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Abstract

Measurements of the net CO2 flux between terrestrial ecosystems and the atmosphere using

the eddy covariance technique have the potential to underpin our interpretation of regional

CO2 source–sink patterns, CO2 flux responses to forcings, and predictions of the future

terrestrial C balance. Information contained in FLUXNETeddy covariance data has multiple

uses for the development and application of global carbon models, including evaluation/

validation, calibration, process parameterization, and data assimilation. This paper reviews

examples of these uses, compares global estimates of the dynamics of the global carbon

cycle, and suggests ways of improving the utility of such data for global carbon modelling.

Net ecosystem exchange of CO2 (NEE) predicted by different terrestrial biosphere models

compares favourably with FLUXNET observations at diurnal and seasonal timescales.

However, complete model validation, particularly over the full annual cycle, requires

information on the balance between assimilation and decomposition processes, informa-

tion not readily available for most FLUXNET sites. Site history, when known, can greatly

help constrain the model-data comparison.

Flux measurements made over four vegetation types were used to calibrate the land-

surface scheme of the Goddard Institute for Space Studies global climate model, sig-

nificantly improving simulated climate and demonstrating the utility of diurnal FLUXNET

data for climate modelling. Land-surface temperatures in many regions cool due to higher

canopy conductances and latent heat fluxes, and the spatial distribution of CO2 uptake

provides a significant additional constraint on the realism of simulated surface fluxes.

FLUXNET data are used to calibrate a global production efficiency model (PEM). This

model is forced by satellite-measured absorbed radiation and suggests that global net

primary production (NPP) increased 6.2% over 1982–1999. Good agreement is found

between global trends in NPP estimated by the PEM and a dynamic global vegetation

model (DGVM), and between the DGVM and estimates of global NEE derived from a

global inversion of atmospheric CO2 measurements. Combining the PEM, DGVM, and

inversion results suggests that CO2 fertilization is playing a major role in current increases

in NPP, with lesser impacts from increasing N deposition and growing season length. Both

the PEM and the inversion identify the Amazon basin as a key region for the current net

terrestrial CO2 uptake (i.e. 33% of global NEE), as well as its interannual variability. The
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inversion’s global NEE estimate of �1.2 Pg [C] yr�1 for 1982–1995 is compatible with the

PEM- and DGVM-predicted trends in NPP. There is, thus, a convergence in understanding

derived from process-based models, remote-sensing-based observations, and inversion of

atmospheric data.

Future advances in field measurement techniques, including eddy covariance (particu-

larly concerning the problem of night-time fluxes in dense canopies and of advection or

flow distortion over complex terrain), will result in improved constraints on land-atmo-

sphere CO2 fluxes and the rigorous attribution of mechanisms to the current terrestrial net

CO2 uptake and its spatial and temporal heterogeneity. Global ecosystem models play a

fundamental role in linking information derived from FLUXNET measurements to atmo-

spheric CO2 variability.

A number of recommendations concerning FLUXNET data are made, including a request

for more comprehensive site data (particularly historical information), more measurements

in undisturbed ecosystems, and the systematic provision of error estimates. The greatest

value of current FLUXNET data for global carbon cycle modelling is in evaluating process

representations, rather than in providing an unbiased estimate of net CO2 exchange.
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Introduction

The equivalent of �16% of atmospheric CO2 is believed

to be cycled through the global land surface each year

(Prentice et al., 2001), with terrestrial ecosystems the

main driver of global interannual atmospheric CO2

variability (e.g. Bousquet et al., 2000; Rödenbeck et al.,

2003; Peylin et al., 2005). The eddy covariance technique

provides the only direct measurement of net terrestrial

ecosystem–atmosphere CO2 exchange, and is therefore

an indispensable tool for understanding and monitor-

ing the global carbon cycle. As the number of flux

observation stations with continuous multiannual ob-

servations grows, data from the FLUXNET global net-

work of eddy covariance measurements (Baldocchi

et al., 2001) are being used in an increasing number of

global carbon cycle modelling studies. This paper re-

views a number of these, details their links to FLUX-

NET, makes some inferences concerning the functioning

of the global carbon cycle, and proposes a number of

recommendations to augment the utility of eddy covar-

iance data for future global carbon cycle research.

Global carbon cycle research

Despite significant advances over the past decade,

major questions remain concerning the role of the

terrestrial biosphere in the global carbon cycle. Most

notably there is still no consensus on the fate of the

approximately 34% (mean 1990s value) of anthropo-

genic CO2 emitted to the atmosphere each year that

does not contribute either to the atmospheric burden or

enter the oceans (Houghton, 2003). Carbon is believed

to be accumulating in northern mid-latitude terrestrial

ecosystems and undisturbed tropical forests, although

the magnitude, location, and mechanisms for this accu-

mulation remain subjects of on-going research (Schimel

et al., 2001). A likely mechanism for the uptake in mid-

latitudes was thought to be the effects of management

on forest growth (e.g. fire suppression, agricultural

abandonment, and plantation forestry), but careful ac-

counting suggests that significant sinks probably also

occur outside of the forest sector (Goodale et al., 2002),

possibly due to CO2 or N fertilization.

Atmospheric flask measurements reveal large inter-

annual variability in the growth rate of CO2 (Conway

et al., 1994; Francey et al., 1995; Keeling et al., 1995) and,

when combined with atmospheric tracer transport mod-

els to infer the pattern of sources and sinks by inversion,

suggest strong regional patterns in net CO2 fluxes (e.g.

Rödenbeck et al., 2003). However, the inversion technique

cannot directly attribute these signals to mechanisms.

Simulations using six dynamic global vegetation mod-

els (DGVMs) revealed major uncertainties in the terres-

trial carbon balance response to future climate and CO2

change (Cramer et al., 2001). Because of the importance of

CO2 as a radiatively active gas, our limited understand-

ing of terrestrial carbon cycling translates into a major

source of uncertainty for predictions of future climate

change (e.g. Friedlingstein et al., 2003; Jones et al., 2003).

Eddy covariance data

Multiannual eddy covariance data are now available for a

wide range of ecosystem types, and therefore have the

potential to significantly improve our understanding of
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controls on land-atmosphere CO2 exchange (Baldocchi

et al., 2001). These data consist of the vertical flux den-

sities of CO2, latent heat, and sensible heat measured

using sensors placed above the canopy, together with

meteorological conditions. The fluxes are typically inte-

grated to half-hourly or hourly means (Aubinet et al.,

2000). Data gaps, caused by sensor failures or unsuitable

micrometeorological conditions (e.g. heavy rainfall) are

unavoidable (Falge et al., 2001), but these can be filled

using a variety of techniques to produce a continuous

time series. Underevaluation of night-time CO2 fluxes due

to stable atmospheric conditions (Kruijt et al., 2004), and

problems with closing the energy budget (Wilson et al.,

2002), suggest caution in the uncritical use of data inte-

grated over a diurnal cycle or longer, when the measured

fluxes may not be equal to the ecosystem fluxes.

Uses for FLUXNET data in global carbon modelling

FLUXNET data are important sources of information

for the advancement of models used to study the global

carbon cycle. These data are most commonly used to

evaluate/validate and/or calibrate ecosystem models

for particular ecosystem types. More recently, they have

been used in parameter estimation and optimization

procedures (e.g. Knorr & Kattge, 2005), and are being

considered for incorporation into data assimilation sys-

tems (Raupach et al., 2005). This paper discusses a

number of these applications.

