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a b s t r a c t

This tutorial review is intended to provide an accessible and self-contained introduction

to the discipline of electromagnetic scattering by nonspherical particles and discuss the

most general ways in which the scattering and absorption properties of particles and

small random particle groups are affected by particle morphology. The main focus is on

how nonsphericity influences our way of describing and quantifying electromagnetic

scattering by particles and how it is likely to affect, both qualitatively and quantitatively,

the principal theoretical descriptors of scattering and the relevant optical observables.

Several quantitative examples included in this review are the result of a controlled

laboratory measurement or a numerically exact theoretical computation and are

intended to illustrate the main theses and conclusions.
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1. Introduction

In his famous paper of 1908, Mie [1] developed a comprehensive theory of electromagnetic scattering by a perfectly
spherical homogeneous particle and used it to explain several experimental facts pertaining to the optics of colloidal gold
[2]. A small discrepancy between the measured and calculated polarization was interpreted by Mie as a residual effect of
nonsphericity of the gold microparticles (see Fig. 1a). The final sentence of his paper reads: ‘‘For the sake of completeness of
the theory, it is absolutely necessary to investigate also the behavior of ellipsoidal particles.’’ It had taken several decades to
accomplish that simply stated goal [3].

Nonspherical particles are abundant in natural and artificial environments (Fig. 1). Furthermore, it has become
universally recognized that nonsphericity (or more generally, complex morphology) of particles has a profound effect on
their scattering and absorption properties [9]. Yet our knowledge and understanding of how nonspherical particles scatter
and absorb electromagnetic energy remains incomplete and in some respects unsatisfactory.

The main goal of this tutorial review is to provide an accessible introduction to the subject of electromagnetic scattering
by nonspherical particles and discuss the most general and typical ways in which the scattering and absorption properties
of particles are affected by deviations of the particle morphology from that of a perfect sphere. Specifically, I will focus on
Fig. 1. Examples of man-made and natural small particles: (a) 40-nm gold particles [3], (b) Sahara desert sand particles [4], (c) dry sea-salt particles [5],

(d) fly ash particles [6], (e) a soot aggregate [7], (f) a 6-mm-diameter falling raindrop, and (g) cirrus-cloud crystals [8].



ARTICLE IN PRESS

M.I. Mishchenko / Journal of Quantitative Spectroscopy & Radiative Transfer 110 (2009) 808–832810
how nonsphericity influences our way of describing and quantifying electromagnetic scattering by particles and how it is
likely to affect, both qualitatively and quantitatively, the principal theoretical descriptors of scattering and the relevant
optical observables.

Given how vast the subject of electromagnetic scattering by nonspherical particles has become, it can no longer be
covered comprehensively in a review paper and even in one monograph. Therefore, this tutorial paper has several
fundamental restrictions. First of all, I will not discuss specifically the commonly used theoretical and experimental
techniques for the computation and measurement of electromagnetic scattering since those are well covered in the
monographs [9–18] as well as in recent reviews of exact numerical methods by Kahnert [19] and Wriedt [20]. Secondly, I
consider only frequency-domain scattering by assuming that all sources and fields vary in time harmonically and do not
discuss transient electromagnetic phenomena [11,21], in particular the scattering of ultra-short laser pulses. Thirdly, I
consider only electromagnetic scattering in the far-field zone of a particle. Near-field scattering effects are also very
interesting and important, especially in connection with the rapidly developing discipline of nano-optics [22], and have
become the subject of intense research. An instructive introduction to the physics of the near field is provided by [23].
Fourthly, I will focus on the effects of nonsphericity on single scattering of light by individual particles and small particle
groups. In other words, manifestations of particle nonsphericity in electromagnetic scattering by large random particle
groups such as clouds, particulate surfaces, and particle suspensions will not be discussed. Finally, there will be no in-depth
discussion of the various applications of electromagnetic scattering by nonspherical particles in science and engineering. A
plentiful source of that information is the collection of monographs [9,24–34] supplemented by several special issues of
JQSRT published over the past years [35–49].

Essentially all quantitative illustrative examples of electromagnetic scattering given in this review are either the result
of a direct measurement performed in a controlled laboratory setting or a numerically exact theoretical computation. By
giving preference to exact theoretical results I do not mean to question the importance and utility of various approximate
theoretical approaches: in many cases an approximate technique is the only practical way of describing electromagnetic
scattering by particles. Instead, I simply follow Mie’s philosophy of applying an exact theoretical approach to a somewhat
idealized particle morphology rather than an approximate technique to a seemingly more realistic particle model. The
virtues of this approach are rather obvious. First, a numerically exact result remains exact irrespective of what specific
technique was used to obtain it and is not subject to future change or improvement besides, perhaps, infrequent attempts
to re-compute it with one or two more decimals. As a consequence, the basic conclusions drawn in this review are also
unlikely to change. Secondly, analyses of measurement results based on an exact theoretical technique are more definitive
since they are not affected by uncertainties regarding the range of applicability and numerical accuracy of an approximate
technique and/or the likely physical meaning of ad hoc model parameters not following directly from the Maxwell
equations. Thirdly, the actual morphology of many natural and artificial particles is so complex that claims of the ability to
model these morphologies ‘‘more realistically’’ with an approximate scattering technique are justified less often than not.
This latter aspect of modeling electromagnetic scattering by ensembles of complex nonspherical particles will be discussed
specifically in Section 11 in connection with the so-called statistical approach.
2. Electromagnetic scattering by a fixed particle

The gist of the fundamental concept of electromagnetic scattering by a fixed particle used in Mie’s paper is explained in
[2,50] and will not be discussed in much detail here. In brief, we assume that the unbounded host medium surrounding the
particle is homogeneous, linear, isotropic, and nonabsorbing. The particle is illuminated by a plane electromagnetic wave
given by

Einc
ðr; tÞ ¼ Einc

0 expðikinc
� r� iotÞ

Hinc
ðr; tÞ ¼ Hinc

0 expðikinc
� r� iotÞ

9=
; r 2 <3, (1)

with constant amplitudes Einc
0 and Hinc

0 ; where E is the electric and H the magnetic field, t is time, r is the position (radius)
vector, o is the angular frequency, kinc is the (real-valued) wave vector, i ¼ ð�1Þ1=2; and <3 denotes the entire three-
dimensional space. Alternatively, it can be illuminated by a quasi-monochromatic parallel beam of light given by

Einc
ðr; tÞ ¼ Einc

0 ðtÞ expðikinc
� r� iotÞ

Hinc
ðr; tÞ ¼ Hinc

0 ðtÞ expðikinc
� r� iotÞ

9=
; r 2 <3, (2)

where fluctuations in time of the complex amplitudes of the electric and magnetic fields, Einc
0 ðtÞ and Hinc

0 ðtÞ; around their
respective mean values occur much more slowly than the harmonic oscillations of the time factor expð�iotÞ.

These assumptions imply that all sources and fields are time harmonic and allow one to fully describe the total
electromagnetic field at any moment in time everywhere in space as the solution of the frequency-domain macroscopic
differential Maxwell equations [21,51]. Specifically, it is convenient to factor out the time-harmonic dependence of the
electric and magnetic fields: Eðr; tÞ ¼ expð�iotÞEðrÞ and Hðr; tÞ ¼ expð�iotÞHðrÞ. The electric and magnetic field amplitudes
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E(r) and H(r) can then be found from the following curl equations:

r � EðrÞ ¼ iom0HðrÞ

r �HðrÞ ¼ �io�1EðrÞ

)
r 2 VEXT, (3)

r � EðrÞ ¼ iom0HðrÞ

r �HðrÞ ¼ �io�2ðr;oÞEðrÞ

)
r 2 V INT. (4)

Here VINT is the cumulative ‘‘interior’’ volume occupied by the scattering particle; VEXT is the infinite exterior region such
that V INT [ VEXT ¼ <

3; the host medium and the scattering object are assumed to be nonmagnetic; m0 is the permeability of
a vacuum; e1 is the real-valued electric permittivity of the host medium; and �2ðr;oÞ is the complex permittivity of the
particle. Since the first relations in Eqs. (3) and (4) yield the magnetic field provided that the electric field is known
everywhere, the solution of Eqs. (3) and (4) is usually sought in terms of only the electric field. In order to have a unique
solution, Eqs. (3) and (4) must be supplemented by appropriate boundary conditions at the particle surface as well as by
the radiation conditions at infinity [52,53].

