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Abstract

The ‘‘age’’ of a trace constituent is a common diagnostic of its transport in a geophysical flow. Deleersnijder et al. (Bull. Soc.

R. Sci. Liege 70 (2001a) 5) and Beckers et al. (SIAM J. Appl. Math. 61 (2001) 1526) analyzed tracers released from point

sources in unbounded advective–diffusive flows with uniform coefficients and noted a surprising feature: the ‘‘mean tracer

age’’ (the averaged elapsed time since tracer was injected) is symmetric about the source, despite the directionality of the flow.

Although the majority of tracer is swept downstream, the small fraction that diffuses upstream does so at the same average rate.

We explore this symmetry physically by examining the random walk trajectories that underlie the advective–diffusive

description of transport. Using physical arguments, we show that symmetry in the tracer age field is a natural consequence of

symmetry in the velocity and diffusivity fields.
D 2004 Elsevier B.V. All rights reserved.
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1. Introduction since tracer was injected from a source (e.g., Delhez et
‘‘Age’’ is a diagnostic timescale of transport used

in geophysical systems as diverse as the ocean,

stratosphere, and ground water (e.g., the review of

Waugh and Hall, 2002). Common to these systems is

the advective–diffusive nature of the transport. Su-

perposed on bulk motions are mixing processes that

necessitate a statistical treatment of transport. Not

surprisingly, given the widely varying contexts, pre-

cise definitions vary. In one usage, age is a property of

the tracer itself, and is defined as the elapsed time
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al., 1999; Deleersnijder et al., 2001b). We refer to this

age as ‘‘tracer age’’ to distinguish it from the ‘‘transit

time’’ of an irreducible fluid element traveling to the

interior from a specified boundary region, a property

of the underlying fluid that Deleersnijder et al.

(2001b) has called ‘‘water age’’ and is often simply

called ‘‘age.’’ As a result of mixing the tracer content

of a macroscopic fluid parcel is comprised of a range

of tracer ages, just as the parcel’s irreducible fluid

elements exhibit a range of transit times.

This note is largely motivated by recent work of

Deleersnijder et al. (2001a) and Beckers et al. (2001),

who analyzed tracer age in idealized unbounded

advective–diffusive flows with uniform velocity and

diffusivity. These authors noted the surprising result

that the mean tracer age is symmetric about a point
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source, despite the strong asymmetry in the tracer

concentration due to the directionality of the flow.

Beckers et al. (2001) also noted the symmetry in

numerical models of the North Sea. The symmetry

is counterintuitive because one expects that the rate of

tracer motion should reflect the relative difficulty of

moving against the flow. Here, we present a physical

explanation for this symmetry by analyzing the ran-

dom walks that underlie advective diffusive motion.

We also compare and contrast different definitions of

‘‘age’’ in regards to this symmetry.
2. Tracer age

2.1. Definitions

The concept of ‘‘age’’ as a diagnostic of transport

is widely used in geophysics (Waugh and Hall, 2002).

However, definitions vary. The most direct definition

in terms of tracer is what we call here ‘‘tracer age.’’

Tracer age is defined to be a property of the tracer

itself, rather than a property of the underlying fluid.

(By contrast, Hall and Plumb, (1994) and Haine and

Hall, (2002) define related diagnostics as properties of

the fluid, independent of particular tracers.) Each

tracer particle (e.g., molecule) is imagined to have a

‘‘clock’’ that is turned on at the time the tracer is

injected into the fluid. A macroscopic fluid parcel

contains many particles with a distribution of clock

times, or ‘‘tracer ages.’’ The tracer age distribution can

be characterized by its temporal moments: the zeroeth

moment (proportional to the tracer mole fraction), the

first moment (the ‘‘mean tracer age’’), and higher

moments (e.g., the variance of tracer age). A tracer

age distribution can be defined at each point in the

domain. The distribution depends both on the under-

lying fluid flow and on the sources and sinks of the

tracer.

