxk; xk;1Þ tangentvector

fr
k ¼ ComputeDerivativeðrktk;xk;1Þ traction jump due to tension

end for

F ¼ v1ðxÞ þ ComputeInteractionðfr þ fb
; xÞ

for k = 1 to K do

Fk ¼ Fk � ComputeInteractionðfb
k;xkÞ subtract the self-interaction due to bending

Solve: ðI� MtBðxkÞÞyk ¼ xk þ MtFk using preconditioned GMRES
xk :¼ yk

end for

end for
Algorithm 2. ComputeTension (x)
Given positions, computes the

tensions
fb
k ¼ �jBComputeDerivativeðxk;xk;4Þ; k ¼ 1; . . . ;K traction jump due to bending

F ¼ ComputeInteractionðfb
;xÞ velocity field due to bending

tk ¼ ComputeDerivativeðxk;xk;1Þ; k ¼ 1; . . . K tangentvector
Fk ¼ �tk � ½Fk þ v1ðxkÞ�; k ¼ 1; . . . ;K surfacedivergence

Solve for r : TensionMatVecðr;xÞ ¼ F using preconditioned GMRES

Algorithm 3. TensionMatVecðr;xÞ
Given tensions and positions,

computes the left hand side of
(24)

for k = 1 to K do
tk ¼ ComputeDerivativeðxk;xk;1Þ tangentvector
fr

k ¼ ComputeDerivativeðrktk;xk;1Þ traction jump due to tension

end for

F ¼ ComputeInteractionðfr
;xÞ

return Fk ¼ tk � Fk; k ¼ 1; . . . K

Algorithm 4. ComputeDerivative ðf;x;mÞ

Givenjumps f across the vesicle boundaries x, computes
PK

k¼1Sk½fk�ðxÞ
/1 ¼

PK
k¼1

R
ck

log jx� yjf1ðyÞdsðyÞ using trapezoidal rule and FMM

/2 ¼
PK

k¼1

R
ck

log jx� yjf2ðyÞdsðyÞ using trapezoidal rule and FMM

/3 ¼
PK

k¼1

R
ck

log jx� yj½f1ðyÞy1 þ f2ðyÞy2�dsðyÞ using trapezoidal rule

and FMM
F ¼ f/1;/2g þ x1rx/1 þ x2rx/2 �rx/3

Correct the trapezoidal rule to compute self-interactions

Get the nodes and weights fac
i ;wigm

i¼1 corresponding to order q, that correct the trapezoidal rule [1].
for k = 1 to K do

for j = 1 to M do

for i = 1 to m do

Compute fk;xk at aj þ ac
i using spline interpolation/nonuniform FFT

Fkj ¼ Fkj þwiGðxkj;xkðaj þ ac
i ÞÞfkðaj þ ac

i Þ add the correction
end for

end for

end for
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Algorithm 5. ComputeDerivative ðf;x;mÞ

Computes the mth derivative of a vector field f with respect to the arclength s. x is the position of

the boundary.

c ¼ �M
2 ;�M

2 þ 1; . . . ; M
2 � 1

� �
coefficientvector

Set F ¼ f initialization

jxaj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½IFFTðicFFTðx1ÞÞ�2 þ ½IFFTðicFFTðx2ÞÞ�2

q
Jacobian

for 1 to m do

F ¼ IFFTðicFFTðF1ÞÞ
jxa j ; IFFTðicFFTðF2ÞÞ

jxa j

n o
differentiateonce

end for

return F
Complexity analysis. The main steps of the algorithm are the solution of coupled system of equations for the tensions (24)
and the position update using (25). Since we use FFTs to compute the derivatives, the complexity of computing fb and fr is
OðM log MÞ per vesicle. Using FMM, the complexity of evaluating the single-layer potentials at the MK discrete points is
OðMKÞ. Therefore, each GMRES iteration to solve (24) and similarly to solve (25) over all the vesicles, requires
OðMK log MÞ work. In Section 5, we demonstrate numerically that the number of iterations are nearly independent of the
problem size (Tables 12, 8). Hence, the cost of solving the linear system of equations is OðMK log MÞ per time step.
4.0.1. Selection of discretization parameters and their effect on complexity