Note that although the amplitudes E(r) and H(r) do not depend on time explicitly, they can fluctuate randomly if the
incident light is quasi-monochromatic (see Eq. (2)). However, such fluctuations are assumed to occur much more slowly
than the time-harmonic oscillations described by the factor expð�iotÞ; which justifies the use of the frequency-domain
Maxwell equations at any given moment.

Eq. (1) represents the transport of electromagnetic energy from one point to another in the absence of the particle and
embodies the concept of a perfectly monochromatic parallel beam of light. In particular, the plane electromagnetic wave
propagates in an infinite nonabsorbing medium without a change in its intensity or polarization state, as shown
schematically in Fig. 2a. However, the presence of the particle modifies the electromagnetic field that would exist
otherwise. It is this modification that is called electromagnetic scattering [2,50]. It is customary to call the difference
between the total field in the presence of the object (i.e., E(r,t)) and the original field that would exist in the absence of the
object (i.e., Einc

ðr; tÞ) the scattered field and denote it Esca
ðr; tÞ (see Fig. 2b). Thus, the total field in the presence of the object

is intentionally represented as the sum of the respective incident (original) and scattered fields:

Eðr; tÞ ¼ Einc
ðr; tÞ þ Esca

ðr; tÞ. (5)

Of course, one can think of incident fields other than a plane wave and thereby generalize the concept of scattering. In
this regard, an especially convenient framework is provided by the so-called volume integral equation (VIE) which follows
from the frequency-domain macroscopic Maxwell equations, is exact, and incorporates the boundary and radiation
conditions [54,55]:

EðrÞ ¼ Einc
ðrÞ þ k2

1

Z
V INT

dr0 G
2

ðr; r0Þ � Eðr0Þ½m2ðr0Þ � 1�

¼ Einc
ðrÞ þ k2

1 I
2

þ
1

k2
1

r �r

 !
�

Z
V INT

dr0Eðr0Þ
expðik1jr� r0jÞ

4pjr� r0j
½m2ðr0Þ � 1�; r 2 <3, (6)
),(),(),( incsca ttt rrr −= EEE

),(inc trE

),(inc trE

Far-field zone

Fig. 2. Scattering by a fixed particle. In this case the particle consists of three distinct monomers in contact.
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where the common factor expð�iotÞ is omitted, mðr0Þ ¼ ½�2ðr0;oÞ=�1�
1=2 is the refractive index of the interior relative to that

of the host exterior medium, k1 ¼ jk
inc
j ¼ oð�1m0Þ

1=2 is the wave number in the host medium, G
2

ðr; r0Þ is the free-space
dyadic Green’s function, I

2

is the identity dyadic, and � is the dyadic product sign. One can see that the VIE expresses the
total field everywhere in space in terms of the total internal field. The latter is not known in general and must be found by
solving the VIE either analytically or numerically. It is, therefore, convenient to express the scattered electric field directly
in terms of the incident field:

Esca
ðrÞ ¼

Z
V INT

dr0 G
2

ðr; r0Þ �
Z

V INT

dr00 T
2

ðr0; r00Þ � Einc
ðr00Þ; r 2 <3, (7)
Dete
cto

r 2

Detector 1

In
ci
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Fig. 3. (a) and (b) The readings of detectors 1 and 2 of electromagnetic energy in the presence of a particle differ from those in the absence of the particle,

(c) light scattering setup built at the University of Amsterdam (http://www.astro.uva.nl/scatter). On the left is a mobile detector sliding along the ring. The

detector on the right is affixed to the ring and serves as a stability monitor. In the middle of the photograph is the nozzle of the aerosol generator, and the

bright red spot is where the particles exiting the nozzle cross the beam from the NeHe laser seen in the back, and (d) microwave scattering facility built at

the University of Florida (http://www.astro.ufl.edu/�gustaf/facilities/LAB-ASTRO.html). The fixed scattering object in the center is illuminated by a

transmitting antenna affixed to a stationary, vibration-dampened, and temperature-stabilized mount. A mobile but otherwise similarly mounted

receiving antenna to the left is identical to the transmitting antenna.

http://www.astro.uva.nl/scatter
http://www.astro.ufl.edu/~gustaf/facilities/LAB-ASTRO.html
http://www.astro.ufl.edu/~gustaf/facilities/LAB-ASTRO.html
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where T
2

is the so-called dyadic transition operator of the scattering object [56]. By substituting Eq. (7) in Eq. (6) we obtain
the following equation for T

2

:

T
2

ðr; r0Þ ¼ k2
1½m

2ðrÞ � 1�dðr� r0Þ I
2

þk2
1½m

2ðrÞ � 1�

Z
V INT

dr00 G
2

ðr; r00Þ � T
2

ðr00; r0Þ; r; r0 2 V INT, (8)

where d(r) is the three-dimensional delta function.
It has not been proven mathematically that Eq. (8) has a solution and that this solution is unique. Therefore, one has to

believe in the existence and uniqueness of solution based on what is usually called ‘‘simple physical considerations’’.
However, the indisputable advantages of Eqs. (7) and (8) are that T

2

is the property of the scattering object only, is
independent of the incident field, and provides a complete description of electromagnetic scattering by the object for any
incident time-harmonic field.

The very nature of electromagnetic scattering makes any measurement of scattering a two-stage procedure, as
illustrated in Fig. 3. First one must take the readings of detectors of electromagnetic energy in the absence of the scattering
particle (Fig. 3a) and then follow up by taking the readings of the same detectors in the presence of the particle (Fig. 3b).
The differences between the readings quantify the scattering and absorption properties of the particle and can be
interpreted in order to infer the particle microphysical properties. Sometimes the first stage is implicit (e.g., it is
often bypassed by assuming that the reading of detector 2 in the absence of the scattering object is zero), while sometimes
it is dubbed ‘‘detector calibration’’. However, this does not change the two-stage character of any scattering measurement.
Two classical implementations of this scattering measurement concept are the laboratory setups shown in Figs. 3c
and d [57–60].

The ubiquitous presence of electromagnetic scattering in natural and artificial environments explains its fundamental
importance in accurate modeling of electromagnetic energy transport for various science and engineering applications. The
same is true of the situations in which electromagnetic scattering is induced artificially and used for particle
characterization purposes in laboratory, field, and remote-sensing experiments [9,24–34]. There are several exact
theoretical and numerical techniques for the computation of the scattered field. These techniques have somewhat different
ranges of applicability in terms of the object morphology and object size relative to the incident wavelength and are
reviewed thoroughly in [9–20].