As a concrete example, consider an inert passive

tracer injected into an advective–diffusive flow by a

point source at r Vwith time-dependent source strength

S(r V, t) having units of tracer mass per time. At

position r and time t the tracer mole fraction q(r, t)

is comprised of tracer injected at a range of past times.

The contribution from the past time interval t V+ yt Vis
S(r V, t V)G(r, tjr V, t V)yt V, where G(r, tjr V, t V) is the

response at (r, t) to an injection at r Vat a single past
time t V; that is, S(r V, t) = q� 1y(r� r V)y(t� t V), where q
is the fluid density. G is the Green’s function that

carries tracer from (r V, t) to (r, t). The concentration q

is the sum of these contributions:

qðr; tÞ ¼
Z t

�l
dt VSðr V; t VÞGðr; tAr V; t VÞ ð1Þ

qðr; tÞ ¼
Z l

0

dnSðr V; t � nÞGðr; tAr V; t � nÞ; ð2Þ

where nu t� t Vis the elapsed time since a contribu-

tion was injected into the flow, the ‘‘tracer age’’ of the

contribution. The fraction of q(r, t) with tracer age in

the interval n to n + yn is

Zðr; tAr V; t � nÞyn

¼ Sðr V; t � nÞGðr; tAr V; t � nÞ
qðr; tÞ yn; ð3Þ

thereby defining Z(r, tjr V, t� n), the ‘‘tracer age

distribution.’’ This formulation is discussed in detail

by Holzer and Hall (2000) and for linear tracers is

related to the ‘‘concentration distribution function,’’

c(r, tjr V, t� n), of Deleersnijder et al. (2001b) simply

by Z = c/q. By construction, ml0 Zdn ¼ 1. The ‘‘mean

tracer age’’ is the first moment of this distribution: A

ðr; t; r VÞ ¼ ml0 nZdn.
We emphasize that Z and A are in general distinct

from the ‘‘age spectrum,’’ G, and ‘‘mean age,’’ C, of
Hall and Plumb (1994) (also called the ‘‘transit time

distribution’’ and ‘‘mean transit time,’’ respectively).

G and its first moment C are descriptors of the

underlying fluid transport and are independent of the

properties of any particular tracer, while Z depends

explicitly on the tracer source, as seen in Eq. (3). G is

the distribution of transit times since a fluid parcel

made last contact with some specified region, X, and

C is the mean of the distribution. The relationship of Z

and A to underlying timescales of the flow and the

conditions under which ZcG are laid out by Holzer

and Hall (2000). For example, Holzer and Hall (2000)

show that for a constant uniform source on a region in

a bounded domain C(r)c 2(A(r)�A(X)). In more

general cases there is no such simple relationship.

Further contrast and comparison of tracer and fluid

age is made in the summary and discussion sections.
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2.2. Examples

In order to gain insight to tracer age and illustrate

tracer age symmetry in a simple context, we consider

the following model: a passive inert tracer injected

into an unbounded advective diffusive flow with

uniform and constant velocity v and diffusivity j.
Tracer age in these simple models is also analyzed by

Deleersnijder et al. (2001b) and Beckers et al. (2001).

The point source is taken to be the origin, and t V= 0.
The Green’s function is

Gðr; tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
4pjt

p
� �n

exp � Ar� vtA2

4jt

� �
; ð4Þ

where n is the dimensionality of the flow, and it is

assumed that q = 1, giving G units of L� n. We

consider the cases n = 1 and n = 3 because they permit

easy analytic solution.