We have not discussed the selection of the spatial discretization M, and the temporal discretization N and q. Currently, we
do not have an adaptive scheme for the selection of the spatial and temporal accuracy. For dilute suspensions, asymptoti-
cally, the errors are dominated by the temporal discretization since we use spectral discretization (combined with a very
high-order scheme for the singularities) in space. In our experiments, 64–128 spatial modes are typically sufficient to fully
resolve the shapes of the vesicles in the shear rate regimes we have examined. For concentrated suspensions, adaptive
schemes combined with a posteriori estimates are necessary; the complexity analysis for such methods is an open problem.

5. Results and discussion

In this section, we present results on the convergence, stability, and algorithmic complexity of the proposed methods.

5.1. Single vesicle

We present two test cases. In the first case, we consider a vesicle suspended in a simple shear flow. If the interior and
exterior of the vesicle are filled with the same fluid, the vesicle undergoes a tank-treading motion at its equilibrium config-
uration. This was established by several authors through numerical simulations [44,20] and experiment [8,18]. In Fig. 3, we
simulate the motion of an arbitrary shaped vesicle, suspended in a simple shear flow and in Fig. 4 we show the streamlines
around the vesicle. The orientation angle and the tank-treading frequency of the vesicle were shown to be independent of the
shear rate in [20]. We verify this result in Fig. 5.

We study the stability and convergence properties of the proposed numerical time-stepping schemes I and II, using the
single vesicle shear flow as a test case.

Stability. In Table 5, we list the maximum allowable time-step, Dt, for different time-stepping schemes. To determine Dt,
we start from an arbitrarily large time step Dt0 and if the numerical simulation is stable, we set Dt ¼ Dt0. Otherwise, we re-
duce Dt0 by half and repeat the experiment. All calculations are run until the vesicle shape reaches steady state. In the case of
an explicit scheme, we can observe that asymptotically Dt / M�p, where p is greater than three. Hence, irrespective of the
accuracy requirements, we have to take a smaller time step to satisfy the stability criterion. The time step required for sta-
bility is asymptotically mesh-independent for both semi-implicit schemes. The maximum time step required for stability
depends on the shear rate. In low-shear regimes, Scheme I allows for larger time steps and, despite its higher cost per iter-
t = 0 0.004 0.008 0.02 0.06 0.08

Fig. 3. Snapshots of a vesicle suspended in a shear flow. In this experiment, the reduced area of the vesicle is 0.5, the shear rate v ¼ 250 and t is the
nondimensional time. Lagrangian particles on the vesicle membrane are grayscale colored. We can observe that once the vesicle reaches an equilibrium
shape, its interface undergoes a tangential motion, commonly known as the tank-treading motion.



Fig. 4. Snapshots of streamlines of the velocity field around the vesicle. The streamline pattern is in agreement with [44]. Notice that at equilibrium a vortex
is formed in the interior of the vesicle and the fluid surrounding the interface undergoes a tangential motion.
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Fig. 5. The angle of inclinations and the angular velocities of vesicles with different reduced areas suspended in shear flow for different shear rates. We set
the scaled velocity to Va ¼ V

R0 _c, where V is velocity averaged over all of the marker particles at the equilibrium configuration. We observe that both h and Va

are nearly independent of the shear rate. This result is in agreement with [20].

Table 5
Stable time step sizes for the first-order explicit and semi-implicit schemes. The initial vesicle configuration is shown in Fig. 3. We observe that the explicit
scheme has severe stability constraints on the time step size. The semi-implicit schemes, on the other hand, do not suffer from such high-order constraints.
Their stable time step size is inversely proportional to the shear rate. For lower shear rates, Scheme I allows for larger time steps relative to Scheme II and is
preferable. However, the lower computational cost per time step of Scheme II makes it the method of choice for higher-shear rates.