3. Far-field scattering

An important property of the dyadic Green’s function is the asymptotic behavior

G
2

ðr; r0Þ !
r!1
ð I
2

�r̂� r̂Þ
expðik1rÞ

4pr
expð�ik1r̂ � r0Þ, (9)

where r ¼ jrj and r̂ ¼ r=r. By placing the origin of the laboratory coordinate system O close to the geometrical center of the
scattering particle, as shown in Fig. 4, and substituting Eqs. (1) and (9) in Eq. (7), we derive [15,55]

Esca
ðrÞ !

r!1

expðik1rÞ

r
Esca

1 ðn̂
sca
Þ ¼

expðik1rÞ

r
A
2

ðn̂
sca
; n̂

inc
Þ � Einc

0 ; n̂
sca
� Esca

1 ðn̂
sca
Þ ¼ 0. (10)
O

r

z

x

rn ˆˆ sca=
incn̂

Observation point

y

Fig. 4. Scattering in the far-field zone of the particle.
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Here n̂
inc
¼ kinc=k1 is a unit vector in the incidence direction, n̂

sca
¼ r̂ is a unit vector in the scattering direction, and A

2

is
the scattering dyadic such that

n̂
sca
� A
2

ðn̂
sca
; n̂

inc
Þ ¼ A

2

ðn̂
sca
; n̂

inc
Þ � n̂

inc
¼ 0, (11)

where 0 is a zero vector. The scattering dyadic has the dimension of length. It describes the scattering of a plane
electromagnetic wave in the far-field zone of the object where the scattered electromagnetic wave propagates away from
the object, with its electric and magnetic field vectors vibrating in the plane perpendicular to the propagation direction and
decaying inversely with distance from the object.

The conditions defining the far-field zone are as follows [61]:

k1ðr � aÞb1, (12)

rba, (13)

rb
k1a2

2
, (14)

where a is the radius of the smallest circumscribing sphere of the entire scattering particle centered at O. The principal
convenience of the far-field approximation is that it allows one to treat the entire particle essentially as a point source of
scattered radiation and reduces the scattered field to a simple outgoing spherical wave, as shown schematically in Fig. 2b.
In addition, Eq. (11) shows that only four out of the nine components of the scattering dyadic are independent in the
spherical polar coordinate system centered at the origin (see Fig. 4). It is therefore possible to introduce a 2�2 amplitude
scattering matrix S expressing the y- and j-components of the incident plane wave in the y- and f-components of the
scattered spherical wave:

Esca
ðrn̂

sca
Þ ¼

expðik1rÞ

r
Sðn̂

sca
; n̂

inc
ÞEinc

0 . (15)

Here E denotes a two-element column formed by the y- and j-components of the electric field vector:

E ¼
Ey

Ej

" #
, (16)

y 2 ½0;p� is the polar (zenith) angle measured from the positive z-axis and j 2 ½0;2pÞ is the azimuth angle measured from
the positive x-axis in the clockwise direction when looking in the direction of the positive z-axis (see Fig. 5). The amplitude
scattering matrix has the dimension of length and depends on the directions of incidence and scattering as well as on the
size, morphology, and composition of the scattering object and its orientation with respect to the reference frame. It also
depends on the choice of the origin of the reference frame with respect to the object.

4. Optical observables

The typically high frequency of time-harmonic electromagnetic oscillations makes it virtually impossible to measure
the electric and magnetic fields associated with the incident and scattered waves using traditional optical instruments.
Therefore, in order to make the theory applicable to analyses of actual optical observations, the scattering phenomenon
must be characterized in terms of derivative quantities that can be measured directly (i.e., actual optical observables).
The conventional approach to address this problem was proposed by Stokes [62]. He introduced four real-valued quantities
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I, Q, U, and V which have the dimension of monochromatic energy flux (W m�2) and fully characterize a transverse
electromagnetic wave inasmuch as it is subject to practical optical analysis. These quantities, called the Stokes parameters,
are always defined with respect to a plane containing the direction of wave propagation, form the four-element Stokes
column vector I, and carry information about both the total intensity, I, and the polarization state of the wave. The Stokes
parameters are intentionally defined such that the rapidly oscillating time-harmonic factor expð�iotÞ vanishes upon
multiplication by its complex-conjugate counterpart: expð�iotÞ½expð�iotÞ�� 	 1; where the asterisk denotes complex
conjugation. The ellipsometric content of the Stokes parameters of monochromatic as well as quasi-monochromatic light is
discussed in detail in [15,55].

In the case of far-field scattering, both the incident plane wave and the outgoing scattered spherical wave are transverse.
This allows one to define the corresponding sets of Stokes parameters:

Iinc
¼

Iinc

Q inc

Uinc

V inc

2
66664

3
77775 ¼

1

2

ffiffiffiffiffiffi
�1

m0

r
Einc

0y ðE
inc
0y Þ
�
þ Einc

0jðE
inc
0jÞ
�

Einc
0y ðE

inc
0y Þ
�
� Einc

0jðE
inc
0jÞ
�

�Einc
0y ðE

inc
0jÞ
�
� Einc

0jðE
inc
0y Þ
�

i½Einc
0jðE

inc
0y Þ
�
� Einc

0y ðE
inc
0jÞ
�
�

2
6666664

3
7777775

, (17)

Isca
ðrn̂

sca
Þ ¼

Isca

Q sca

Usca

Vsca

2
6664

3
7775 ¼ 1

r2

1

2

ffiffiffiffiffiffi
�1

m0

r Esca
1y ðE

sca
1y Þ
�
þ Esca

1j ðE
sca
1j Þ
�

Esca
1y ðE

sca
1y Þ
�
� Esca

1j ðE
sca
1j Þ
�

�Esca
1y ðE

sca
1j Þ
�
� Esca

1f ðE
sca
1y Þ
�

i½Esca
1j ðE

sca
1y Þ
�
� Esca

1y ðE
sca
1j Þ
�
�

2
666664

3
777775. (18)

Then the responses of well-collimated polarization-sensitive detectors of electromagnetic energy located in the far-field
zone of the particle can be described in terms of the 4� 4 phase and extinction matrices as follows.

Detector 2 in Fig. 3b collects only the scattered light, and its polarized reading is fully characterized by the product of
the phase matrix Z and the Stokes column vector of the incident wave:

Signal2 ¼ DSIsca
ðrn̂

sca
Þ ¼

DS

r2
Zðn̂

sca
; n̂

inc
ÞIinc; n̂

scaan̂
inc

, (19)

where DS is the area of the sensitive surface of the detector. The elements of the phase matrix have the dimension of area
and are quadratic combinations of the elements of the amplitude scattering matrix Sðn̂

sca
; n̂

inc
Þ [15,55]. One can see that, in

general, the phase matrix relates the Stokes parameters of the incident and scattered waves defined with respect to
different reference planes: the meridional plane of the incidence direction n̂

inc
and that of the scattering direction n̂

sca
;

respectively. This means that the phase matrix does not represent a tensor.
Unlike detector 2, detector 1 in Fig. 3b is facing the incident light, and, accordingly, its polarized reading consists

of three parts:
1.
 the one due to the incident light;

2.
 the one due to the forward-scattered light; and

3.
 the one due to the interference of the incident wave and the wave scattered by the object in the exact forward direction:

Signal1 ¼

Z
DS

dSIðrr̂Þ ¼ DSIinc
þ
DS

r2
Zðn̂

inc
; n̂

inc
ÞIinc
� Kðn̂

inc
ÞIinc (20)

¼
r!1

DSIinc
� Kðn̂

inc
ÞIinc (21)

[15,55]. The third part is described by minus the product of the extinction matrix K and the Stokes column vector of the
incident wave. The elements of the extinction matrix also have the dimension of area and are linear combinations of the
elements of the forward-scattering amplitude matrix Sðn̂

inc
; n̂

inc
Þ.

It is worth repeating that in many respects, the measurement situation depicted in Figs. 3a and b embodies the practical
meaning of the concept of electromagnetic scattering. Indeed, it demonstrates that in the absence of the particle, detector 2
would measure no signal, while the signal measured by detector 1 would be given by DSIinc. In the presence of the object,
the readings of both detectors change. The reading of detector 2 is now proportional to the Stokes column vector of the
scattered spherical wave, while the polarization signal measured by detector 1 is modified in two ways. First, the total
measured electromagnetic power is attenuated as a combined result of the scattering of electromagnetic energy by the
object in all directions and, possibly, the transformation of electromagnetic energy into other forms of energy (such as
heat) inside the object. Second, the attenuation rates for the four Stokes components of the measured signal can, in general,
be different. The latter effect is typical of objects lacking perfect spherical symmetry and is called dichroism.