If the source is S(t) = s0 for tz 0 and S(t) = 0 for

t < 0, then the steady-state response of the tracer is

qðrÞ ¼ ml0 Gðr; tÞdt. One finds in 3-D

qðrÞ ¼ s0

4pjr
exp � ðrv� r � vÞ

2j

� �
ð5Þ

Zðr; nÞ ¼ rffiffiffiffiffiffiffiffiffiffiffiffiffi
4pjn3

p exp � ðr � vnÞ2

4jn

 !
ð6Þ

and

AðrÞ ¼ r

v
ð7Þ

where r = jrj and v = jvj. In 1-D the solutions are

qðxÞ ¼ s0

v
exp � vðAxA� xÞ

2j

� �
ð8Þ

Zðr; nÞ ¼ vffiffiffiffiffiffiffiffiffiffiffi
4pjn

p exp � ðAxA� vnÞ2

4jn

 !
ð9Þ

and

AðxÞ ¼ AxA
v

þ 2j
v2

: ð10Þ
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(See also Deleersnijder et al., 2001a,b and Beckers et

al., 2001 for these and other related solutions.)

Several features are worth noting. The first point,

constituting the main focus of this work, concerns

the differences between q on the one hand and Z and

A on the other. The concentration, q, is highly

asymmetric. For example, in 1-D, tracer completely

fills the downstream domain (i.e., q(x) = 1 for x>0),

while upstream tracer falls as e� jxjv/2j. By contrast,

both Z and A are symmetric in x. This symmetry,

noted by Beckers et al. (2001) in a study of North

Sea models and by Deleersnijder et al. (2001a) and

Beckers et al. (2001) in the 1-D solutions above, is

counterintuitive. One expects that it is harder to

move against the flow than with the flow, and

therefore it should take longer. One finds, instead,

that while only a small fraction of the tracer moves

against the flow, this fraction requires no more time

to travel an equal distance than the larger fraction

moving with the flow. This symmetry is discussed in

detail in the next section.

Before addressing the symmetry, however, we

also note the qualitative difference between 1-D

and 3-D. Tracer completely fills the domain down-

stream in 1-D; that is, if one waits long enough,

q= 1 anywhere downstream. This is not the case in

3-D, where even directly downstream q~1/r. In 3-D

there is too much space to be filled by a point

source. In 1-D A(x) is nonzero everywhere, includ-

ing at the point source. Because of diffusive motion

tracer can make an excursion downstream or up-

stream from the point source and then return to the

source, causing A(0)>0. In 3-D, however, there is too

much available space, and recirculation back to the

origin has infinitesimal influence. (See Appendix C

of Holzer and Hall (2000) for a related discussion.)
3. Tracer age symmetry

In order to understand physically the counterintu-

itive tracer age symmetry we consider a Lagrangian

description of transport. Advective–diffusive trans-

port arises from the continuum limit of such a de-

scription. Diffusion represents the aggregate effect of

random motions of particles. Advection is the net drift

of particles in a direction of preferred probability for

individual particle steps.
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For simplicity, we consider particles that move in

discrete steps of unit magnitude every time step yt,
selecting randomly among the six possible directions

F x̂, F ŷ, and F ẑ in a 3-D rectilinear lattice; that is,

the single step probability density function (pdf)

consists of six spikes, one for each direction. Take

the direction of the macroscopic velocity to be + x̂.

Particles are more likely to take + x̂ steps than � x̂

steps (i.e., the + x̂ spike of the pdf has greater

magnitude). Steps in F ŷ, and F ẑ all have equal

probability. Step probabilities are assumed to be

spatially uniform, resulting in uniform macroscopic

velocity and diffusivity. Because volume elements

have unit magnitude, the particle concentration at

r=(x, y, z) is equal to the particle number at r. The

mean tracer age, A(r), is the average over the particles

at r of the elapsed times since they were injected at a

source, which we take to be a point source at r V=(x V,
y V, z V) of magnitude S(r V, t) (particle number per

time).