M Explicit scheme Semi-implicit Scheme I Semi-implicit Scheme II

v ¼ 0 10 100 0 10 100 0 10 100

32 3.90e�03 7.81e�03 9.76e�04 1 1.56e�02 9.76e�04 3.12e�02 1.56e�02 9.76e�04
64 9.76e�04 9.76e�04 4.88e�04 1 1.56e�02 9.76e�04 1.56e�02 7.81e�03 9.76e�04

128 6.10e�05 3.05e�05 6.10e�05 1 1.56e�02 9.76e�04 7.81e�03 7.81e�03 9.76e�04
256 3.81e�06 3.81e�06 3.81e�06 1 1.56e�02 9.76e�04 7.81e�03 7.81e�03 9.76e�04
512 2.38e�07 2.38e�07 2.38e�07 1 1.56e�02 9.76e�04 7.81e�03 7.81e�03 9.76e�04
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ation, it is preferable to Scheme II. For higher-shear regimes, the stable time steps are roughly the same so, since its cost per
iteration is smaller, Scheme II is preferable.

Convergence and complexity. The fluid enclosed in the vesicle is incompressible and the interface is locally-inextensible.
Therefore, the enclosed area and the perimeter of the vesicle should remain constant throughout the simulation. We report
the errors in preserving the perimeter and area of the vesicle (Fig. 3) in Table 6.

For the same setup and different shear rates, we report the errors in the positions of marker points on the vesicle, mea-
sured at the end of the simulation, in Fig. 6. While we observe high-order convergence in the case of high-shear rate flows,
we found that it is not the case for low-shear rate flows. Such erratic convergence behavior was also observed for the same
semi-implicit BDF schemes in Tornberg and Shelley [41] (p. 30), and in Kropinski [23] (p. 498).

The performance of the spectral preconditioners in accelerating the solution of the linear systems that appear in the time-
stepping algorithm is presented in Tables 7 and 8. The number of iterations are almost mesh-independent in the case of
Scheme II (Table 7). In Scheme I, the preconditioner significantly reduces the number of iterations (Table 8) but does not
eliminate the mesh-dependence of the total number of GMRES iterations entirely.

For the second test case, we consider a vesicle suspended freely in a stationary fluid. In the absence of inextensibility con-
straint, the equilibrium shape is a circle. However, since the interface is locally inextensible, equilibrium shapes can be



Table 6
Errors in the length and area of the vesicle measured at end of the simulation shown in Fig. 3. q is the convergence order of the semi-implicit time scheme, M is
the total number of discretization points on the vesicle, and Mt ¼ 0:004

M .

M j L� Lf j =L j A� Af j =A

q ¼ 1 2 3 4 q ¼ 1 2 3 4

32 8.19e�02 1.39e�04 9.27e�04 5.43e�04 3.70e�02 8.48e�04 3.75e�04 4.34e�04
64 4.28e�02 1.22e�04 7.88e�05 1.32e�05 1.96e�02 9.12e�05 2.29e�05 1.11e�05

128 2.13e�02 2.66e�05 8.96e�06 5.27e�07 1.04e�02 2.44e�05 1.59e�06 2.36e�08
256 1.06e�02 5.67e�06 1.17e�06 1.49e�07 5.36e�03 5.95e�06 2.05e�07 5.10e�09
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Fig. 6. Max-norm errors in computing the position xðt eqÞ of the vesicle at t ¼ teq, the time to reach an equilibrium shape. In the experiments with different
shear rates, the initial shape of the vesicle is set to the shape corresponding to t ¼ 0 in Fig. 3. The exact solution is computed by a finer discretization in
space and time ðM ¼ 256;Mt ¼ teq

10MÞ. For lower shear rates, we do not observe high-order convergence.

Table 7
Performance of the preconditioners described in Section 3.3 for solving the position update Eq. (12) (outer) and the inextensibility constraint (13) (inner), in the
simulation shown in Fig. 3. We report the maximum number of GMRES iterations over all the time steps. The outer GMRES tolerance is set to 10�8 and the inner
is set to 10�12.

Preconditioner None Spectral

M Mt = 1.90e�06 9.76e�04 1.90e�06 9.76e�04

Outer Inner Outer Inner Outer Inner Outer Inner

32 3 17 9 17 3 11 10 14
64 3 31 21 35 3 15 23 19

128 5 48 53 61 5 17 40 21
256 10 79 131 93 9 19 53 24
512 28 119 323 149 14 22 70 24

Table 8
The number of GMRES iterations required to solve the discrete evolution equation of semi-implicit scheme II (17). For each value of v, Mt is chosen to be the
maximum allowable listed in Table 5. The GMRES tolerance is set to 10�9.