Thus, to describe far-field scattering means, in effect, to quantify the differences between the readings of detectors 1
and 2 in the presence of the object and in the absence of the object. This quantification can be fully achieved in terms of the
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phase and extinction matrices which depend on object characteristics such as size, shape, refractive index, and orientation.
Both matrices can be readily computed provided that the amplitude scattering matrix is already known.

If the incident light is a quasi-monochromatic parallel beam then the electric field amplitude Einc
0 randomly fluctuates in

time. However, these fluctuations occur much more slowly than the harmonic oscillations caused by the factor expð�iotÞ;

which means that the formalism of Sections 2 and 3 remains valid at any given moment in time. Therefore, Eqs. (19)–(21)
also remain valid provided that now the Stokes column vectors of the incident and scattered light are defined as averages of
the right-hand sides of Eqs. (17) and (18) over a time interval much longer than the typical period of fluctuations.

It should be noted that the operational definition of the phase and extinction matrices according to Eqs. (19)–(21)
[15,55] is consistent with the classical treatment in [63] and can be generalized to the case of an absorbing host medium
[64–66]. Yet the practical use of the operational definition of extinction requires certain precautions [67–69].

5. Derivative quantities

There are several derivative quantities that are often used to describe various manifestations of electromagnetic
scattering. The product of the extinction cross section and the intensity of the incident plane wave yields the total
attenuation of the electromagnetic power measured by detector 1 in Fig. 3b owing to the presence of the particle. This
means that the extinction cross section depends on the polarization state of the incident wave and is given by [15,55]

Cextðn̂
inc
Þ ¼

1

Iinc
½K11ðn̂

inc
ÞIinc
þ K12ðn̂

inc
ÞQ inc

þ K13ðn̂
inc
ÞUinc

þ K14ðn̂
inc
ÞV inc
�: (22)

The product of the scattering cross section and the intensity of the incident plane wave yields the total far-field power
scattered by the particle in all directions. We thus have [15,55]

Cscaðn̂
inc
Þ ¼

r!1

r2

Iinc

Z
4p

dr̂Isca
ðrr̂Þ

¼
1

Iinc

Z
4p

dr̂½Z11ðr̂; n̂
inc
ÞIinc
þ Z12ðr̂; n̂

inc
ÞQ inc

þ Z13ðr̂; n̂
inc
ÞUinc

þ Z14ðr̂; n̂
inc
ÞV inc
�; (23)

which means that Csca also depends on the polarization state as well as on the propagation direction of the incident wave.
The absorption cross section is defined as the difference between the extinction and scattering cross sections:

Cabsðn̂
inc
Þ ¼ Cextðn̂

inc
Þ � Cscaðn̂

inc
ÞX0. (24)

All optical cross sections have the dimension of area. Finally, the dimensionless single-scattering albedo is defined as the
ratio of the scattering and extinction cross sections:

õðn̂inc
Þ ¼

Cscaðn̂
inc
Þ

Cextðn̂
inc
Þ
p1. (25)

A particular case of the phase matrix is the scattering matrix defined by

FðYÞ ¼ Zðysca
¼ Y;jsca ¼ 0; yinc

¼ 0;jinc ¼ 0Þ; Y 2 ½0;p�, (26)

where Y, traditionally called the scattering angle, is the angle between the incidence and scattering directions. It is easy to
see that the scattering matrix relates the Stokes parameters of the incident and scattered waves defined with respect to the
same so-called scattering plane, i.e., the plane through the incidence and scattering directions [15,55,63,70].

6. Scattering by a ‘‘random’’ particle

Strictly speaking, the above formalism applies only to scattering by a fixed particle. However, one often encounters
situations in which the scattering particle moves, rotates, and perhaps changes its size and/or shape during the
measurement. A typical example is the measurement of scattering by a single particle suspended in air or vacuum with one
of the existing levitation techniques [71]. The particle position within the levitator trap volume and its orientation are
never perfectly fixed, and the particle can undergo random or periodic movements and can spin. The particle may also
change its size and shape as a result of evaporation, sublimation, condensation, or melting. The shape of a liquid drop can
also change owing to surface oscillations.

In this case Eqs. (19)–(21) remain valid [55] provided that (i) the distance from the trap volume to the detectors is much
greater than the volume size and (ii) the particle phase, extinction, and scattering matrices entering Eqs. (19)–(21) are
averaged over a sufficiently long period of time and are given by

hZðn̂
sca
; n̂

inc
Þit ¼ hZðn̂

sca
; n̂

inc
Þix, (27)

hKðn̂
inc
Þit ¼ hKðn̂

inc
Þix, (28)

hFðYÞit ¼ hFðYÞix. (29)
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Here h. . . it denotes averaging over time, while hZðn̂
sca
; n̂

inc
Þix; hKðn̂

inc
Þix; and hFðYÞix are the phase, extinction, and scattering

matrices computed with respect to the particle-centered coordinate system and averaged over all particle states x
physically realizable during the measurement. The state of a particle indicates collectively its size, refractive index, shape,
orientation, etc. i.e., all physical characteristics except the position. Obviously, the time averages of the extinction,
scattering, and absorption cross sections are then given by

hCextðn̂
inc
Þit ¼ hCextðn̂

inc
Þix, (30)

hCscaðn̂
inc
Þit ¼ hCscaðn̂

inc
Þix, (31)

hCabsðn̂
inc
Þit ¼ hCabsðn̂

inc
Þix, (32)

while the single-scattering albedo is given by the ratio of the average scattering and extinction cross sections:

õðn̂inc
Þ ¼
hCscaðn̂

inc
Þix

hCextðn̂
inc
Þix

. (33)
7. Scattering by a random particle group

Although we have been so far discussing electromagnetic scattering by a ‘‘single particle’’, the concept of
electromagnetic scattering and all formulas of Section 2 remain valid irrespective of the specific morphology of the
scattering object. In particular, they are valid for what a human eye could classify as a ‘‘collection of discrete particles’’.
Examples of such ‘‘many-particle’’ objects are clouds, particulate surfaces, and particle suspensions. In all such cases the
incident field perceives a morphologically complex ‘‘many-particle’’ object at any moment in time as one scatterer in the
form of a specific spatial distribution of the relative refractive index [50,55].

However, the numerically exact computer solution of the Maxwell equations becomes prohibitively expensive when the
size parameter of the object (i.e., the product of the wave number k1 and the radius of the smallest circumscribing sphere of
the object) exceeds �100. Furthermore, the criterion (14) makes the concept of far field inapplicable in the majority of
practical situations involving large many-particle groups. For example, one often uses detectors of electromagnetic energy
positioned inside the many-particle scattering object such as a cloud, in which case the concept of far field becomes
completely meaningless. As a consequence, one has to resort to an approximate computational technique and often
abandon the attractively simple formulas of far-field scattering.