Clearly q, Z, and A are symmetric in y and z, since

there is no preferred direction in this plane. However,

it may seem surprising that Z and A are symmetric in

x, despite the directionality of the velocity (i.e., the

preferred single step probability). Our physical argu-

ment for the symmetry requires two ingredients: (1)

For each sequence of particle steps (a ‘‘trajectory’’)

connecting r V to r there is a ‘‘reflection’’ trajectory

connecting r V to � r. The reflection is obtained by

reversing the sign of all the steps. The existence of a

reflection requires that the probability for a step in an

opposite direction be nonzero, although it can be

arbitrarily close to zero. (For example, the limit of

small probability of a � x̂ step is the limit of small x

diffusion. The tracer age is still symmetric in x, but it

is realized by a vanishingly small amount of tracer at

points x < x V.) (2) The steps comprising a trajectory are

statistically independent. In the argument that follows

this independence allows us to reorder a step sequence

with no impact on its overall probability. Note that if

steps were not statistically independent, but instead

had a finite decorrelation time, one could accumulate

a sequence of steps over the decorrelation time and

consider the net displacement of the accumulation as

the fundamental step.

Consider a sequence of n steps w1, . . ., wn forming

a trajectory W from r Vto r. If p(wj) is the probability

of the jth step, then P(W) = p(w1): : :p(wn) is the
probability that trajectory W is sampled by a particle.

Now, in every trajectory there must be a subset of

steps that, when taken in sequence, forms a ‘‘sub-

trajectory’’ directly from r Vto r. The remaining set of

steps form a sub-trajectory of zero net displacement.

We consider the reordered sequence

W ¼ w1; . . . ;wn�m;
zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{rV! rV

wn�mþ1; . . . ;wn;
zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{rV! r

ð11Þ

where Ruw1, . . ., wn � m is a ‘‘recirculation sub-

trajectory’’ of zero net displacement and step number

n�m, and Duwn� m + 1, . . .,wn goes directly to r in

the minimum number of steps m = jxj/yx. Because of

the statistical independence of steps the reordering

does not affect the overall probability of W, and so

P(W) =P(R)P(D).

Each permutation of steps in Eq. (11) is also a

trajectory from r Vto r and has the same probability. To

obtain the full probability, P, of traveling from r Vto r in
n steps, P(W) must be multiplied by a factor B(n,m),

the number of distinct permutations of n steps that

result in a net m steps in one direction. That is,

P ¼ Bðn;mÞPðRÞPðDÞ: ð12Þ

P(D) depends on both the magnitude of r� r V(a
longer sequence of steps is required to reach a

greater jr� r Vj) and its direction (steps against the

flow are less likely than steps with the flow).

However, P(D) does not depend on the total step

number n or, equivalently, on the total duration of

the trajectory nyt, as long as mz n. Every trajectory

to r must have the sub-trajectory D, regardless of the

total step number. The additional steps affect P(R)

but not P(D).

The expected number of particles q at r is the sum

of the probabilities of all trajectories to r of all step

numbers n (equivalently, durations nyt) multiplied by

the particle number, S(r V, t� nyt)yt, emitted at the

time the trajectory started at r V. That is,

qðr; tÞ ¼
Xl
n¼m

Sðr V; t � nytÞytBðn;mÞPðRÞPðDÞ ð13Þ

(Note that, compared to Section 2, q and S here have

units of particle number and particle number per

time, respectively.) The quantity S(r V, t� nyt)B(n,m)
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P(R)P(D)yt is the number of particles that took time

nyt to travel r V to r. Therefore, the tracer age

distribution, following Eq. (3), is

Zðr; tÞ ¼ Sðr V; t � nytÞBðn;mÞPðRÞPðDÞXl
n¼m

ytSðr V; t � nytÞBðn;mÞPðRÞPðDÞ
:

ð14Þ

We now exploit the fact that P(D) does not depend

on the length of a trajectory by moving it outside the

summation, leaving

Zðr; tÞ ¼ Sðr V; t � nytÞBðn;mÞPðRÞXl
n¼m

ytSðr V; t � nytÞBðn;mÞPðRÞ
: ð15Þ

None of the factors in Eq. (15) depends on the

direction from the point source at r V. Because the

velocity and diffusivity are assumed uniform, the

probability of a trajectory of zero net displacement,

P(R), is actually independent of position. B(n,m) is the

number of trajectories that go r to r, and depends on

jr� r Vj through the step number m, but not on the

direction. Therefore Z is symmetric, as are all its

temporal moments, including the mean tracer age A.