Preconditioner None Spectral

M v ¼ 0 10 100 0 10 100

32 16 20 11 11 14 10
64 43 48 25 14 16 16

128 111 121 65 14 16 21
256 282 300 163 14 16 23
512 701 731 442 14 16 23

1024 1656 1699 1095 14 16 23
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different from circles. In [36], it was shown that these equilibrium shapes depend only on the reduced area of the vesicle and
are independent of the material properties of the interface and surrounding fluid. In Fig. 7, we plot the relaxation to equi-
librium of an arbitrary shaped vesicle of reduced area 0.33. In this experiment, we could take four orders of magnitude bigger
time step than a fully explicit scheme.

5.2. Multiple vesicles

Fig. 8 shows the streamline patterns for the fluid surrounding two and three vesicles. We let the vesicles relax to equi-
librium, and capture the velocity profile of the fluid at the nondimensional time t ¼ 0:1. Fig. 9 shows the streamlines when
the vesicles are suspended in a simple shear flow. We report the convergence results for the four-vesicle simulation (Fig. 9)
in Table 9. For the same simulation, we list the maximum number of GMRES iterations to solve the inextensibility constraint
t = 0 5 Δ t 10 Δ t 100 Δ t 200 Δ t
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Fig. 7. Snapshots of a freely suspended vesicle relaxing to equilibrium shape. In Figure (b), we plot the bending energy as a function of the number of time
steps. We have used M ¼ 256 points on the boundary. For this simulation, the explicit scheme requires approximately 106 time steps to reach equilibrium.

Fig. 8. Streamline patterns in the bulk and enclosed fluid when the vesicles are freely suspended ðv ¼ 0Þ at t ¼ 0:1. The background fluid velocity is
computed on a 1282 Cartesian-grid. The trapezoidal rule is used to discretize the equation for the velocity (11).

Fig. 9. Streamlines in the bulk and enclosed fluid multiple vesicles are suspended in simple shear flow ðv ¼ 250Þ. Initially, the collection of vesicles behaves
like a single vesicle; for instance, compare the streamlines at t = 6.25e�04 with Fig. 4). Once they are separated, each vesicle undergoes tangential motion
by itself.



Table 10
The number of GMRES iterations to solve the inextensibility constraint (24) in the multiple vesicle case shown in Fig. 9(a). � is the GMRES tolerance and M is the
number of discretization points per vesicle.

Preconditioner None Spectral

M � ¼ 10�6 � ¼ 10�12 � ¼ 10�6 � ¼ 10�12

64 47 83 12 27
128 66 123 10 26
256 97 183 10 26
512 142 270 10 24

1024 209 402 10 24

Table 11
CPU timings (in seconds) per time step as the number of vesicles is increased. The number of spatial discretization points per vesicle is fixed at M ¼ 64 and the
number of vesicles is increased from K ¼ 16 to K ¼ 4096. The computational times scale linearly with the problem size. All calculations were done in MATLAB

(linked to external libraries for the FFT and FMM).

64K 1024 4096 16384 65536 262144

With inextensibility 2.3 9.3 35.5 134 537
Without 0.9 2.2 8.9 36.9 164

Table 12
The number of GMRES iterations required to to solve the inextensibility constraint on multiple vesicles (24). In this experiment, K ¼ M

4 and the relative GMRES
tolerance is 10�6. In this experiment, the K vesicles are aligned along the x1-axis (similar to Fig. 9(a)). Clearly, the number of iterations do not grow with the
problem size.

MK 256 1024 4096 16384 65536

Iterations 14 11 11 10 10

Table 9
Relative errors measured at t = 6.25e�04, for the simulation shown in Fig. 9. M is the number of discretization points per each of the four-vesicles and q is the
convergence order of the scheme II.