Two conventional approaches widely used to treat electromagnetic scattering by random particle groups are the single-
scattering approximation (SSA) and the combination of the radiative transfer theory (RTT) and the theory of weak
localization (WL) of electromagnetic waves (otherwise known as the theory of coherent backscattering (CB)). The SSA
[55,72] is applicable to a relatively small, ‘‘optically tenuous’’ random group of N particles viewed from a distance much
greater than the entire size of the group. In this case Eqs. (19)–(21) remain valid provided that (i) the scattering signal is
accumulated over a time interval long enough to average out dynamic-scattering effects and establish full ergodicity of the
group [50,55,73] and (ii) the phase, extinction, and scattering matrices of the entire group are averaged over time and are
given by

hZðn̂
sca
; n̂

inc
Þit ¼ NhZ1ðn̂

sca
; n̂

inc
Þix, (34)

hKðn̂
inc
Þit ¼ NhK1ðn̂

inc
Þix, (35)

hFðYÞit ¼ NhF1ðYÞix. (36)

Here hZ1ðn̂
sca
; n̂

inc
Þix; hK1ðn̂

inc
Þix; and hF1ðYÞix are the single-particle phase, extinction, and scattering matrix, respectively,

computed with respect to the particle-centered coordinate system and averaged over all physically realizable particle states
x in the group. Obviously, the time averages of the extinction, scattering, and absorption cross sections of the entire random
particle group can be expressed in terms of the respective ensemble-averaged single-particle cross sections:

hCextðn̂
inc
Þit ¼ NhCext;1ðn̂

inc
Þix, (37)

hCscaðn̂
inc
Þit ¼ NhCsca;1ðn̂

inc
Þix, (38)

hCabsðn̂
inc
Þit ¼ NhCabs;1ðn̂

inc
Þix. (39)
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Finally, the single-scattering albedo of the group is given by the ratio of the ensemble-averaged single-particle scattering
and extinction cross sections:

õðn̂inc
Þ ¼
hCsca;1ðn̂

inc
Þix

hCext;1ðn̂
inc
Þix

. (40)

The RTT is an expressly near-field theory which allows one to model the response of detectors of electromagnetic energy
located inside or relatively close to a random multi-particle scattering object [50,55,74,75]. Among the conditions of
applicability of the radiative transfer equation (RTE) are the asymptotic requirement N!1, the ‘‘low-density’’
requirement according to which every particle must be located in the far-field zones of all the other particles, and the
assumption that the scattering signal is accumulated over a time interval long enough to establish full ergodicity of the
particle group [50,55]. The integro-differential form of the RTE reads

q̂ � rĨðr; q̂Þ ¼ �n0hK1ðq̂Þix Ĩðr; q̂Þ þ n0

Z
4p

dq̂
0
hZ1ðq̂; q̂

0
Þix Ĩðr; q̂

0
Þ, (41)

where n0 is the average particle number density, dq̂
0

is an elementary solid angle centered around the unit vector q̂
0
; and

Ĩðr; q̂Þ is the so-called specific Stokes column vector having the dimension of monochromatic radiance (W m�2 sr–1). The
latter describes the radiometric and polarimetric characteristics of electromagnetic radiation propagating in the direction
of the unit vector q̂ at the observation point r. Thus the knowledge of the ensemble-averaged single-particle phase and
extinction matrices is also required in order to solve the RTE. A generalized form of the RTE valid in the case of an absorbing
host medium has been derived in [76–78].

The RTE does not describe specifically the effect of WL [50,55,79–85] and in particular its main manifestation in the
form of a narrow intensity peak centered at the exact backscattering direction n̂

sca
¼ �n̂

inc
. Fortunately, this effect is

virtually unobservable for such large rarified objects as clouds, unless the measurements are performed with a monostatic
lidar or radar and the multiple-scattering contribution to the backscattered signal is significant. It is easier to observe
various manifestations of WL for densely packed particulate media [82,86,87]. The rigorous general microphysical theory of
WL is extremely complex [55,88–91] and is still hardly applicable to analyses of actual experimental data. However, in the
case of low-density particulate media all manifestations of WL in the exact backscattering direction can be described
quantitatively in terms of a solution of the RTE [92] and thus can also be traced to specific values of the ensemble-averaged
single-particle phase and extinction matrices. This result ensures the applicability of the RTT to analyses of monostatic
observations with, for example, lidars and radars.

8. Spherically symmetric particles

It follows from the Mie theory [1,51,63] (or its generalizations for radially inhomogeneous particles [16]) that the
extinction, scattering, and absorption cross sections and the single-scattering albedo for a spherically symmetric particle
are independent of the direction of propagation and polarization state of the incident light. Furthermore, the extinction
matrix is diagonal and given by

Kðn̂
inc
Þ 	 K ¼

Cext 0 0 0

0 Cext 0 0

0 0 Cext 0

0 0 0 Cext

2
6664

3
7775. (42)

The phase matrix satisfies the symmetry relations [93]

Zðysca;jinc; yinc;jscaÞ ¼ Zðysca;�jsca;yinc;�jincÞ

¼ D34Zðy
sca;jsca; yinc;jincÞD34, (43)

Zðp� ysca;jsca;p� yinc;jincÞ ¼ D34Zðy
sca;jsca; yinc;jincÞD34, (44)

where

D34 ¼

1 0 0 0

0 1 0 0

0 0 �1 0

0 0 0 �1

2
6664

3
7775. (45)

Also, it depends only on the difference between the azimuthal angles of the scattering and incidence directions rather than
on their specific values:

Zðn̂
sca
; n̂

inc
Þ ¼ Zðysca; yinc;jsca �jincÞ. (46)
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Finally, the scattering matrix has a very simple block-diagonal structure with only four independent elements [63]:

FðYÞ ¼

F11ðYÞ F12ðYÞ 0 0

F12ðYÞ F11ðYÞ 0 0

0 0 F33ðYÞ F34ðYÞ
0 0 �F34ðYÞ F33ðYÞ

2
66664

3
77775. (47)

In addition,

F33ð0Þ ¼ F11ð0Þ, (48)

F33ðpÞ ¼ �F11ðpÞ, (49)

F12ð0Þ ¼ F12ðpÞ ¼ 0, (50)

F34ð0Þ ¼ F34ðpÞ ¼ 0. (51)

The above results apply also to the phase, extinction, and scattering matrices and the optical cross sections averaged over
an ensemble of spherically symmetric particles.

9. General effects of nonsphericity and orientation

The discussion in this section applies equally to a fixed nonspherical particle, a ‘‘random’’ nonspherical particle which is
perfectly or preferentially oriented during the measurement (Section 6), and to a small random particle group in which
particles are also perfectly or preferentially oriented (Section 7). Then, in general,


 the 4� 4 extinction matrix K or /KSx does not degenerate to a direction- and polarization-independent scalar
extinction cross section;



 the (ensemble-averaged) extinction, scattering, and absorption cross sections and the single-scattering albedo depend

on the direction and polarization state of the incident beam;



 the scattering matrix F or /FSx does not have the simple block-diagonal structure of Eq. (47): all 16 elements of the

scattering matrix can be nonzero and depend on the orientation of the particle(s) with respect to the scattering plane
rather than only on the scattering angle;



 Eqs. (48)–(51) are not valid; and



 the phase matrix Z or /ZSx depends on the specific values of the azimuthal angles of the incidence and scattering

directions rather than on their difference and does not obey the symmetry relations (43) and (44).

Thus any of these effects can directly indicate the presence of perfectly or preferentially oriented particles lacking perfect
spherical symmetry.

Fig. 6a gives an example of the dependence of the extinction cross section on the incidence direction [94]. It depicts the
results of T-matrix computations [15,95] of the dimensionless normalized extinction C̃ext ¼ Cext=ðpr2

evÞ for monodisperse
prolate spheroids with a semi-axis ratio of a=b ¼ 0:9; where rev is the radius of the equal-volume sphere, b is the spheroid
semi-axis along the axis of rotation, and a is the semi-axis in the perpendicular direction. C̃ext is plotted as a function of the
size parameter xev ¼ k1rev and the angle b between the spheroid axis of rotation and the incidence direction. The relative
refractive index of the spheroids is fixed at 1.4, and the incident light is assumed to be unpolarized. The significant overall
increase of the extinction cross section Cext with increasing b can explained by the growing area of the spheroid
geometrical projection on the plane perpendicular to the incidence direction. The numerous local maxima in the surface
plot of extinction are manifestations of so-called morphology-dependent resonances (MDRs) [96] which will be discussed
in more detail below.