Let us summarize the essence of the tracer age

symmetry. Every trajectory from r Vto r has a reflection
to � r, formed by reversing all the steps. If single step

probabilities are spatially uniform (equivalent to uni-

form velocity and diffusivity) and the steps are statis-

tically independent, then the sequence of steps in a

trajectory can be reordered with no impact on the

trajectory’s total probability. One such reordering

results in a recirculation sub-trajectory about r Vof zero
net displacement (same number of steps in all direc-

tions) followed by a direct flight to r. But the recircu-

lation is the same for the trajectory and its reflection.

The difference in the trajectory probabilities comes

only from the difference in probabilities of the direct

flights. These direct flight probabilities do not depend

on the overall trajectory duration, and thus the differ-

ence in probability of a trajectory and its reflection does

not depend on the duration. In other words, the dis-

tributions by trajectory duration of trajectory probabil-

ities to r and � r differ by a single scaling factor, the
difference in direct flight probability to r and � r.

Upon dividing by the particle number to obtain Z, the

distribution among the particles present, the distribu-

tion and its reflection become identical.

3.1. One-dimensional examples

We now illustrate these arguments in a 1-D exam-

ple. Consider steps of equal magnitude yx every time

step yt, with a probability p of a positive step and a

probability q = 1� p of a negative step; that is, a

single step probability distribution function (pdf)

consisting of spikes of unequal magnitude at F 1.

(The macroscopic transport coeffcients are related to

the randomwalk parameters by u=( p� q)yx/yt and

k= pqyx2/yt.) To arrive at x>0 there must be m = x/yx
more positive steps than negative. Because of the

statistical independence of steps, the probability of

any trajectory to x in time n = nyt, where n is the total

step number, can be written

Pðx; nÞ ¼ pmp
1
2
ðn�mÞq

1
2
ðn�mÞ ð16Þ

The probability for the reflection trajectory is obtained

by reversing all the steps; that is, by interchanging p

and q in Eq. (16):

Pð�x; nÞ ¼ qmq
1
2
ðn�mÞp

1
2
ðn�mÞ ð17Þ

All other trajectories of duration n to x and � x are

permutations of Eqs. (16) and (17). Note that the ratio

Pð�x; nÞ
Pðx; nÞ ¼ q

p

� �m

¼ q

p

� �AxA=yx

ð18Þ

does not depend on n. Thus, the distributions by n of

trajectory probabilities differ by the constant scaling

factor ( q/p)jxj/yx, and Z is symmetric in x. That is,

Zðx; nÞ ¼ Sðt � nÞBðn;mÞp1
2
ðn�mÞq

1
2
ðn�mÞXl

n¼m

ytSðt � nÞBðn;mÞp1
2
ðn�mÞq

1
2
ðn�mÞ

ð19Þ

is invariant under exchange of p and q. (Here,

B(n,m) = n!/(1/2(n�m)!1/2(n +m)!) is the number of



Fig. 1. Position versus step number of 1000 trajectories starting at the

origin. (a) All trajectories (gray) and those that end at x= + 1F 0.25

(black). (b) All trajectories (gray) and those that end at x=� 1F 0.25

(black). (c) Tracer age distributions at x =+ 1 (solid) and x =� 1

(dashed).

Fig. 2. Tracer age distributions at x= + 1 (solid) and x=� 1 (dashed)

for 5000 trajectories. (a) The width of the single step pdf increases

symmetrically with distance from the origin. (b) The width of the

single step pdf is constant downstream but increases upstream with

distance from the origin.
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distinct permutations of n total steps with a net m

either positive of negative.)

