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Abstract. Satellite instruments provide global maps of surface UV irra-
diance by combining backscattered radiance measurements with radia-
tive transfer models. The accuracy of the models is limited by uncertain-
ties in input parameters representing the atmosphere and the Earth’s
surface. To reduce these uncertainties, we have made enhancements to
the currently operational TOMS surface UV irradiance algorithm (Version
1) by including the effects of diurnal variations of cloudiness, an im-
proved treatment of snow/ice, and a preliminary aerosol correction. We
compare results of the version 1 TOMS UV algorithm and the proposed
version. We evaluate different approaches for improved treatment for
average cloud attenuation within a satellite pixel, with and without snow/
ice on the ground. In addition to treating cloud transmission based only
on the measurements at the local time of the TOMS observations, the
results from other satellites and weather assimilation models can be
used to estimate atmospheric UV irradiance transmission throughout the
day. A new method is proposed to obtain a more realistic treatment of the
effects from snow-covered terrain. The method is based on an empirical
relation between UV reflectivity and measured snow depth. The new
method reduces the bias between the TOMS UV estimations and
ground-based UV measurements for snow periods. We also briefly dis-
cuss the complex problem of estimating surface UV radiation in pres-
ence of UV-absorbing aerosols. The improved (Version 2) algorithm can
be applied to reprocess the existing TOMS UV irradiance and exposure
estimates (since November 1978) and to future satellite sensors (e.g.,
GOME-2, OMI on EOS/Aura, and Triana/EPIC). © 2002 Society of Photo-
Optical Instrumentation Engineers. [DOI: 10.1117/1.1519541]

Subject terms: UV irradiance; TOMS; radiative transfer models; aerosols; clouds;
snow albedo.
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1 Introduction

Potential global increases in UVB irradiances from d
creasing stratospheric ozone amounts1–13 caused by anthro
pogenic release of chlorine gases~mostly chlorofluorocar-
bons! have been an issue of public concern for the past
years, because of their impact on human health as we
terrestrial and aquatic ecosystems.14–20 Several satellite-
based methods for estimating UV irradiance have b
suggested.4,8,21–37 Because of their long time record an
global contiguous spatial coverage, two NASA total ozo
mapping spectrometer~TOMS! data38 are used for estimat
ing global trends in surface UV irradiance4,8,24and studying
global UV climatology28,31 ~especially for land regions no
covered by ground-based UV networks and ov
oceans39,40!. The TOMS UV record will continue with the
hyperspectral ozone monitoring instrument41 ~OMI to be
launched in 2004 on the NASA EOS/Aura satellite! as the
successor to TOMS.

TOMS estimation of UV irradiance using the curre
Version 1 algorithm is usually larger than ground-bas
3028 Opt. Eng. 41(12) 3028–3039 (December 2002) 0091-3286/2002/
s

measurements for most locations in the northern he
sphere (;10% station-average overestimation under sno
free conditions31,42–45!, while frequently underestimating
the irradiance in the presence of snow.46 Part of this bias
can be attributed to the current~Version 1! TOMS UV al-
gorithm~mostly from inadequate treatment of aerosols! and
part to ground-based instrument problems. The goal of
work is to describe planned improvements to the ope
tional TOMS UV algorithm23,27,31,36,41that will reduce this
bias. The proposed improvements will only be impl
mented after an extensive validation period. The improv
~Version 2! UV algorithm will be shared between TOMS
~1979 to the present! and future GOME-2, TRIANA/EPIC,
and OMI UV products.

2 Overview of the Current TOMS UV Algorithm

The amount of ultraviolet radiation in the UVA~320 to 400
nm! and UVB ~290 to 320 nm! spectral regions that reac
the surface of the Earth is determined by Rayleigh scat
ing from the molecular atmosphere, the absorption
$15.00 © 2002 Society of Photo-Optical Instrumentation Engineers
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Krotkov et al.: Version 2 total ozone mapping spectrometer . . .
ozone, scattering by clouds, and both scattering and abs
tion by aerosols.5–13 The current TOMS UV algorithm
~Version 1! is based on corrections to calculated clear-s
UV irradiance,Eclear. The estimation procedure is based
table lookup and either cloud/nonabsorbing aero
correction36 or absorbing aerosol correction27,31 ~Fig. 1!:

Ecloud5EclearCT . ~1!