Panels (a)–(c) of Fig. 7 illustrate the shape and orientation dependence of the ratio �F12=F11 called the degree of linear
polarization for unpolarized incident light. �F12=F11 is plotted as a function of the scattering angle Y and the surface-
equivalent-sphere size parameter xse ¼ k1rse, where rse is the radius of the surface-equivalent sphere. These panels reveal
intricate distributions of the areas of positive and negative polarization first displayed in this manner for monodisperse
particles by Hansen and Travis [97]. Each complex so-called ‘‘butterfly structure’’ is a superposition of countless MDRs
of varying shape, width, and amplitude and a component caused by the interference of the incident and scattered
fields. With the exception of the region of Rayleigh scattering ðxsep1Þ; the three panels are vastly different. In particular,
the polarization patterns for the same spheroids but in two different orientations resemble each other no more than
either pattern resembles that for the surface-equivalent spheres. The results shown in panel (c) obviously violate
the equalities (50) and thus cannot be attributed mistakenly to spherically symmetric particles. However, the specific
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monodisperse spheres and randomly oriented prolate spheroids with different semi-axis ratios a/b and a fixed relative refractive index of 1.4.

M.I. Mishchenko / Journal of Quantitative Spectroscopy & Radiative Transfer 110 (2009) 808–832820
spheroid orientation used to create panel (b) does not cause a violation of Eq. (50), which shows that Eq. (50) alone cannot
be used to distinguish unambiguously between a spherically symmetric particle and a nonspherical particle in a fixed
orientation.

Perhaps the simplest example of preferentially oriented naturally occurring nonspherical particles are falling raindrops
(Fig. 1f). The shape of these particles is axially symmetric and depends on the particle volume, becoming more oblate for larger
droplets. For most remote-sensing applications the droplet shape can be approximated by that of an oblate spheroid with the
shorter axis being parallel to the droplet velocity vector relative to the surrounding air mass. Therefore, the numerically
accurate computation of the scattering properties of raindrops at radar wavelengths is usually straightforward and presents no
difficulties [98]. The fact that the (1,2) and (2,1) elements of the scattering matrix for preferentially oriented raindrops do not
vanish in the exact backscattering direction allows one to use polarization radar measurements to estimate the shape and,
thus, the volume of the particles [24,98–100]. This information, coupled with the measurement of the total backscattered
intensity, can be used to retrieve remotely such an important meteorological parameter as the rainfall rate.
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10. Mirror-symmetric ensembles of randomly oriented particles: general traits

Consider now a random particle or a small random group of particles such that the distribution of particle orientations
during the measurement is uniform. Furthermore, we assume that the single random particle is mirror-symmetric (i.e., has
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a plane of symmetry), while each particle in the group has a plane of symmetry and/or is accompanied by
its mirror counterpart. Then most of the results of Section 8 apply [15,63]. Specifically, the ensemble-averaged
extinction, scattering, and absorption cross sections and the single-scattering albedo are independent of the
direction of propagation and polarization state of the incident light. The ensemble-averaged extinction matrix is diagonal
Fig. 8. Diamonds depict the results of laboratory measurements of the ensemble-averaged scattering matrix for micrometer-sized feldspar particles at a

wavelength of 633 nm [4]. The green curves show the result of fitting the laboratory data with T-matrix results computed for a shape distribution of

polydisperse, randomly oriented prolate and oblate spheroids [101]. The real and model particle shapes are contrasted in the inset. The red curves show

the results of Mie computations for volume-equivalent polydisperse spherical particles. (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article.)
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and given by

hKðn̂
inc
Þix 	 hKix ¼

hCextix 0 0 0

0 hCextix 0 0

0 0 hCextix 0

0 0 0 hCextix

2
66664

3
77775. (52)

The ensemble-averaged phase matrix satisfies the symmetry relations

hZðysca;jinc;yinc;jscaÞix ¼ hZðy
sca;�jsca; yinc;�jincÞix

¼ D34hZðy
sca;jsca; yinc;jincÞixD34, (53)

hZðp� ysca;jsca;p� yinc;jincÞix ¼ D34hZðy
sca;jsca; yinc;jincÞixD34, (54)

and depends only on the difference between the azimuthal angles of the scattering and incidence directions rather than on
their specific values:

hZðn̂
sca
; n̂

inc
Þix ¼ hZðy

sca; yinc;jsca �jincÞix. (55)

The ensemble-averaged scattering matrix has a similar block-diagonal structure, but now has six rather than four
independent elements:

hFðYÞix ¼

hF11ðYÞix hF12ðYÞix 0 0

hF12ðYÞix hF22ðYÞix 0 0

0 0 hF33ðYÞix hF34ðYÞix
0 0 �hF34ðYÞix hF44ðYÞix

2
66664

3
77775. (56)

The equalities (48) and (49) are no longer valid, but the properties (50) and (51) are preserved:

hF12ð0Þix ¼ hF12ðpÞix ¼ 0, (57)

hF34ð0Þix ¼ hF34ðpÞix ¼ 0. (58)

The equalities (57) are illustrated by the T-matrix results for randomly oriented monodisperse spheroids shown in Fig. 7d.
Despite the similarity of the matrices (47) and (56), the identities hF22ðYÞix 	 hF11ðYÞix and hF44ðYÞix 	 hF33ðYÞix do not

hold in general, which is well illustrated by the results of laboratory measurements for natural feldspar particles shown in
Fig. 8. As a consequence, measurements of the linear backscattering depolarization ratio

dL ¼
hF11ðpÞix � hF22ðpÞix
hF11ðpÞix þ hF22ðpÞix

; 0pdLp1, (59)

and the closely related circular backscattering depolarization ratio [102]

dC ¼
hF11ðpÞix þ hF44ðpÞix
hF11ðpÞix � hF44ðpÞix

¼
2dL

1� dL
XdL, (60)

are among the most reliable means of detecting particle nonsphericity.

11. Mirror-symmetric ensembles of randomly oriented particles: quantitative traits

Of course, besides the qualitative distinctions discussed in the preceding section, there can be significant quantitative
differences in specific scattering properties of randomly oriented nonspherical particles and ‘‘equivalent’’ (e.g., volume-
equivalent or surface-equivalent) spheres. We begin by discussing the effects of nonsphericity and random orientation on
MDRs. Fig. 6b summarizes the results of numerically exact T-matrix computations for monodisperse spheres and volume-
equivalent, randomly oriented spheroids with a relative refractive index of 1.4 in the range of size parameters affected by
three super-narrow Mie MDRs b1

38, a1
38, and b1

39 as well as three broader resonance features [94]. We follow the notation
introduced in [103] which implies, for example, that b1

38 is the first resonance generated by the b38 partial Mie coefficient as
the sphere size parameter increases from zero. Now the direction-independent normalized extinction is defined as the ratio
C̃ext ¼ hCextix=ðpr2

evÞ, where hCextix is the orientation-averaged extinction cross section. It is seen that increasing the aspect
ratio of the spheroids e (the ratio of the largest to the smallest particle dimensions) rapidly reduces the height of the
normalized extinction peaks. It is in fact remarkable that the deformation of a sphere by as little as one hundredth of a
wavelength essentially annihilates the super-narrow MDRs. A secondary effect of increasing asphericity is to shift the
resonances to smaller size parameters. Obviously, it takes significantly larger asphericities to suppress the broader MDRs.
An interesting feature of the curve for a/b ¼ 0.9 is the minute high-frequency ripple superposed on a slowly and weakly
varying background. This ripple is absent in the curves for the nearly spherical spheroids and is the contribution of
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additional natural frequencies of oscillation of distinctly aspherical spheroids with specific orientations relative to the
incident beam. This effect is well seen in Fig. 6a.