The linkages between FLUXNET data and the differ-

ent studies presented in this paper, and their temporal/

spatial contexts, are shown in Fig. 1. Reviews of model

evaluation/validation exercises are taken from three

DGVMs: the Sheffield dynamic global vegetation model

(SDGVM), the Lund–Potsdam–Jena (LPJ) model, and

ORCHIDEE. DGVMs are designed to predict the transi-

ent dynamics of vegetation (and in most cases soil

organic matter) at a range of temporal (minutes to

centuries) and spatial (typically half-degree to global)

scales. They are based on the calculation of the flux of C

into the vegetation and its dependence on environmental

conditions, and can therefore be tested directly using

FLUXNET data. They typically contain a number of

parameters that are rather poorly constrained, and an

example is given of how FLUXNET data can be used

directly to optimize various key model parameters. Ex-

amples are also reviewed for how FLUXNET data are

used to calibrate global satellite-driven (production effi-

ciency model (PEM)) and climate (Goddard Institute for

Space Studies (GISS) global climate model (GCM)) mod-

els. Finally, an atmospheric inversion modelling study is

presented and the potential future application of FLUX-

NET data combined with flask measurements for better

constraining the spatial and temporal dynamics of the

global carbon cycle is discussed. The following sections,

apart from the final one on atmospheric inversion, focus

on key findings that have arisen directly from the use of

FLUXNET data.
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spatial emphases. Solid arrows indicate transfer of information. Dotted arrow indicates potential future application.
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Applications of FLUXNET data in global

carbon cycle modelling

Importance of site history for model-data comparisons

In common with other models of its type, the SDGVM

predicts global vegetation structure and dynamics from

climate, atmospheric CO2 concentration, and soil tex-

ture (Woodward et al., 1995; Woodward & Lomas, 2004).

FLUXNET data have the potential to strongly constrain

DGVM predictions of CO2 fluxes. The SDGVM was

evaluated by comparing mean output for 1990–1995

from a global simulation (Woodward & Lomas, 2004)

against available FLUXNET data (generally collected

1995–2000). Comparisons were made with modelled

mean annual leaf area index (LAI), net ecosystem-atmo-

sphere CO2 exchange (NEE), total canopy N, gross

primary production (GPP), respiration, and canopy

height in the 11 pixel containing each FLUXNET tower.

Simulated mean annual LAI is in good agreement

with the observations (Fig. 2a). However, comparison

between simulated and measured mean annual NEE

indicates an underprediction at sites with high mea-

sured net CO2 uptake (Fig. 2b). The model was allowed

to reach equilibrium and then forced with observed

interannual climate variability over 1901–1995. Clearly

this forcing is not sufficient to create the large observed

disequilibrium between CO2 uptake and loss at many

FLUXNET sites. It seems that exogenous disturbances

not included in the simulations need to be invoked, a

suspicion confirmed by highlighting those sites known

to have been planted or managed in the recent past (Fig.

2b). Inclusion of these disturbances in the simulations

would allow a more critical evaluation of the model’s

performance.

The possible role of disturbance in explaining the

difference between modelled and measured mean

annual NEE was further investigated at one of the

sites with the greatest mismatch, Aberfeldy in Scotland.

This FLUXNET site is a Sitka spruce (Picea sitchensis

(Bong.) Carr.) plantation, whereas the model predicts a

mixed evergreen/deciduous forest, with NEE about

half that observed. Mean annual GPP is also predicted

to be much lower than the value estimated from the flux

measurements (from extrapolation of night-time fluxes

to estimate respiration), and, therefore, the mismatch

cannot be only due to (dis)equilibrium. The plantation
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Fig. 2 Simulation results obtained using the Sheffield dynamic

global vegetation model compared with FLUXNET observations,

from Woodward & Lomas (2004). Model estimate is the 1990–

1995 mean prediction over the 11 pixel containing each flux

tower. (a) Regression of mean annual simulated LAI against

observations. Broken line, 1 : 1 relationship; continuous line,

regression equation y 5 0.8x 1 0.8; r2 5 0.8, n 5 52. (b) Regression

of mean annual simulated net ecosystem exchange of CO2 (NEE)

against observations (inverted scales). Broken line, 1 : 1 relation-

ship; continuous line, regression equation y 5 0.55x�63.87;

r2 5 0.8, n 5 28. Double circles indicate sites with forest age �50

years. (c) Predicted and observed mean annual CO2 fluxes at a

site in Scotland (56.61N; 3.81E). This site was planted with

evergreen needle-leaved forest in 1980. Diamonds with line:

simulated NEE; single diamond: 1997 observed NEE; inverted

triangles with line: simulated gross primary production (GPP);

single inverted triangle: 1997 observed GPP; triangles with line:

simulated ecosystem respiration; single triangle: 1997 observed

ecosystem respiration. NEE plotted on inverted scale.
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was established in 1980 on an area of previous sheep

grazing, and additional simulations were performed in

which trees were inhibited from establishing for vary-

ing lengths of time before the actual planting date (Fig.

2c). Interestingly, predicted NEE and GPP approach the

observed values as the time under pasture increases.

Tree GPP increases with length of time under pasture

because of the greater subsequent availability of soil N,

built up over years of grass growth and litter produc-

tion. This example clearly shows the critical role of site

history for comparison of modelled mean annual NEE

with eddy covariance data.

It is also evident that rigorous model validation

requires knowledge of the observational errors, but

these are difficult to obtain for flux measurements (Dore

et al., 2003). Error estimates across different sites range

between � 30 and �180 g [C] m�2 yr�1, which are of

the same order as the model-data difference (Wood-

ward & Lomas, 2004), and may be even higher at some

locations (Kruijt et al., 2004). Sources of these errors

include instrument calibration, data gaps, and atmo-

spheric processes that reduce the correspondence be-

tween the measured flux and the ecosystem flux (e.g.

advection or high atmospheric stability). In terms of

cumulative (e.g. annual) NEE, random and fully sys-

tematic errors are generally of lesser concern than

selective systematic errors, because the latter exist only

for part of the daily CO2 cycle when fluxes are either

positive or negative (Moncrieff et al., 1996). The model

also has error in relation to the measured ecosystem

through the assumption of natural (potential) vegeta-

tion with long-term equilibrium between fixation and

respiration, system attributes unlikely to be true at most

eddy flux sites. Rigorous incorporation of these error

terms into model-data comparisons remains a subject of

on-going research (Hollinger & Richardson, 2005).

Importance of forest age structure and forest management

Like the SDGVM, the LPJ DGVM (Sitch et al., 2003) is a

global model of vegetation distribution and dynamics.

LPJ was used to investigate the observed latitudinal

gradient in NEE deduced from analysis of data from 15

European FLUXNET sites and reported by Valentini

et al. (2000). Observations indicated that most sites were

gaining C, with a significant increase in net uptake with

decreasing latitude (Fig. 3a). In the original analysis,

data of �1 year per site were presented but the

latitudinal trend persists over longer time periods.