M jL� Lf j=L jA� Af j=A

q ¼ 1 2 3 1 2 3

32 5.36e�004 4.98e�004 4.98e�004 1.69e�004 3.50e�004 3.50e�004
64 4.28e�005 2.27e�005 2.28e�005 1.18e�004 8.67e�006 6.48e�006

128 1.01e�005 6.27e�008 2.73e�008 6.82e�005 2.20e�006 9.73e�007
256 5.02e�006 1.76e�008 4.72e�009 3.42e�005 6.60e�007 2.25e�007
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(24), over all the time steps, in Table 10. Notice that preconditioning significantly reduces the number of iterations and pro-
vides mesh-independent convergence.

In integral equation based methods, computing the interaction forces between the vesicles tends to be the dominant part
of the computational cost at every time step. If there are K vesicles, the interactions grow as OðK2Þ. Using the FMM, the com-
putational cost of our scheme scales linearly with K. We report CPU timings per time step to solve the discretized governing
equations in Table 11. Another expensive step of our scheme is computing the tensions, given the interfacial positions of the
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Fig. 10. Simulation of multiple vesicles ðK ¼ 256Þ suspended in simple shear flow ðv ¼ 150Þ.
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K vesicles, by solving (24) through iterative methods. Using FFTs and FMM, the cost per iteration is OðMK log MÞ, which is
work-optimal up to a logarithmic factor. In our numerical experiments, we found that the spectral preconditioner performs
very well and yields mesh-independent convergence, see Table 12. Hence, the overall cost to solve for the tensions would be
OðMK log MÞ.

As a result of incorporating these fast algorithms, we are able to simulate the dynamics of large number of interacting
vesicles. We show simulations of interacting vesicles suspended in linear shear flow in Fig. 10 and quadratic flow in Fig. 1.

6. Conclusions and future work

We have presented two semi-implicit schemes to simulate the motion of inextensible vesicles suspended in a viscous
fluid. Unlike a fully explicit scheme, these schemes do not exhibit a mesh-dependent high-order stability constraint on
the time step size. The only stability restriction on is that the time step must be inversely proportional to the shear rate.
For several important cases, we have numerically demonstrated that four orders of magnitude bigger time step can be taken
when compared to a fully explicit scheme, even for a modest (32) number of spatial discretization points. Our schemes ex-
hibit high-order accuracy in space and time. We have presented efficient low-cost preconditioners to solve the discrete evo-
lution equations by iterative solvers. We incorporated FMM to compute the interaction forces in a suspension of large
number of vesicles. We included analytical results for the unit circle case, and we conducted numerical studies that confirm
our convergence and complexity estimates.

The vesicle–vesicle interaction forces are computed using the trapezoidal rule, which yields spectral accuracy for dilute
suspension of vesicles. However, when two vesicles come closer, we need to modify the quadrature rules to compute the
interaction forces because of the logarithmic singularity of the Stokes kernel. To resolve this issue, we plan to explore cor-
rection methods like the one suggested in [7]. One additional extension is to circumvent the time stability dependence on the
shear rate. Such an algorithm however, would require nonlinear solvers and contact detection algorithms that fully couple
the vesicle position updates.

Our long-term goal is to conduct simulations of deformable incompressible vesicles in three-dimensions. We plan to built
on our past work on fast Stokes solvers in complex geometries [42] that includes accurate quadratures, surface parameter-
ization, and FMM. Nevertheless, computing high-order derivatives in high-accuracy will be challenging; and unlike the 2D
case, the incompressibility constraint does not prevent mesh distortion: accurate tracking the moving interface will require
additional work. Furthermore, the bending and stretching operators have more complicated form and coming up with effec-
tive linearizations and preconditioners will be more challenging.
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Appendix A. Variational formulation

For completeness, we present the derivations for the expressions for fb and fr. Without loss of generality, let jB ¼ 1 and
let the interface perimeter be equal to one. The bending energy is defined by eðxÞ ¼ 1