The smoothing effect of averaging over orientations of a nonspherical particle on MDRs is also well seen from the
comparison of Figs. 7b–d. Averaging over sizes reinforces this effect. This is demonstrated by Figs. 7e and f which parallel
Figs. 7a and d, respectively, and show the ratio�hF12ðYÞix=hF11ðYÞix computed for a modified power law size distribution of
spheres and randomly oriented surface-equivalent spheroids [104]. The resulting polarization patterns are now smooth
enough to derive conclusions regarding the likely quantitative effects of nonsphericity of natural polydisperse particles.
Among such effects are the bridge of positive polarization at side-scattering angles and a negative polarization branch at
backscattering angles measured previously for narrow size distributions of nearly cubically shaped NaCl particles with
mean size parameters ranging from 3.1 to 19.9 [105] as well as for many other types of mineral particles [4,58,106].

Due to the unique properties of the super-narrow MDRs, the measurement and analysis of their various manifestations
turn out to be the most accurate means for the detection of even minute deviations of the particle shape from sphericity as
well as for the determination of the size and refractive index of a perfectly (or nearly perfectly) spherical particle
[94,96,107–111]. The fact that even miniscule amounts of nonsphericity effectively extinguish the super-narrow MDRs is
likely to simplify numerical computations for polydisperse particle ensembles such as natural cloud droplets. Indeed, it has
been hypothesized that not fully resolving the MDRs owing to the use of a numerical size-integration quadrature formula
with insufficiently narrow separations between the quadrature nodes may result in significant errors in broadband
absorption computations [112]. The analysis in [112] was based on the assumption that cloud droplets are perfect spheres
and support even the most narrow MDRs, thereby seemingly necessitating the use of quadrature formulas with extreme
numbers of closely spaced quadrature nods and making computer calculations very time-consuming. However, real cloud
droplets hardly have a perfectly spherical shape given many ambient factors that are likely to cause significant distortions
of the droplet shape and thereby suppress the super-narrow MDRs.

We have already mentioned that backscattering depolarization measurements are widely used for detecting and
characterizing nonspherical particles [113]. T-matrix results depicted in Fig. 9a [114] demonstrate indeed that wavelength-
sized particles can produce large depolarization ratios. An interesting trait of essentially all the curves shown in this figure
is a rapid increase in dL as the effective size parameter increases from 0 to about 10. Moreover, maximal dL values for most
shapes are observed at size parameters close to and sometimes slightly smaller than 10. Unfortunately, the T-matrix results
show no obvious relationship between dL and the particle aspect ratio. Even spheroids with aspect ratios as small as 1.05
(a 2.5% deviation from the perfect spherical shape) produce strong depolarization. In fact, the largest dL values are
generated by prolate spheroids with aspect ratios as small as 1.2 (a 10% deviation from a sphere). Furthermore, dL for
spheroids and, especially, cylinders tends to saturate with increasing aspect ratio. These results suggest that although a
nonzero dL value is an unequivocal indication of particle nonsphericity it is not necessarily a measure of the degree of
deviation of the particle shape from that of a perfect sphere.

Fig. 9b illustrates the use of laboratory measurements of the linear depolarization ratio as a particle characterization
tool [116]. The blue symbols show the results of measurements performed at the Aerosol Interactions and Dynamics in the
Atmosphere (AIDA) facility of the Forschungszentrum Karlsruhe [117,118] at the laser wavelength 488 nm. This AIDA ice
cloud experiment was started at an initial temperature of 192 K and in ice saturated conditions. Nano-sized meteoric
smoke analog particles were used as ice seeds. Expansion cooling of the chamber gas was initiated at t ¼ 0 and resulted in a
gradual increase of the ice saturation ratio. After the ice supersaturation ratio was increased to about 35% (at t ¼ 500 s) ice
crystals started to nucleate heterogeneously on the surfaces of the aerosol particles, as indicated by the steep increase of
the measured depolarization ratio. The expansion cooling lasted until t ¼ 2000 s resulting in the growth of the ice crystals
to a median equal-volume diameter of about 3mm. The time-dependent ice crystal size distribution was retrieved from
simultaneous infrared extinction measurements using theoretical computations based on the T-matrix method [15]. After
the expansion cooling was stopped the ice cloud started to evaporate due to the heat flux from the warmer chamber walls.
The best theoretical fit to the measured infrared extinction spectra was achieved by assuming oblate ice cylinders with a
diameter-to-length ratio of 1.25. The use of this aspect ratio and the retrieved temporal evolution of the size distribution in
subsequent T-matrix calculations of the linear depolarization ratio resulted in a close quantitative agreement with the
corresponding laboratory data, as Fig. 9b beautifully demonstrates. Other instructive examples of such closure studies are
described in [118].

Despite the significant progress in our ability to model scattering by nonspherical particles, accurate theoretical
computations for many types of natural and artificial particles with sizes comparable to and greater than the wavelength
(Fig. 1) remain highly problematic. Therefore, there have been several attempts to simulate the scattering and absorption
properties of actual particles using simple model shapes. These attempts have been based on the realization that in
addition to size and orientation averaging as discussed above, averaging over shapes may also prove to be necessary in
many cases. Indeed, quite often ensembles of natural and artificial particle exhibit a vast variety of shapes, which makes
questionable the utility of a single model shape (however ‘‘irregular’’ it may look to the human eye) in the representation of
scattering properties of an ensemble.

To illustrate this point, Fig. 10a shows the phase functions, defined as

pðYÞ ¼
4phF11ðYÞix
hCscaix

, (61)
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Fig. 9. (a) Linear depolarization ratio versus effective surface-equivalent-sphere size parameter for polydisperse, randomly oriented ice spheroids with

aspect ratios ranging from 1.05 to 2.6 and circular cylinders with various length-to-diameter or diameter-to-length ratios. The relative refractive index is

1.311. The light-green bands show the range of highest depolarization ratios typically observed for anthropogenic cirrus clouds in the form of aircraft

condensation trails [115]. The upper horizontal axes convert effective size parameters to effective radii assuming the wavelength l ¼ 2p/k1 ¼ 0.532mm

and (b) fit of theoretical computations to the results of laboratory measurements of the linear depolarization ratio (courtesy of Martin Schnaiter [116]).

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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computed for polydisperse, randomly oriented prolate spheroids with varying aspect ratios [119]. It demonstrates indeed
that even after size and orientation averaging, each spheroidal shape produces a unique, shape-specific scattering pattern,
whereas laboratory and in situ measurements for real nonspherical particles usually show smooth, rather featureless
patterns. However, the green curves in Fig. 8 show that shape mixtures of polydisperse, randomly oriented prolate and
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180. The relative refractive index is 1.311+i0.311�10�8 and is typical of water ice at visible wavelengths, (c) realization-averaged scattering matrix

elements for randomly oriented fractal clusters with Df ¼ 1.82, k0 ¼ 1.19, NS ¼ 400, and a ¼ 0.02mm. The soot refractive index is 1.75+i0.435 and the

wavelength of the incident light is 628 nm. Also shown are the results for the corresponding homogeneous volume-equivalent sphere and the

‘‘equivalent’’ external mixture of soot monomers. The scattering-matrix element ratios are given in percent.
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oblate spheroids can provide a good quantitative fit to the results of accurate laboratory measurements of the scattering
matrix for natural irregular particles.

This example leads to two important conclusions. First of all, it provides evidence that the often observed smooth
scattering-angle dependence of the elements of the scattering matrix for natural and artificial ensembles of nonspherical
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particles is largely caused by the diversity of particle shapes in the ensemble. Secondly, it suggests that at least some
scattering properties of ensembles of irregular particles can be adequately modeled using polydisperse shape mixtures of
simple particles such as spheroids. These two conclusions form the gist of the so-called statistical approach according to
which particles chosen for the purpose of ensemble averaging need not be in one-to-one morphological correspondence
with the actual particle ensemble and may have relatively simple shapes [119,120]. Needless to say, forming representative
mixtures of less regular particles then spheroids should be expected to eventually provide an even better model of
electromagnetic scattering by many natural and artificial particle ensembles (e.g., [121,122]).