GPP appeared to be largely independent of latitude,

leading to the conclusion that the gradient results from

relatively higher respiration at more northerly sites.

The ability of the LPJ model to simulate this gradient

was investigated by running the model with the ob-

served climate at each FLUXNET site and ensuring that

model and site plant functional type (PFT) agreed. The

latter is an important aspect as not all sites contained

the potential natural vegetation. Before forcing by the

actual climate, the model was run to C equilibrium

at each site using a long-term mean climatology as

with the SDGVM. Although agreement between simu-

lated and modelled monthly NEE is rather good

(with some notable exceptions), the model does not

reproduce the observed latitudinal gradient in NEE,

but rather predicts a much smaller, annually varying

gradient (Fig. 3b). In particular, the large net sink of

4400 g [C] m�2 yr�1 reported for the more southerly

sites is not reproduced by the model in any year.

Moreover, the spread of NEE at a given latitude is

noticeably smaller in the simulation results.

It is important to know if these model-data mis-

matches are caused by a basic inadequacy of the

model or specific site characteristics such as their

(a)

(b)

Fig. 3 Observed (a) and modelled (b) latitudinal gradient

in mean annual net ecosystem exchange of CO2 (NEE) (i.e.

heterotrophic respiration – net primary production) at 15 Eur-

opean FLUXNET sites. Model is the Lund–Potsdam–Jena (LPJ)

model. Lines are linear regressions to data (a) and model (b) for

1997.
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management history. Unfortunately, it is difficult to

obtain accurate and detailed site history information

for many of the sites. However, European settlement

history suggests that sites in the southern and central

parts of the continent were influenced by intensive use

by humans for 42000 years. Northern forests have

probably only experienced large-scale management for

a few tree generations and fewer changes in manage-

ment practices. Long-term removal of woody stem

biomass and/or the presence of animal grazing in the

forest would be expected to affect soil C input and,

therefore, respiration rates, as well as mean tree growth

rates.

To test this in a model context, additional simulations

were performed with LPJ to examine NEE sensitivity to

different management effects. For example, the simula-

tion at the northern Scots pine (Pinus sylvestris L.) site,

Hyytiälä, Finland (611850N) was repeated, but with an

imposed aboveground wood harvest in 1966, as actu-

ally occurred. This had the effect of somewhat reducing

winter respiration rates and therefore producing a

slightly better fit to the data. However, incorporating

one harvest cycle was not sufficient to reproduce the

effects of probable longer-term human impacts, parti-

cularly in an aggregated model such as LPJ. Site history

clearly has an important impact on annual and longer-

term NEE, although it does not seem to play a large role

in seasonal variability.

At the European scale, uncertainty in model para-

meters without accounting for site history is not suffi-

cient to explain the discrepancy between model and

observations, based on both forest inventories and

FLUXNET data (Fig. 4; Zaehle et al., 2005). After evalua-

tion of stand-scale growth patterns, Zaehle et al. (2006)

incorporated forest age structure and a generic repre-

sentation of forest management in even-aged stands

into LPJ. With this advanced model, Zaehle et al.

(2006) studied the effects of changing land use, wood

demand, and climate on European forest ecosystems

over 1948–2000. They were able to reproduce the pre-

sent-day age structure and ratio of removals to incre-

ment in European forests, as well as model present-day

C sequestration in vegetation in agreement with inde-

pendent forest inventory-based estimates. NEE based

on the improved model is within the range of uncer-

tainty in the observations when land-use change (LU)

and wood demand change (FM) are considered (Fig. 4).

Nevertheless, simulated C uptake remains lower than

data-based estimates, possibly because the simulations

do not take into account the effects of soil degradation

resulting from past land-management practices. Indeed,

uncertainty in the historical soil C stock is critical to our

ability to determine the present-day NEE in European

forests (Janssens et al., 2003).

Validating modelled diurnal and seasonal fluxes
from a DGVM

Like the SDGVM and LPJ, ORCHIDEE is a DGVM, but

differs somewhat in that it is designed to be coupled to

models of the global atmospheric circulation. ORCHI-

DEE consists of three linked submodels: SECHIBA

computes land-atmosphere energy and water ex-

changes on a 30 min time step; vegetation dynamics

parameterizations, such as sapling establishment, mor-

tality, competition for light, and PFT climate envelopes,

are taken from LPJ (Sitch et al., 2003); and phenology

and C fluxes such as photosynthesis, respiration, and

allocation are treated by the submodel STOMATE.

A full description of ORCHIDEE is given by Krinner

et al. (2005).

A series of site-level simulations were performed

with ORCHIDEE and compared with FLUXNET

data in order to evaluate the model’s ability to predict

biosphere–atmosphere fluxes. Thirty-one sites were

chosen across a wide range of PFTs with long-term

and more-or-less continuous measured fluxes and

forcing. Only sites representative of tropical drought

deciduous forest (e.g. Miombo woodlands) were un-

available. Unfortunately, some sites only had available

data for the growing season, and many others had gaps
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Jena (LPJ), whereas ‘LPJ ageclass’ refers to the extended version

of LPJ that explicitly accounts for forest age structure, and the

effects of land-use change (LU) and wood demand changes

(FM). Nabuurs et al. (2003) used forest resource statistics

to derive the carbon uptake in forests, whereas Papale and

Valentini (2003) relied on data from European FLUXNET sites.
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in the climate data, which had to be filled to enable

model simulations. The latter was achieved using data

from nearby weather stations and the ECMWF ERA15

11 reanalysis product (see Krinner et al., 2005 for de-

tails).

The model was compared with measured fluxes of

CO2, moisture, sensible heat, and net radiation at diur-

nal and seasonal timescales, using prescribed vegeta-

tion type; LAI, photosynthetic capacity, and soil C were

predicted. Lack of information concerning site history

means that initialization of the model is problematical.

A spin-up was performed with recycled observed site

climate until decomposition was in equilibrium with

plant production, as discussed above for simulations

with the SDGVM and LPJ models. However, a direct

comparison between the equilibrium model predictions

and site data would not then be a good test of the model

as the data tend to show a net long-term sink, most

likely due to management history as discussed above

(see also Law et al., 2002). Therefore, to better evaluate

the model’s ability to represent diurnal and seasonal

variability in C fluxes, and in contrast to the model

evaluations described above, the output was corrected

for the observed long-term net flux at each site, forcing

model and data to have the same annual NEE (Krinner

et al., 2005).

ORCHIDEE predictions of the mean June–July–

August (JJA) diurnal cycle are compared with observa-

tions averaged for each PFT in Fig. 5, with good overall

agreement. Some issues revealed by these comparisons

include the model’s simulation of albedo at crop sites

during the winter (the model does not account for

harvest), a general overestimate of sensible heat fluxes

(probably due to the use of a bulk energy budget for

vegetation and soil), insufficient stomatal control on

afternoon latent heat fluxes at Mediterranean sites (i.e.

‘temperate EBF’), an underprediction of the NEE

amplitude at needle-leaved forest sites (ENF), and an

over-prediction at broad-leaved forest sites (DBF) (pos-

sibly due to the relatively simple canopy integration of

photosynthesis). However, the model succeeds in cap-

turing the main differences between the PFTs in terms

of peak fluxes.