As an additional 1-D random walk example that

relaxes the earlier restriction to quantized steps in x,

consider the following: At each time step 1000

particles are given a random displacement according

to a single step pdf that is equal to unity for

� 0.45 < yx < + 0.55 and zero otherwise. Fig. 1a and

b shows trajectories after 50 time steps. Also shown

among all the trajectories in Fig. 1a are the subset that

reach x = 1F 0.25. Fig. 1b shows those that reach

x =� 1F 0.25. More particles follow trajectories

reaching + 1 than � 1, because of the preferred

direction for single steps. We now form the tracer

age distributions, Z(x, n), at x= + 1 and x =� 1 by

binning the number of particles at these positions
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according to their step number at arrival, then dividing

by the total number reaching the locations. These Z,

shown in Fig. 1c, are symmetric, discounting statisti-

cal fluctuations.

The symmetry of Z(x, t) in the example above

reflects the uniformity of the transport coefficients,

expressed as velocity u and diffusivity j macroscopi-

cally and by the single step pdf microscopically.

More generally, u and j (and the single step pdfs)

need not be uniform, but merely symmetric, to result

in symmetric Z(x, n). Fig. 2a shows Z at x =F 1

resulting from a random walk with the single step

pdf of Fig. 1, except that now the pdf width

increases symmetrically with distance from the origin

according to 1 + 3(1� e� jxj). The symmetry of Z in x

is preserved. By contrast, when the width increases

upstream but remains uniform downstream, Z is

asymmetric, as shown in Fig. 2b.
4. Summary and discussion

Deleersnijder et al. (2001a) and Beckers et al.

(2001) noted a counterintuitive symmetry in the

‘‘age’’ of a tracer released from a point source in an

advective–diffusive flow with uniform coefficients.

We have explained this symmetry physically by

analyzing random walks with statistically independent

steps, a description that underlies advective–diffusive

transport. Every trajectory from a source r Vto r has a

reflection to � r. The step sequence in a trajectory

and its reflection can be reordered with no effect on

the probability of being sampled by a particle. One

such reordering results in a recirculation about r Vof
zero net displacement followed by a direct flight from

r V to r. But the recirculation is the same for the

trajectory and its reflection. The difference in the

trajectory probabilities comes only from the differ-

ence in probability of the direct flights. These direct

flight probabilities do not depend on the overall

trajectory duration (transit time), and thus the differ-

ence in probability of a trajectory and its reflection

does not depend on the transit time. Therefore, the

normalized distributions of transit times to r and � r

are identical.

It is worthwhile contrasting the symmetry proper-

ties of two different definitions of ‘‘age.’’ The age

symmetry of Deleersnijder et al. (2001a) and Beckers
et al. (2001) arises in the case where age is considered

to be a property of the tracer itself—what we have

called ‘‘tracer age’’. In an alternate use of the term

‘‘age,’’ the symmetry does not arise. It is common in

ocean tracer studies to consider the age to be a

property of a water mass. One speaks of the elapsed

time (or distribution of times) since a water mass was

last at the ocean surface (e.g., England, 1995; Beining

and Roether, 1996). (For clarity, we have referred to

the ‘‘transit times’’ for irreducible fluid elements to

travel from a specified boundary region to the interior,

although simply ‘‘age’’ is common.) Observable trac-

ers allow an estimation of the transit time distribution

and its moments to varying degrees, depending on the

tracer and the flow conditions (Waugh et al., 2003).

To make explicit, the different symmetry properties

of these timescales consider an unbounded 1-D ad-

vective–diffusive system with uniform coefficients,

the system analyzed by Deleersnijder et al. (2001a).