Contrasting the green and the corresponding red curves in Fig. 8 provides a good illustration of the typical
nonspherical–spherical differences in the elements of the scattering matrix discussed in detail in [15]. For example, several
theoretical and laboratory analyses of the phase-function patterns for volume- or surface-equivalent spherical and
nonspherical particles have revealed the following five distinct scattering-angle ranges:

nonsphere � sphere from Y ¼ 0� to Y�15�220�;

nonsphere4sphere from Y�15�220� to Y�35�;

nonsphereosphere from Y�35� to Y�85�;

nonspherebsphere from Y�85� to Y�150�; and

nonsphere5sphere from Y�150� to Y ¼ 180�. (62)

Although the specific boundaries of these regions can shift with particle shape and relative refractive index (e.g., [15,123]),
the enhanced side-scattering and suppressed backscattering appear to be rather universal characteristics of
nonspherical particles.

The degree of linear polarization for unpolarized incident light, �hF12ðYÞix=hF11ðYÞix, tends to be positive at scattering
angles around 1001–1201 for nonspherical particles. Whereas hF22ðYÞix=hF11ðYÞix 	 1 for spherically symmetric scatterers,
the same ratio for nonspherical particles deviates significantly from the value 1 and exhibits strong backscattering
depolarization. Similarly, hF33ðYÞix=hF11ðYÞix 	 hF44ðYÞix=hF11ðYÞix for spherically symmetric particles, whereas the ratio
hF44ðYÞix=hF11ðYÞix for nonspherical particles tends to be greater than the ratio hF33ðYÞix=hF11ðYÞix at most scattering
angles, especially in the backscattering direction. The ratios hF34ðYÞix=hF11ðYÞix for spherical and nonspherical particles
also reveal significant quantitative differences, especially at large scattering angles.

Unlike ensembles of irregularly shaped particles, regular nonspherical shapes may cause pronounced angular features in
the elements of the scattering matrix, especially as the particle size starts to exceed the wavelength of the incident light.
This is well illustrated by Fig. 10b which shows the results of exact T-matrix computations of the phase function for
randomly oriented compact circular cylinders with surface-equivalent-sphere size parameters ranging from 40 to 180
[124]. As the size parameter increases, the T-matrix phase functions develop such typical geometric-optics features as the
461 halo and the strong and narrow backscattering peak seen in the grey curve. Such pronounced phase-function features
caused by regular ice-crystal shapes are responsible for many spectacular atmospheric-optics displays [125] and affect the
results of cirrus-cloud remote sensing [126–130]. In many cases, however, various imperfections of the ice-crystal shape
and/or multiple internal inclusions (e.g., in the form of air bubbles) destroy sharp geometric-optics features such as halos
and cause smooth and featureless phase functions similar to that depicted by diamonds in Fig. 8 [131–133].

In most cases nonspherical–spherical differences in the optical cross sections and the single-scattering albedo are not
nearly as significant as those in the scattering matrix elements. The same is true of the asymmetry parameter defined as

g ¼
1

2

Z p

0
dY sin YpðYÞ cos Y. (63)

This does not mean, however, that the effects of nonsphericity on the integral scattering and absorption characteristics are
always negligible or unimportant [134,135]. A good example of particles characterized by integral radiometric properties
vastly different from those of volume-equivalent spheres are clusters composed of large numbers of small monomers such
as soot aggregates [136–139] (see Fig. 1e). Detailed computations for fractal soot clusters based on the discrete dipole
approximation [140,141] and the superposition T-matrix method [142] have been reported in [143–146]. The overall
morphology of a dry soot aerosol is usually described by the following statistical scaling law [139,147]:

NS ¼ k0
Rg

a

� �Df

, (64)

where a is the monomer mean radius, k0 the prefactor, Df the fractal dimension, NS the number of spherical monomers in
the cluster, and Rg, called the radius of gyration, is a measure of the overall cluster radius. The fractal dimension is
especially important for the quantitative characterization of the aggregate morphology. Densely packed aggregates have Df

values close to 3, whereas the fractal dimension of chain-like branched clusters can be significantly smaller. The other
important structural coefficient, k0, is also related to the state of compactness of a fractal aggregate. Examples of computer-
generated fractal clusters are given in Fig. 11. Obviously, the aggregates become more compact as Df increases.
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Fig. 11. Fractal aggregates composed of 200 monomers and characterized by different values of the fractal parameters Df and k0: (a)–(g) Df ¼ 1.25, 1.5,

1.75, 2, 2.25, 2.5, 2.75 and k0 ¼ 1.6 and (h) Df ¼ 3 and k0 ¼ 1.2.
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Fig. 12 depicts the ratios of hCextix, hCscaix, hCabsix, õ, and g computed, at a wavelength of 870 nm, for randomly oriented
fractal aggregates with refractive indices 1.75+i0.5 and 2+i, monomer radii 15 and 25 nm, and numbers of monomers 200,
400, 600, and 800 to those for the corresponding volume-equivalent homogeneous spheres [146]. These numerically exact
T-matrix results demonstrate indeed that the integral radiometric properties of the clusters can often be profoundly
different from those of the volume-equivalent spheres. This is especially true of the scattering cross section, single-
scattering albedo, and asymmetry parameter.

Fig. 10c depicts the results of T-matrix computations of the scattering matrix elements averaged over 20 soot-cluster
realizations randomly computer-generated for the same values of the fractal parameters [145]. In a rather peculiar way, the
angular scattering properties of the soot clusters appear to be a mix of those of wavelength-sized compact particles (the
nearly isotropic Rayleigh phase function of the small individual spherules evolves into a forward scattering phase function)
and Rayleigh scatterers (i.e., the degree of linear polarization of scattered light for unpolarized incident light,
�hF12ðYÞix=hF11ðYÞix, is zero at the exact forward- and back-scattering directions and reaches a nearly 100% maximum
at YE901 [148] while the ratio hF34ðYÞix=hF11ðYÞix is very close to zero). The deviation of the ratio hF22ðYÞix=hF11ðYÞix from
unity is the only obvious manifestation of the overall nonsphericity of the soot clusters.

Also shown for comparison in Fig. 10c are two sets of approximate results. The first set includes the results obtained by
applying the SSA to the corresponding external mixture of the constituent monomers (i.e., by assuming that all monomers
are widely separated and randomly positioned rather than form a cluster with touching components). The second set of
results was computed by applying the Mie theory to a homogeneous sphere with a volume equal to the combined volume
of the cluster monomers. Clearly, the external-mixture model provides a poor representation of the cluster phase function,
whereas the performance of the equal-volume-sphere model is inadequate with respect to all scattering matrix elements.

12. Conclusions

There is no doubt that since the publication of Mie’s seminal paper, our knowledge of electromagnetic scattering by
nonspherical particles has improved profoundly. In particular, the general effects of nonsphericity are largely understood,
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Fig. 12. Ratios of the integral optical characteristics of soot fractals to those computed for the respective volume-equivalent spheres. The wavelength of
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both qualitatively and quantitatively, and a vast body of practical applications have been documented. Still much remains
to be done since in some respects our knowledge of specific manifestations of particle shape and morphology in
electromagnetic scattering remains fragmentary and/or inadequate. However, our collective progress in this direction has
been impetuous, as was convincingly demonstrated at the recent conference on ‘‘Light Scattering: Mie and More’’
(Karlsruhe, July 2009) [149] and the XI Conference on Electromagnetic and Light Scattering by Nonspherical Particles
(Hatfield, UK, September 2009) [150]. These impressive developments allow us to look into the future with great optimism.
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[58] Muñoz O, Volten H. Experimental light scattering matrices from the Amsterdam light scattering database. Light Scattering Rev 2006;1:3–29.
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