Seasonal predictions are compared with observations

in Fig. 6, and again there is good overall agreement. The

most notable area of disagreement is the general over-

estimation of the sensible heat flux. The exact reasons

for this are not known, but are the subject of on-going

investigations. ORCHIDEE tends to overestimate soil

drought towards the end of the summer at Mediterra-

nean sites, resulting in lower predicted latent heat flux

(LE) and NEE at this time than observed. Mismatches

for the boreal deciduous broad-leaved tree (DBF) PFT

are likely due to problems with the precipitation forcing

data. Overall, the seasonal phasing of each flux is

predicted well, suggesting that leaf out and leaf fall

are simulated realistically.

Parameter optimizing in a DGVM: strong constraints
for photosynthesis, weak constraints for respiration

Ideally, parameters and initial conditions for ecosystem

models are estimated from process studies. However,

most parameters and processes cannot be observed

directly and observed parameters must be scaled up

from the measurement scale to the eddy covariance

footprint scale. These issues have been successfully

addressed using inverse modelling. Maximum likeli-

hood methods (Tarantola, 1987; Press et al., 1992) can

provide estimates of model parameters from eddy

covariance flux data. These methods can be gradient-

based (Wang et al., 2001; Reichstein et al., 2003), or based

on Monte-Carlo (MC) frameworks (Franks & Bevan,

1997; Gupta et al., 1999; Schulz et al., 2001). These

methods search to find parameter sets that yield the

best match between data and model. Three principal

factors can explain data-model mismatch: structural

deficiencies of the model, data error (e.g. gaps or out-

liers), and/or parameter misspecification. Optimization

can decrease only the latter source of error, although

it can also highlight which model processes may need

to be modified.

Parameters are not equally constrained by data be-

cause the information content of the data depends on

the process and because model output sensitivity can

vary between parameters. Therefore, it is important to

assess the information that the optimization methods

can transfer into the retrieved parameters in order to

assign confidence levels to inferred values. Very effi-

cient techniques using MC frameworks allow complete

determination of the probability distribution of the

inverted parameters (Schulz et al., 2001). Other, cruder,

but less computationally expensive techniques, derive

standard deviations by assuming that data and model

errors are distributed normally (Kaminski et al., 2002).

For both types of methods, knowledge of the inherent

flux measurement uncertainty is necessary to correctly

determine the confidence intervals of model parameter

estimates (Hollinger & Richardson, 2005).

A number of parameters in the ORCHIDEE model

were optimized against measurements of CO2, latent

heat, and sensible heat fluxes, as well as net radiation,

over a pine forest near Bordeaux, France. A Bayesian

inverse approach (Tarantola, 1987) was designed to

estimate the mean value and the uncertainty of 12

parameters related to C and energy exchanges. Assim-

ilating three consecutive weeks of data during the 1997

growing season results in a set of optimized parameters
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(Fig. 7) which greatly improve the fit to the observed

diurnal cycle, except for the sensible heat flux at night.

To improve the model, four parameters (Kvmax, b, fstress,

and KCsoil; see Fig. 7 legend for definitions) are robustly

inferred from the flux data. That is, the a posteriori

uncertainties are very small compared with parameters

that are poorly constrained (i.e. KMR, QMR, KGR, KHR,

Kra, and Kz0). It is notable that the optimization against

the CO2 flux does not allow the constraint of respiration

parameters. A third class of parameters have nonregu-

lar behaviour (i.e. are optimized beyond a priori limits),

that may highlight structural deficiencies of the model.

For example, the parameter scaling the surface albedo,

Kalb, is set to its lower a priori bound, yielding a spurious

value (i.e. 0.1) for a pine forest, possibly due to model

deficiencies related to the energy balance calculation (the

model does not simulate the temperature gradient in-

version that occurs during the night within the canopy).

Also, the Q10 parameter is set to unity (normalized value

of 0.5), thus removing the temperature dependency of

the heterotrophic respiration. This probably indicates

that a Q10 relationship, which is valid at seasonal time

scales (Raich & Schlesinger, 1992), is not valid diurnally

(at least for this model).

Fig. 5 Measured FLUXNET (red) and ORCHIDEE simulated (black) JJA mean diurnal cycles for each flux and each plant functional

type. Panels show net radiation (Rn), sensible heat flux (H), latent heat flux (LE), and net CO2 flux (NEE). Values are bin-averaged.

Figure redrawn from Krinner et al. (2005), which gives details of the sites listed in the figure as letter codes.
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Some parameter values, although well constrained,

could be spurious. Indeed, if the underlying model is

wrong or incomplete, we could have a good fit to the

data but with misleading inferred values. Also, the

optimized values could be strongly biased by data out-

liers. Independent in situ measurements can then be

useful checks of the optimization consistency. In Fig. 8,

the optimized carboxylation rates Vcmax and Vjmax (op-

timized via the multiplier Kvmax) are compared with

independent leaf scale measurements (Porté & Loustau,

1998). For young and old needles, optimized age-related

variations of Vcmax and Vjmax (Ishida et al., 1999) are

closer to the observations than the a priori curves.

In conclusion, optimization against flux measure-

ments allows some parameters to be determined (such

as the leaf carboxylation efficiency and the photosynth-

esis/conductance ratio) and model deficiencies high-

lighted. The method also allows the assessment of the

information content of eddy covariance data, such as its

inability to determine a value for the Q10 of soil decom-

position on diurnal timescales.

Improving climate simulations through land-surface
model calibration

Until recently, the NASA GISS GCM land-surface

scheme contained a relatively simple treatment of ve-

getation processes, with no representation of C fluxes

(Rosenzweig & Abramopoulos, 1997). This earlier ver-

sion of the GCM treated bulk canopy conductance using

Fig. 6 As Fig. 5, but mean seasonal cycles.
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a simple empirical function of incident shortwave ra-

diation, canopy temperature, soil moisture, LAI, and

minimum leaf stomatal resistance (Rosenzweig & Abra-

mopoulos, 1997). This deficiency has been addressed

through the development of a new plant canopy model

that additionally simulates canopy conductance re-

sponses to moisture and the net canopy CO2 flux

(Friend & Kiang, 2005; Schmidt et al., 2006).

The new model uses process-based representations of

photosynthesis and the within-canopy variability in

physiological capacity and light environment. A semi-

empirical stomatal model is included, and quantities

are expressed on a photosynthetic N basis, allowing

mechanistic scaling to the leaf, canopy, and different

vegetation types. A full description of the model is

given by Friend & Kiang (2005).

The new GISS GCM vegetation canopy model was

tested by comparing predicted canopy conductance

and CO2 fluxes against 10 days of measurements at

four FLUXNET sites with different vegetation types.

A number of quantities were first inferred from the

measured fluxes and meteorological conditions to more

precisely evaluate the model (see Friend & Kiang, 2005

for full details). In addition, this methodology clearly

identifies those measurements unlikely to accurately

reflect the true ecosystem fluxes because they readily

appear as outliers or do not yield a physically realistic

solution (cf. Hollinger & Richardson, 2005).

The Manaus tropical evergreen rainforest site (Malhi

et al., 2002) is used here to illustrate inversion of the flux

data and the calibration of the model. The inversion

yields a canopy (skin) temperature that is typically

raised 1–2 1C above air temperature during the middle

of each day, when air temperature is over 30 1C;

measured soil temperature increased by 1–2 1C during

daylight hours.