The transit time of an irreducible fluid element is the

time since it was last at the origin. Note the distinc-

tion: transit time is always zero at the origin, whereas

tracer age is generally nonzero at the origin. In the

simplest case of a tracer having a constant source, the

mean tracer age A(x) downstream is given by expres-

sion (10), whereas the mean transit time (also known

as the ‘‘mean age’’ and the ‘‘ideal age’’) is C(x) = x/u.
In this idealized case the two timescales are related

simply: C(x) =A(x)�A(0). (Contrast this with the

relationship noted in Section 2.1 for a conservative

tracer with constant source in a bounded domain.)

We now ask what is the mean transit time up-

stream? One could attempt to construct the transit

time distribution G (also known as the age spectrum)

following Hall and Plumb (1994) by computing the

response to a y(t) boundary condition at x = 0 and

looking at positive x with u < 0; i.e., the fluid flow

running toward the origin from the parcel location.

This yields

Gðx; nÞ ¼ xffiffiffiffiffiffiffiffiffiffiffiffi
4pkn3

p e�ðxþunÞ2=4kn ð20Þ

However, one finds that ml0 Gdn ¼ e�2xu=k < 1. Unlike

the case downstream, where ml0 Gdn ¼ 1, the upstream

transit time distribution is not normalized. A fraction

of the fluid parcel that increases exponentially with x

has never been at the origin. The mean transit time
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solely among the fluid fraction that has been at the

origin is ml0 nGdn= ml0 Gdn ¼ x=u , identical to the

downstream solution. But over the entire fluid parcel

the mean transit time since last contact with the origin

is infinite, since much of the parcel has never been at

the origin. It is therefore not symmetric. A second

approach is to consider the steady-state solution to the

equation for the ideal age, sid, which downstream is

equivalent to the mean transit time (e.g., Khatiwala et

al., 2001):

Bsid
Bt

� u
Bsid
Bx

� k
B
2sid
Bx2

¼ 1 ð21Þ

with sid(0, t) = 0. In steady-state, one finds sid =� x/

u, again not symmetric about x = 0. A negative

timescale upstream to describe the elapsed time since

the fluid made contact with x = 0 is as plausible as an

infinite timescale: most of the upstream fluid has

never been at the origin but will make contact with

the origin at a future time; that is, a negative elapsed

time. We conclude that upstream in an unbounded

domain the mean transit time is either infinite or

negative, depending on definition, but in any case is

not equal to the downstream value. Eric Deleer-

snijder (personal communications) has recently con-

firmed the asymmetry of the ideal age (also known

as the ‘‘water age’’), extending the analysis to

include the transient solution.

It is perhaps not surprising that transport time-

scales should have peculiar properties in an open

domain (unbounded in some direction), given the

continuous and unlimited source of new fluid from

upstream. Although an open approximation may be

useful in certain instances, all geophysical domains

are ultimately closed; that is, the fluid has finite

mass. This has considerable bearing on the trans-

port timescales discussed here. Given a constant

source applied on some boundary region and no

sink, the tracer concentration and mean tracer age

will eventually increase everywhere linearly in time

if the domain is closed. This is in contrast to the

steady-state tracer age in the open 1-D domain,

where escape from the domain acts as an effective

sink for any finite sub-domain. On the other hand,

the mean transit time reaches a finite steady state

even in a bounded domain, if the circulation is
stationary. Sufficiently far enough back in time, all

fluid elements have made boundary contact.

Finally, we note that in a closed domain stream-

lines of the flow are closed. While ‘‘upstream’’ and

‘‘downstream’’ may be meaningful locally, the

mean transit time upstream is not determined

locally, but is rather set by the remote boundaries

that cause streamlines to close. In closed domains,

the mean transit time is not symmetric. Down-

stream, parcels are dominated by fluid that made

recent boundary contact and are therefore young.

In contrast, upstream parcels may have had only

weak diffusive contact locally with the boundary

region. The majority of their fluid elements have

circulated about streamlines that may span much of

the domain, and the parcels are therefore much

older.
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