2

R 1
0 j2ds. We introduce a perturbation dx

and we define �x to be the perturbed interface. We use a Lagrangian parameterization in which the perturbed boundary is a
function of the arclength ‘s’ defined on the original configuration. We introduce the following notation: �xðsÞ ¼ xðsÞ þ �yðsÞ
and y ¼ utþ vn, that is, u and v are the tangential and normal perturbations. Assuming the normal to the boundary is point-
ing outwards, we can derive the following relations:
�xs ¼ xs þ �ys; �xss ¼ �jnþ �yss; ð26Þ
ys ¼ ðus þ vjÞtþ ðv s � ujÞn; yss ¼ ðuss þ 2jv s þ jsv � j2uÞtþ ðv ss � 2jusj2v � jsuÞn: ð27Þ
Let �s be the arclength parameter in the deformed configuration. Then, we have
�ss ¼ j�xsj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�ðt � ysÞ

p
� 1þ �ðus þ vjÞ: ð28Þ
The bending energy in the deformed state is given by �e ¼ 1
2

R 1
0

�j2j�xsjds. The curvature ð�jÞ of the deformed boundary is given

by �j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x2

ss �x2
s �ð�xs ��xssÞ2

p
j�xs j3

. Using (26), (27) and neglecting the higher order terms in �, we get
�j2 ¼ j2 � 2�ðv ss þ j2v � juÞ: ð29Þ
The variation in the bending energy is computed as,
de ¼ 1
2

Z 1

0
ð�j2j�xsj � j2Þds ¼ �

2

Z 1

0
ðj2us þ 2jjsu� j3v � 2jvssÞds

¼ �
2

Z 1

0
ð�2jjsuþ 2jjsu� j3v � 2kssvÞds and integrating by parts de ¼ �

Z 1

0
jss þ

j3

2

� �
n � dxds: ð30Þ
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Hence, fb ¼ � de
dx ¼ ðjss þ j2

2 Þn. However, if the vesicle is locally-inextensible, other equivalent forms of fb exist. The local inex-
tensibility constraint can be enforced by requiring that j�xsj ¼ 1. From Eq. (28), we can infer that us þ jv ¼ 0. Consider an
interfacial force of the form f ¼ ðhðsÞxsÞs, where hðsÞ is a scalar function. The energy due to this force is given by
de ¼

R 1
0 ðhxsÞs � dxds: Integrating by parts and substituting for dx, we get
de ¼ 1
2

Z 1

0
ðhxsÞs � dxds ¼ �1

2

Z 1

0
hxs � ðdxÞs ds: ð31Þ
From Eq. (27), the tangential component of ðdxÞs is us þ jv , which vanishes for a locally-inextensible vesicle. Therefore,
interfacial forces of the form ðhxsÞs will not do any work and hence such forces can be added to fb. We have set the
bending force as �xssss, which is obtained by adding ð3j2xsÞs

2 to fb. In [6], the bending force jssnþ jjst is obtained by add-
ing � ðj

2xsÞs
2 to fb.

Appendix B. Analytic construction on the unit circle

Here we construct analytic expressions for the operators S;L;B, and M defined in in Section 2.
Stokes single-layer potential operator ðSÞ. On the unit circle, x and y used in Eq. (4) can be written as ½cos s; sin s� and

½cos t; sin t� respectively. Then, the components of the Stokes kernel can be expanded as follows:
log q ¼ 1
2

logð2� 2 cosðs� tÞÞ ¼ �
X
jkj>0

1
2jkj e

ikðt�sÞ; and ð32Þ

r� r
q2 ¼ �

1
2

cosðsþ tÞ � 1 sinðsþ tÞ
sinðsþ tÞ �1� cosðsþ tÞ

� 	
: ð33Þ
Let S1½f� ¼
R 2p

0 log qIf dt and S2½f� ¼
R 2p

0
r�r
q2 f dt, so that S½f� ¼ S1½f� þ S2½f�. The operator S2 acts only on the first three low-

frequency components and zeros all the other components, therefore, we restrict our attention to S1½f�.
S1½f� ¼
X
jkj>0

1
8pjkj e

iks
Z 2p

0

e�ikt 0
0 e�ikt

" #X
m2Z

v̂1m

v̂2m

� 	
eimt dt; ð34Þ

¼
X
jkj>0

1
4jkj e

iks v̂1k

v̂2k

� 	
: ð35Þ
where v̂m ¼ ðv̂1m; v̂2mÞ, m 2 Z are the Fourier components of f.
Hence, S1½f� is diagonalizable with the Fourier basis and the eigenvalues are given by 1

4jkj

n o
k2Z

.