Inferred bulk canopy conductance to moisture is

shown in Fig. 9a. Canopy conductance peaks around

25 mm [H2O] s�1, similar to values reported for dry days

at this site by Malhi et al. (2002). Inferred net canopy

CO2 flux is shown in Fig. 9b. Interestingly, canopy

respiration is at least 50% of total respiration due to

high canopy temperatures and N content.

Inference of net canopy CO2 flux allows calculation

of the mean canopy surface and internal leaf air space

CO2 (Ci) concentrations (Fig. 9c). The gradually falling

inferred Ci values during most days demonstrate in-

creasing restriction of stomatal opening caused by high

N
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Fig. 7 ORCHIDEE parameter estimates and errors. Optimized values are normalized by the a priori estimate (horizontal line in the

boxes centered at normalized value of 1). The box’s half height equals the normalized a priori uncertainty. Within each box, the

parameters and errors retrieved from 3 weeks of data at the Bray, France, forest (days 195–216 of 1997) are given. Among the optimized

parameters, ‘biophysical’ parameters acting on photosynthesis and transpiration (Kvmax, carboxylation maximum rate multiplier;

b, slope of stomatal conductance; fstress, soil water stress dependency of the canopy stomatal conductance slope), surface energy budget

(Kalb, surface albedo multiplier; KCsoil, soil heat capacity multiplier), and turbulent transfer scalars (Kra, aerodynamic resistance

multiplier; Kz0, roughness length) can be distinguished from ‘biological’ parameters (KMR, rate of plant maintenance respiration

constant; KGR, rate of plant growth respiration constant; KHR, rate of microbial respiration constant; QMR, temperature dependency

of maintenance respiration; Q10, temperature dependency of microbial respiration) acting on respiration terms.

F L U X N E T A N D M O D E L L I N G T H E G L O B A L C A R B O N C Y C L E 619

r 2007 The Authors
Journal compilation r 2007 Blackwell Publishing Ltd, Global Change Biology, 13, 610–633



afternoon air humidity deficits (and perhaps tree-soil

hydrological disequilibrium). The mean drop in CO2

concentration across the canopy leaf surface is about

16%, close to in situ measurements (Carswell et al.,

2000). Few night-time Ci values are retrieved by the

inversion because the measured CO2 flux is incompa-

tible with the inferred aerodynamic conductance, sug-

gesting weak coupling between the measured flux and

the ecosystem flux (cf. Kruijt et al., 2004).

Canopy quantities were similarly inferred at three

further FLUXNET sites: a needle-leaf evergreen planta-

tion (Bray: Berbigier et al., 2001), a mixed cold deciduous

forest (Harvard Forest: Wofsy et al., 1993), and a C3 crop

(Ponca: Hanan et al., 2002). Full details are given by

Friend & Kiang (2005).

The canopy model was run for each of the four sites

using the measured micrometeorological forcing, and

inferred canopy temperature, surface CO2 concentra-

tions, and specific humidity, and was parameterized

with site-level measurements of LAI, canopy N, height,

and soil moisture. The model was found to perform

reasonably well at Manaus, but to overpredict bulk

canopy conductance and photosynthesis at Bray, and

underpredict these same quantities at Harvard Forest

and Ponca. The canopy model has two key free para-

meters, a scaling coefficient between bulk canopy con-

ductance and canopy net photosynthesis at Ci ! 1(a),

and the relative proportion of leaf N bound in photo-

synthetic compounds (nf). These were adjusted for each

vegetation type to bring the model into close agreement

with the measurements. It was found that once nf was

calibrated to inferred peak rates of photosynthesis, pre-

dicted bulk canopy conductance and Ci were in reason-

able agreement at each site with the same value of a, and

so this was not varied. The resulting fits to inferred

canopy conductance, CO2 flux, and Ci for Manaus are

shown in Fig. 9. This vegetation type required nf 5 1.1

(i.e. relative photosynthetic leaf N is 10% higher than the

standard values for Rubisco/N and chlorophyll/N

given by Kull & Kruijt, 1998). The corresponding

calibrated values for the other sites are given in Table 1.

Plant types with shorter lived foliage have higher values

of nf, and thus invest relatively more leaf N in photo-

synthesis, as would be expected from evolutionary argu-

ments (Reich et al., 1995; Friend & White, 2000).

Linking local and global scales

Global carbon and climate simulations. The new canopy

conductance and CO2 flux scheme outlined in the last

section was incorporated into the latest version of the

GISS GCM, ModelE1 (Schmidt et al., 2006), and

simulations performed to assess predicted global CO2

fluxes and climate. Equilibrium climate integrations

were performed with the new and old surface

schemes using an atmospheric CO2 concentration of

291 ppmv. Friend & Kiang (2005) give full details of

these simulations.

Global seasonal fields of simulated net canopy CO2

flux are shown in Fig. 10. The total global net canopy

CO2 flux is 121 Pg [C] yr�1, similar to other estimates

(Prentice et al., 2001). Absolute seasonal fluxes are

greatest in temperate deciduous forests during the

northern hemisphere summer, although annual totals

are greatest in tropical rainforests.

The new canopy scheme substantially improves

simulated climate (Fig. 11). Increased latent heat fluxes

from vegetation tend to cool the land surface, which

was previously too warm. In addition, precipitation and

cloud cover increase in many regions previously too dry

and clear. For example, mean JJA cloud cover over the

Amazon basin was 10–20% too low using the previous

canopy scheme, whereas the new scheme increases

cloud cover by 2–6% over the entire basin. Northern

winter climate is affected by changes in the global

circulation caused by increases in tropical latent

heating (Friend & Kiang, 2005).

These large effects result directly from the

specification of canopy conductance, both the absolute

value and the environmental responses. The new

parameterization, calibrated from FLUXNET data (see

Fig. 8 Dependency of carboxylation rates Vcmax and Vjmax (at

25 1C) on leaf age in ORCHIDEE for the a priori (dashed line) and

for the optimized model (grey area). The grey area corresponds

to the derived uncertainty on Kvmax (the carboxylation maximum

rate multiplier). Independent leaf scale cuvette determinations

at Bray for ‘young’ and ‘old’ needles (diamonds), with their

uncertainties, verify the inverse results.
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previous section), substantially increases predicted

conductance in most regions, particularly tropical

rainforests (Fig. 12). These increases result from the

calibration of a and nf, and the more realistic treat-

ment of canopy light and physiological heterogeneity.

The addition of the humidity response results in

increased conductance in moist regions, although with

decreased conductance where the air is very dry;

responses reinforced by positive feedbacks with the

atmosphere (Friend & Kiang, 2005).

The role of FLUXNET in validating satellite-derived

estimates of surface fluxes. Operational monitoring of

1 km terrestrial GPP from space has recently become

possible following the successful launch and operation

of the Moderate Resolution Imaging Spectroradiometer

(MODIS) instrument on board the NASA Terra satellite

(Running et al., 2004). FLUXNET is providing a key role

in validating this GPP product.