According to Eq.~1!, CT is a relative atmospheric transmi
tance for global~direct plus diffuse! irradiance normalized
to the cloud- and aerosol-free atmospheric transmittan
As previously described in the literature,27,31 calculation of
Eclear in the UV spectral range is obtained from satellit
derived spectral extraterrestrial solar irradiance47–50 and
TOMS measurements of total column ozone and surf
reflectivity.38

Fig. 1 TOMS Version 1 UV algorithm processes diagram.
-

.

In the absence of snow, clouds, and aerosols, the eff
of molecular~Rayleigh! scattering, ozone absorption, sol
zenith angle, and altitude are well-understood proble
However, the presence of aerosols,51–56 clouds,5,10,13,21–36

and snow57–59 in the satellite field of view~FOV! requires
additional corrections. Exact corrections would require
complete characterization of the optical state of the atm
sphere and the Earth’s surface during the course of the
~for daily exposure calculations!. Since complete informa-
tion is never available from the satellite data alone,
correction factor (CT) for irradiance has to be estimate
using limited information available from the single satelli
measurement at the overpass time. The type of correc
~specificCT algorithm! is selected based on the two thres
old values of the aerosol index~AI ! ~calculated from 340
and 380-nm radiances in the case of Nimbus 7 TOMS
from 331 and 360 nm in the case of Earth Probe TOM!
and Lambertian equivalent reflectivity~LER! ~360 or 380
nm!. The surface albedo and snow effects are estima
using the TOMS monthly minimum Lambertian effectiv
surface reflectivity (RM5MLER) global database60,61 as
described in Refs. 36 and 41. Table 1 includes estimate
the various error sources inEcloud. In addition to the uncer-
tainties in estimated irradiance at the overpass time, the
additional uncertainty in the estimated daily U
exposure.45 The TOMS UV algorithm~Version 1! estimates
daily exposure, assuming no diurnal changes in cloud
aerosol properties. The next section discusses possible
provements to this assumption.

3 Improved Cloud Correction for UV Exposure

Clouds are the main cause of short-term UV daily expos
variability at a given geographic location. Information o
tained from a single polar orbiting satellite is usually lim
ited to one daily low-resolution UV reflectance measu
Table 1 Estimated errors in TOMS/OMI spectral UV irradiance including uncertainty in UV extrater-
restrial solar irradiance.a41

Atmospheric scenario 305 nm 310 nm 324 nm 380 nm

Background, snow free 10% 8% 7% 6.5%

Seasonal snow (10% rms)b 27% 26% 25% 25%

Permanent snow (3% rms)c 30% 30% 30% 30%

Episodic events

Smoke plumed 22% 21% 21% 22%

Desert dust plumee 15% 13% 11% 15%

Urban pollutionf 20% (30%) 15% (25%) 10% (20%) 10% (15%)

aEffects of subpixel variability are not considered.
bAssuming 10% uncertainty in snow albedo rms and 2.5 amplification factor for average snow albedo
0.5.

cAssuming 3% uncertainty in permanent snow albedo rms and 10 amplification factor for snow albedo
0.9.

dTOMS absorbing aerosol index method applied assuming 20% smoke model uncertainty at 324 nm
and 5% smoke height uncertainty. Additional spectral transmittance uncertainty is estimated as 5% at
305 nm, 2% at 310 nm, and 6% at 380 nm.

eTOMS Absorbing Aerosol Index method applied assuming 5% dust model uncertainty at 324 nm and
10% dust height uncertainty. Additional dust spectral transmittance uncertainty is estimated as 10% at
305 nm, 5% at 310 nm, and 10% at 380 nm.