Bending operator ðBÞ. We write B ¼ B1 þ B2, where B1 ¼ S1½fb� and B2 ¼ S2½fb�. By substituting f ¼ �xssss in (35), we obtain
the spectrum of B1 as K½B1� ¼ � k4

4jkj

n o
k2Z

.

Inextensibility operator ðLÞ. Expanding r with Fourierbasis, we get
ðrxsÞs ¼
X1

k¼�1
r̂keiks �ik sin s� cos s

ik cos s� sin s

� 	
¼ �r̂0

cos s

sin s

� 	
þ
X
jkj>0

k
2

eiks r̂kþ1 � r̂k�1

iðr̂kþ1 þ r̂k�1Þ

� 	
: ð36Þ
We write L ¼ L1 þ L2, where L1r ¼ DS1½ðrxsÞs� and L2 ¼ DS2½ðrxsÞs�. Using Eqs. (35) and (36), we get
L1½r� ¼ D � r̂0

4
cos s

sin s

� 	
þ
X
jkj>0

k
8jkj e

iks r̂kþ1 � r̂k�1

iðr̂kþ1 þ r̂k�1Þ

� 	 !
ð37Þ

¼ � r̂0

4
� 1

8

X
jkj>0

k2

jkj r̂k�1eiðk�1Þs þ r̂kþ1eiðkþ1Þs� �
; ð38Þ

¼ � r̂0

4
� 1

4

X
jkj>0

jkjr̂keiks: ð39Þ
By the change of variable s ¼ sþ t, we compute L2r as
L2½r� ¼ D
X
k2Z

r̂k

8p
e�iks

Z 2p

0

�1þ cos s sin s
sin s �1� cos s

� 	 �ik sinðs� sÞ � cosðs� sÞ
ik cosðs� sÞ � sinðs� sÞ

� 	
eiks ds; ð40Þ

¼ �1
8

D
�r̂�1 � r̂1 � 2r̂0 cos s

ið�r̂1 þ r̂�1Þ � 2r̂0 sin s

� 	
¼ r̂0

4
: ð41Þ
Therefore, the eigenvectors of L2 are feiktgk2Z and the only non–zero eigenvalue is k0 ¼ 1=4, corresponding to zero frequency.
From (39) and (41), we conclude that the eigenvalues of L are � jkj4

n o
k2Z

and hence L has a null space of dimension one (con-
stant vectors).
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Stretching operator ðMÞ. We state the result without the details, which follow the previous derivations. First, we analyze

the action of the operators D; T . We define M¼ TL�1D and rewrite the operators as D ¼ ½D1 D2 �; T ¼ T 1

T 2

� 	
and

M¼ M11 M12

M21 M22

� 	
. Then, the nonzero components of M are given by

� D1
k;k�1:kþ1 ¼ � k�1

2 0 kþ1
2

� �
; D2

k;k�1:kþ1 ¼ iðk�1Þ
2 0 iðkþ1Þ

2

h i
:

� T 1
k;k�1:kþ1 ¼ ks

8jkj ½�1 0 1� ; T 2
k;k�1:kþ1 ¼ i ks

8jkj ½1 0 1�:

� M11
k;k�2:kþ2 ¼ ks

8jkj
k�2
jk�1j 0 �k 1

jk�1j þ 1
jkþ1j


 �
0 kþ2

jkþ1j

h i
:

� M12
k;k�2:kþ2 ¼ i ks

8jkj � k�2
jk�1j 0 k 1

jk�1j � 1
jkþ1j


 �
0 kþ2

jkþ1j

h i
; M21

k;k�2:kþ2 ¼M
12
k;k�2:kþ2:

� M22
k;k�2:kþ2 ¼ k

8jkj � k�2
jk�1j 0 �k 1

jk�1j � 1
jkþ1j


 �
0 � kþ2

jkþ1j

h i
where we use l; i : j to denote the elements of the l-th row of the

(infinite) matrix M with indices from i to j.