The MODIS GPP algorithm follows the pioneering

work of Monteith (1972) and Sellers (1987), who

showed, respectively, that vegetation growth is a

linear function of absorbed photosynthetically active

radiation (APAR), and that APAR could be estimated

from remote sensing measurements of the fraction of

incident PAR absorbed by the vegetation (FPAR)

GPP ¼ e�APAR ¼ e� FPAR� PAR; ð1Þ

where e is the conversion efficiency of (daily) light

energy into vegetation mass. FPAR is calculated from

calibrated and atmospherically corrected MODIS

measurements of surface reflectances. Integration over

Table 1 Calibrated values of the relative proportion of leaf N contained in photosynthetic compounds for each vegetation type

used in the GISS GCM

[FLUXNET site

GCM vegetation type

Rainforest Deciduous Evergreen Crop Woodland Shrub Grass Tundra

Manaus Harvard Forest Bray Ponca]

nf 1.1 1.5 0.9 1.3 1.3 1.3 1.5 1.4

Derived values calculated as follows: ‘woodland’ 5 (‘rainforest’ 1 ‘grass’)/2; ‘shrub’ 5 ‘woodland’; ‘grass’ 5 ‘deciduous’;

‘tundra’ 5 (‘shrub’ 1 ‘grass’)/2. a is set to 3250 m mol�1 [CO2] at each site (see text).

(a)

(b)

(c)

Fig. 9 Inferred (‘obs’) and predicted (‘mod’) variables at the Manaus, Brazil, tropical evergreen forest site (2.591 S, 60.111W), 11–20

November, 1995. (a) Bulk canopy conductance to moisture; (b) canopy CO2 flux; (c) mean canopy internal leaf CO2 concentration. Diurnal

means use hourly binning. Model is the Goddard Institute for Space Studies global climate model canopy scheme (Friend & Kiang, 2005).
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days (d) and subtraction of respiration terms gives an

estimate of annual net primary production (NPP)

NPP ¼
Z365

d¼0

GPP� Rlrð Þdt� Rg � Rm; ð2Þ

where Rlr is daily leaf and fine root maintenance

respiration, Rg is annual growth respiration, and Rm is

annual woody tissue maintenance respiration (Running

et al., 2000). This algorithm is known as the

‘PEM’. Constraints on GPP due to low temperatures

or high vapour pressure deficits (VPDs) reduce e.
Vegetation- (i.e. evergreen needle-leaved forest,

deciduous broad-leaved forest, shrubland, savanna,

grassland, and cropland) specific maximum values

for e, and the temperature and VPD limits are

computed using the detailed ecosystem model

BIOME-BGC (White et al., 2000). Meteorological

forcing (i.e. mean daily temperature, daily minimum

temperature, air vapour pressure, and incident

shortwave radiation) is provided by the NASA Data

Assimilation Office (DAO) from interpolation of in situ

(a)

(b)

Fig. 10 Mean December–January–February (DJF) (a) and JJA (b) canopy net CO2 flux predicted by the Goddard Institute for Space

Studies global climate modelcoupled to the vegetation canopy scheme of Friend & Kiang (2005). Total annual flux is 121 Pg [C] yr�1.

Values at ends of scale give min and max.
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measurements. GPP is calculated for each 8-day period

at 1 km global resolution.

FLUXNET data are the primary source of

information for validating this GPP product. GPP is

compared directly with measurements made by all

FLUXNET eddy covariance towers using a 7� 7 km2

sample of the MODIS product located around each

tower. The seasonality of daily measured GPP is well

characterized across different climates (Fig. 13).

However, springtime GPP is underestimated, whereas

midsummer GPP is overestimated, compared with the

measurements. The overestimate results from

insufficient drought constraints in the GPP algorithm.

However, much of this midsummer bias occurs because

the DAO meteorology is not local to the flux tower,

demonstrated by rerunning the GPP algorithm using

in situ meteorology (Fig. 13). DAO data are rather coarse

resolution (11� 1.251), and so cannot capture tower-

scale conditions adequately, particularly local VPD.

Global variability in NPP. The MODIS NPP algorithm

outlined above was used to investigate variability

in global NPP for 1982–1999 using AVHRR satellite

data and NCEP daily reanalysis meteorological fields

(Nemani et al., 2003). A significant finding is that

global NPP increased by 6.17% over this 18 year

period, with the Amazon basin contributing 42% of

this increase (Fig. 14). Interannual variability was

� 1.5% of total NPP. Increased NPP results partly

from reductions in temperature, moisture, and,

particularly, radiation constraints on plant growth.

The large Amazon basin response appears to be

due to falling cloud cover causing increased radia-

tion, whereas the large increase in NPP for north-

western North America results from higher spring

temperatures and longer growing seasons. Addi-

tional simulations using climatological FPAR showed

that climate changes contributed 40% of the NPP

increase and changes in leaf area contributed 60%.

(a) (c)

(d)(b)

Fig. 11 Seasonal mean surface temperature bias of Goddard Institute for Space Studies global climate model using previous canopy

scheme (December–January–February (DJF), a; JJA, b), and change in seasonal surface temperature due to new canopy scheme

of Friend & Kiang (2005) (DJF, c; JJA, d). Observations are merged land air temperatures (New et al., 1999) and sea surface temperatures

(Rayner et al., 2003). Global means at upper-right corners. Absolute ranges: �13.6 1C to 1 16.1 1C (a); �12.5 1C to 1 12.9 1C (b);

�2.8 1C to 1 1.2 1C (c); and �2.2 1C to 1 1.8 1C (d). Hatched areas significant at the 95% confidence level for a paired t-test. Figure

redrawn from Friend & Kiang (2005).
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These findings are examined further in the Discussion

below.

Towards linking FLUXNET and atmospheric flask
CO2 data

Inversion of atmospheric CO2 measurements. The

atmosphere integrates all surface fluxes of CO2,

making atmospheric measurements of spatial and

temporal variations in CO2 concentrations a powerful

tool for understanding the global carbon cycle. An

increasingly large global network of sites has been

measuring atmospheric CO2 since the 1950s, but

quantitative interpretation of these measurements in

terms of regionally resolved surface fluxes requires

application of an atmospheric transport model in

inverse mode. In the context of interannual variations

in CO2 fluxes, the time-dependent Bayesian inversion

(a)

(b)

Fig. 12 Change in mean seasonal canopy stomatal conductance to moisture due to replacement of Goddard Institute for Space Studies

global climate model canopy scheme with that of Friend & Kiang (2005). December–January–February (DJF) (a) absolute range: �3.0 to

1 6.4 mm s�1; JJA (b) absolute range: �2.7 to 1 6.3 mm s�1. Global non-Antarctica land means at upper-right corners. Hatched areas are

significant at the 95% confidence level for a paired t-test. Figure redrawn from Friend & Kiang (2005).
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technique was first applied by Rayner et al. (1999).

Subsequent studies updated this methodology,

including detailed uncertainty analysis, to further

extend our understanding on surface controls of CO2

fluxes (e.g. Bousquet et al., 2000; Rödenbeck et al., 2003;

Peylin et al., 2005).

The increasing number of active atmospheric

measurement sites makes inverse estimates of surface

fluxes increasingly robust. Before the 1990s, the number

of sites was rather low, but more than 100 sites are now

available. In the study by Rödenbeck et al. (2003),

reviewed here as an example, flask CO2 data were

obtained from the NOAA/CMDL sampling network

(an update of Conway et al., 1994). Up to 35 sites were

selected that covered different multiyear periods

without any large gaps. Atmospheric transport was

calculated using the global atmospheric transport

model TM3 (Heimann, 1996), driven by interannual

meteorological fields derived from the NCEP

reanalysis (Kalney et al., 1996).

Because the available spatial coverage of concen-

tration data is low relative to the global inverse

problem, a priori information is required to establish the

most likely pattern of surface fluxes. In Rödenbeck et al.

(2003), a priori information consisted of statistics of

anthropogenic emissions from fossil fuel burning and

cement manufacturing (Olivier & Berdowski, 2001),

climatological NEE of the terrestrial biosphere (mean

seasonal cycle over 1980–1992 as estimated by LPJ,

Sitch et al., 2000), and ocean-atmosphere C exchange

(Takashi et al., 1999; Gloor et al., 2003). The adjustments

of fluxes from these a priori values by the inversion are

weighted according to fixed spatio-temporal distribu-

tions. For terrestrial NEE, this weighting was chosen

proportional to mean NPP. Therefore, the inversion

preferentially adjusts fluxes in locations with high

vegetation activity, such as tropical rainforest. Spatial

and temporal correlations of the flux adjustments are

also specified, determining their spatio-temporal

coherence scales. Correlation scales for NEE were set to

Fig. 13 Intercomparison of MODIS 8 day gross primary production (GPP) product with FLUXNET GPP measurements in 2001.

Substituting in situ meteorological data for the lower resolution Data Assimilation Office operational data allows separation of model

bias errors. Figure redrawn from Running et al. (2004).
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about 1200 km, corresponding to scales of synoptic

weather phenomena.

Inversion-estimated surface flux anomalies. The

interpolated atmospheric CO2 data and estimated

surface CO2 flux anomalies for 1982–2000 are shown

over latitude and time in Fig. 15, together with the

Oceanic Niño Index (ONI). El Niño events display

high ONI temperatures, and are clearly one of the

major drivers of both the temporal and spatial

variability in atmospheric CO2. (Fig. 15a). A signi-

ficant period of negative surface anomalies following

the Mount Pinatubo eruption is also evident (Fig. 15b).

The inversion localizes flux anomalies on a finer

resolution. The tropical land surface is estimated to be

the main driver of the atmospheric anomalies (Fig. 15c),

particularly in response to El Niño and La Niño

periods, except for the 2 years after the Pinatubo

eruption.

Much of the El Niño/Southern Oscillation (ENSO)

variability effect is found in Tropical and South

America. For example, Fig. 16 shows the surface

distribution for the flux anomaly during the strong

1997/1998 El Niño event. These anomalies are closely

correlated with large changes in tropical precipitation.

Large biomass burning events seem to be an important

mechanism for C emissions, as indicated by satellite

estimates (cf. Rödenbeck et al., 2003).

There is good agreement between estimates of

regional CO2 flux variability from atmospheric inver-

sions and two process-based land models (LPJ and

SLAVE) (Peylin et al., 2005). The largest uncertainty

Fig. 14 Trends in net primary production (NPP) 1982–1999 computed using the production efficiency model , driven by AVHRR NDVI

(percentage change per year). Figure redrawn from Nemani et al. (2003).

Fig. 15 (a) Measured atmospheric CO2 growth rate anomalies (longitudinal annual means linearly interpolated between measurement

sites); (b) surface CO2 flux anomalies as estimated by inversion; (c) as (b) except land fluxes only; (d) as (b) except ocean fluxes only.

Colour spectra show anomaly amplitude; white spaces separate periods of increasing numbers of measurement sites. Also shown (e) is

the Oceanic Niño Index (ONI; NOAA: http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml), and

the time of the Mt Pinatubo volcanic eruption (purple arrow). Vertical brown lines show timing of peak Oceanic Niño Index values,

indicating strong El Niño conditions. Figure redrawn from Rödenbeck et al. (2003).
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among these models is in the response of the decompo-

sition of organic material to both precipitation and

temperature (Peylin et al., 2005).

Potential uses of FLUXNET data in inversions. As the a

priori constraints have considerable impact on esti-

mated fluxes, reliability of inversion results can

potentially be improved by using additional data

sources. Clearly, FLUXNET data represent such a

source of information. Unfortunately, a direct incor-

poration of eddy flux measurements into the atmo-

spheric inversion calculation is difficult, because the

spatial scales seen from the atmospheric concentration

gradients are much larger than the footprint of

measured fluxes. However, a possible way to close

the gap in scales between these data streams is to

use carbon cycle models. Validation of process

models using FLUXNET data (as well as calibration

of remote-sensing driven diagnostic models), as

outlined in the previous sections, and then use of

these models to simulate regional and global fluxes,

represents a step in this direction. In a more

elaborate framework, optimization of model para-

meters can be based both on FLUXNET data and

on atmospheric data; a prototype of such a ‘data

assimilation system’ has recently been published by

Rayner et al. (2005).

As a method of intermediate complexity, flux data

could also provide statistical information to be used as a

priori constraints in the inversion. For example,

multiyear flux time series from sufficient numbers of

different locations and biome types could give spatial

patterns of amplitudes of seasonal or interannual

variability, replacing the crude vegetation proxies

mentioned above. Furthermore, correlation analysis

of flux time series, both autocorrelation in time and

cross-correlation between sites, could yield valuable

information on the structure of spatio-temporal

coherence of fluxes, replacing the ad hoc specification

of correlation lengths generally used so far. Similarly,

spectral or wavelet analysis of measured fluxes can give

a priori information in the time dimension.

Discussion

Eddy covariance measurements of ecosystem-atmo-

sphere CO2, energy, and moisture fluxes are indispen-

sable for the attribution of mechanisms to the observed

temporal and spatial variability in the global carbon

cycle. The various applications of FLUXNET eddy cov-

ariance data reviewed here demonstrate how these data

have been used to evaluate and calibrate DGVMs, have

led to substantial improvements in simulated climate in

a GCM, show promising utility for model parameter

estimation, underpin global operational vegetation pro-

ductivity products, and could be used in future global

CO2 atmospheric inversion studies.

What do these global studies tell us about the con-

temporary C cycle? Certainly the 6.2% increase in global

NPP over the period 1982–1999 simulated by the PEM

is an important finding that demands careful analysis.

Additional simulations, with constant vegetation or

constant climate, showed that the majority of the in-

crease in NPP could be attributed to vegetation changes

El Niño flux anomalies (June 1997 – May 1998) (g [C] m−2 yr−1)
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Fig. 16 Spatial pattern of inversion-estimated mean surface CO2 flux anomalies during the 1997/1998 El Niño period relative to the

1990–1999 mean, estimated with 19 atmospheric measurement sites (solid triangles). Figure redrawn from Rödenbeck et al. (2003).
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resulting in increased light absorption (Nemani et al.,

2003). Climate alone accounted for 39% of the increase

to 1996, but was not a significant factor over the entire

1982–1999 study period due the 1997–1998 El Niño.

Changes in vegetation structure could have arisen from

a variety of processes, including growth stimulation by

increasing CO2 and/or N deposition, climate-vegeta-

tion feedbacks, and land use.