We constructed the matrix resulting from the finite-dimensional approximation ofM and computed the eigenvalues. In
Table 13, we list the highest magnitude of the eigenvalues for different discretizations.

Appendix C. Quadrature

Here, we provide more details on the computation of the logarithmic potential
Table 1
The ma

N

jkjmax

Table 1
Relative

N

q ¼ 4
q ¼ 8
q ¼ 16
/½f �ðxÞ ¼
Z 2p

0
log qf ðaÞsa da; qðaÞ ¼ kx� yðaÞk2; ð42Þ
with yðaÞ : ½0;2p� ! c. When x 2 c, the integrand has a logarithmic singularity. Let x ¼ yð0Þ and assume that c is a simple
closed curve with no self-intersections. Then, the integrand in (42) becomes singular as a approaches 0 or 2p. We split
the potential as / ¼ /1 þ /2, where /1½f � ¼

R p
0 log qfsa da and /2½f � ¼

R 2p
p logqfsa da. We write /1 as
/1½f �ðxÞ ¼
Z p

0
log aþ log

q
a


 �
f ðaÞsa da: ð43Þ
If we prove that logðq=aÞ is a smooth function, then we can use the high-order quadrature rules of [1] (specifically, Table 8 of
[1]). By a Taylor’s expansion of q around zero, we have
qðaÞ
a
¼ qað0Þ þ

qaað0Þ
2

aþ � � � ð44Þ
From (42) and by substituting x ¼ yð0Þ, we get
qa ¼
ðyðaÞ � yð0ÞÞ � ys

kyðaÞ � yð0Þk2
sa: ð45Þ
By definition, on a smooth planar curve, lima!0
yðaÞ�yð0Þ
kyðaÞ�yð0Þk2

¼ ysð0Þ. Therefore, lima!0
q
a ¼ sað0Þ. Since, sa is a nonzero function,

we conclude that logðq=aÞ is smooth.
By a transformation of variables a ¼ 2p� b, we get /2½f �ðxÞ ¼ �

R p
0 logqfsb db. This is in the same form as (43) and hence

can be computed with high-accuracy using the quadrature rules of [1]. The convergence of the quatrature rule as a function
of q and N is reported in Table 14 for the case of constant layer density.
3
ximum magnitude of the eigenvalues of a N-dimensional approximation of M on the unit circle.

32 128 1024

0.5 0.5 0.5

4
errors in computing S½f� of f ¼ 1, defined on the boundary of the starfish vesicle shown in the adjacent figure.

32 64 128 256 512

9.23e�003 4.93e�004 1.38e�005 8.03e�007 2.61e�008
9.73e�003 5.13e�004 6.68e�006 1.52e�008 2.52e�011
5.91e�001 4.98e�004 6.57e�006 8.70e�009 2.43e�013
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Appendix D. Fast summation for stokes operator

Let Gl denote the fundamental solution for the Laplacian kernel, that is, Glðx; yÞ ¼ � 1
4p log kx� yk. The FMM [14] acceler-

ates the computation of the single layer potential
R
c Glðx; yÞuðyÞdy. Here, we show that the fast evaluation of the Stokes sin-

gle-layer can be accomplished using the FMM. We shall need the following identity:
r� r
q2 v ¼ r

q2 ðr � vÞ ¼ ðr � vÞrx log q: ð46Þ
The convolution of any vector field v(y) with the Stokes kernel can be written as,
S½v�ðxÞ ¼
Z

c
Glðx; yÞv þ

1
4p

Z
c

r� r
q2 v ¼

Z
c

Glðx; yÞv þ
Z

c
rxGlðx; yÞðv � x� v � yÞ

¼
Z

c
Glðx; yÞv þ x1rx

Z
c

Glðx; yÞv1 þ x2rx

Z
c

Glðx; yÞv2 �rx

Z
c

Glðx; yÞðv � yÞ
Therefore, we only need fast evaluation of the following single-layer Laplace potentials,

1.
R
c Glðx; yÞv1,

2.
R
c Glðx; yÞv2,

3.
R
c Glðx; yÞðv � yÞ.
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