The global SDGVM simulation also predicts increas-

ing NPP over this period, and therefore allows further

investigation into the causes of this change. Despite

different absolute NPP (PEM: 54.5 Pg [C] yr�1; SDGVM:

74.3 Pg [C] yr�1), both models predict very similar NPP

variability over the period 1982–1995 (the years when

both approaches were applied), with interannual varia-

bility largely driven by ENSO (Fig. 17a). The major

reason for the increasing NPP in the SDGVM is the

effect of CO2 on photosynthesis and water use effi-

ciency, with lesser contributions from increasing tem-

perature and N deposition (Woodward & Lomas, 2004).

These effects would be expected to have significant

impacts on leaf area, and are therefore observed from

space and likely drive the increase in NPP in the PEM

(the PEM algorithm does not include CO2 concentra-

tion directly). Therefore, CO2 fertilization of photo-

synthesis appears to be a key process in the contem-

porary response of the terrestrial biosphere to global

change, but has been a controversial aspect of the global

carbon cycle. This finding is strongly supported by

additional GISS GCM simulations, where doubled

CO2 substantially increased global photosynthesis

(1 47%), whereas climate change alone caused reduced

CO2 uptake (�9%).

The SDGVM also predicts total ecosystem CO2

exchange with the atmosphere, allowing comparison

with the inversion model results, and extension of the

PEM result to the net terrestrial CO2 flux. The mean

net terrestrial flux for 1982–1995 is calculated by the

SDGVM to be �2.6 Pg [C] yr�1, whereas the inversion

of atmospheric measurements gives a net flux of

�1.2 Pg [C] yr�1, although with considerable uncer-

tainty. The SDGVM does not include the C flux from

(a)

(b)

Fig. 17 (a) Global net primary production (NPP) anomaly estimated by the production efficiency model (PEM) relative to its 1982–1995

mean (red line); annual NPP anomaly predicted by the SDGVM relative to its 1982–1995 mean (green line); Oceanic Niño Index (black

line, inverted scale). (b) Global running yearly sum of monthly estimates of land net ecosystem exchange of CO2 (NEE) estimated by

inversion of atmospheric CO2 measurements (red line, nonfossil fuel fluxes; number of sites increasing from 11 to 35 with time, see

Rödenbeck et al., 2003), mean annual NEE predicted by the SDGVM (green line), same plus calibrated land use flux of 1.3 Pg [C] yr�1

(blue line). Oceanic Niño Index also shown (see Fig. 15), with direct scale (black line).
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land use, which is highly uncertain but thought to have

been in the range 0.6–2.5 Pg [C] yr�1 for this period (see

DeFries et al., 2002, for evidence that the actual value is

towards the low end of this range). Figure 17b compares

the predicted net flux from the SDGVM before and after

calibration with a constant land use flux correction of

1.3 Pg [C] yr�1, together with the inversion-based flux

and the ENSO index. The match is fairly close, with

ENSO the main driver of interannual variability. A

notable exception is the El Niño event that peaks in

January 1992, but is not associated with an observed

reduction in terrestrial C uptake, although such an

effect is somewhat predicted by the model. The erup-

tion of Mt Pinatubo in the Philippines in June 1991 has

been invoked to explain the anomalous terrestrial C

uptake inferred by the atmospheric measurements (Gu

et al., 2003), but the mechanism remains controversial

(Robock, 2005). The SDGVM somewhat underpredicts

the magnitude of the observed net C uptake following

the eruption, suggesting that additional processes such

as the greater efficiency of diffuse light for canopy

photosynthesis may need to be invoked (Gu et al., 2003).

The PEM predicts that the Amazon basin largely

drives variability in global NPP. The atmospheric in-

version also points to this region as the main source of

ENSO-driven global carbon cycle dynamics, although

this is at least partly a result of the a priori NEE

distribution pattern simulated by the LPJ model. The

inversion estimates a net flux of �0.6 � 0.3 Pg [C] yr�1

in the South American Tropical region for the 1990s,

implying a natural ecosystem flux of �0.8 to

�1.3 Pg [C] yr�1 after allowing for land use change

(Rödenbeck et al., 2003). Field biometry measurements

point to a somewhat smaller natural Amazonian flux of

�0.4 to �0.6 Pg [C] yr�1 (Phillips et al., 1998), whereas

flux tower measurements suggest a much large sink

(Miller et al., 2004). The inversion-based sink for this

region has a maximum of about 150 g [C] m�2 yr�1, or

1.5 Mg [C] ha�1 yr�1, whereas flux towers have mea-

sured uptake as high as 6 Mg [C] ha�1 yr�1 (Malhi

et al., 1998). There is, however, substantial uncertainty

with respect to night-time fluxes for Amazon forests

(and presumably all dense forests), making scaling up

fluxes in time very problematical (Kruijt et al., 2004).

Clearly, reducing the gap between in situ tropical rain-

forest and global atmospheric measurements must be a

priority for future terrestrial carbon cycle research.

An important point regarding the generality of global

carbon cycle models arises from the mismatch between

modelled and observed NEE at FLUXNET sites where

night-time fluxes are thought to pose no major pro-

blems. If the general model ‘error’ (‘bias’ is probably a

better term) of net C uptake arises because of the effects

of management, then the model should still be applic-

able globally where the majority of forests are unma-

naged, and management can be built into the global

model where it is important (e.g. for Europe such as in

Zaehle et al., 2006). If, however, the mismatch results

from some fundamental model inadequacy, then model

utility is severely compromised. This issue merits

careful future research, underpinned by improved

knowledge concerning the management history of

FLUXNET sites.

Finally, a number of recommendations arise from the

studies outlined here. Meaningful comparisons of

short-term model behaviour with flux measurements

demand accurate estimates of a number of site para-

meters such as canopy N, LAI, and soil moisture, but

these are often difficult or impossible to find, therefore

reducing the value of such comparisons and of eddy

covariance data. Longer-term comparisons require bio-

mass and soil C data or estimates, enabling separation

of fast and slow C processes. As is clear from this paper,

information on site history is important in order to

make a full evaluation of a model’s performance. It is

recognized that this is not always available, but even

anecdotal evidence of past land use or disturbance

would be of significant help. Other recommendations

include an increase in the number of measurement

towers at locations as little disturbed by human man-

agement as possible, as well as in important tropical

ecosystems such as savannas and wetlands, and in very

high northern tundra and wetlands. Finally, there is

currently a lack of representation of the full life cycle of

ecosystems, including burnt, diseased, overthrown, or

cut sites, as well as ecosystems approaching the end of

their natural life cycle.

The greatest value for current FLUXNET data in

developing models is in evaluating their representation

of processes, rather than providing an unbiased esti-

mate of net C exchange. Therefore, gap-filled data are of

limited use for modellers, and if provided need to be

carefully separated from primary in situ data so as to

avoid model–model comparisons. Indeed, carefully de-

signed campaign-type studies of limited temporal cov-

erage, but comparing a range of ecosystems in a given

region, may usefully complement long-term observa-

tion sites, addressing some of the issues raised in the

previous paragraph with a defensible logistical effort.

Finally, the calculation and provision of uncertainty

estimates should be a part of all in situ measurement

campaigns if their data are to be used to rigorously

validate and parameterize global carbon models.
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