fMexico City aerosol climatological scenario for typical (annual average) aerosol loading.72 Numbers in
parenthesis apply to extreme pollution events.
3029Optical Engineering, Vol. 41 No. 12, December 2002
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3030 Opt
Fig. 2 Comparison of original and improved cloudiness treatment in the UV algorithm. Liquid and ice
water data of ECMWF (solid line) is used (assuming total overcast case) in the improved case. The
improved method [Eq.(5)] shows better agreement with the Brewer daily observations (diamonds),
whereas the original TOMS algorithm [Eq.(3)] gives an overestimate of the daily dose ;60% for this
particular case.
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ment (FOV;100 km for TOMS and;50 km for OMI and
GOME-2! at a given location~except at high latitudes!. For
the low resolution FOV, it is only necessary to calculate
average scene cloud transmission. The TOMS UV al
rithm uses a homogeneous cloud model embedded
Rayleigh scattering atmosphere with known ozone abs
tion and known surface reflectivity,AS , assuming 100%
cloud cover in the model.36,41 For snow-free conditionsAS

at 360 or 380 nm is low (;1 to 10%! and can be accuratel
predicted from a global minimum reflectivity database th
was developed using 15 years of TOMS data.60 The same
database is currently used for regions that can have s
cover ~see detailed discussion later on!, when a snow/ice
climatology indicates that there should be snow/ice fo
given location and day of the year. The reflectivity datab
is currently being revised to 360 nm for both Nimbus a
Earth-probe/TOMS. Assuming thatAS is known, the ‘‘ef-
fective’’ cloud optical thicknesst(t0) is derived by match-
ing the measured 360-nm radiance at the overpass timet0 ,
with the precalculated radiance for each TOMS FOV. T
same cloud model is used to calculate the FOV aver
cloud transmittance,CT , as a function oft(t0), AS , and
ical Engineering, Vol. 41 No. 12, December 2002
a
-

solar zenith angleu0 , at the overpass time and all UV
wavelengths, assuming spectrally independentt andAS :

CT~l,t0!5CT@l,t~ t0!,AS ,u0~ t0!# . ~2!

The spectral independence oft for pure cloud scattering is
an accepted approximation in the near UV spectral reg
~300 to 400 nm!, and was confirmed by Mie
calculations.53,61The current TOMS UV algorithm also ne
glects the spectral dependence ofAS , which is less than
0.05 over both land and ocean40–41,62in the UVA and UVB
spectral regions~300 to 400 nm!. Even with spectrally in-
dependentt andAS , the method accounts for the spectr
dependence ofCT that results from reflection between th
cloud and the atmosphere, as well as multiple reflecti
between the cloud and the surface.36

To calculate daily exposure, the diurnal variation
CT(l,t) is estimated from changes in the solar zen
angle, assuming a fixed value of cloud optical thickne
t(t)5t(t0):

CT~l,t !5CT@l,t~ t0!,AS ,u0~ t !# . ~3!
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Obviously the assumption of ‘‘frozen’’ near-noon cloud o
tical thickness will usually lead to an incorrect UV
exposure estimate for any given day~Fig. 2!. Since the
error might be of either sign, the ‘‘sampling bias’’ may b
significantly reduced in cumulative UV monthly exposur
at least for some locations. The sign and magnitude of
monthly/yearly sampling bias depends on local cloud di
nal statistics and satellite overpass time. This type of e
does not apply to near-noon irradiance estimates from
ellite observations~Table 1!.

3.1 Assimilating the ECMWF Water Content to
Construct a Time-Resolved Homogeneous
Cloud Model

To improve daily exposure estimates, additional cloudin
information per day is needed. Such information is ava
able from global analyses made by operational wea
forecasting centers and from geostationary satell
~GOES, Meteosat32!. Specifically, one can use vertically in
tegrated cloud parameters@total cloud coverTC(t), and to-
tal column water and ice contentLWC(t)] provided by a
numerical model, normalized to the TOMSCT(t0) at the
overpass time. For example, global ground-based, ball
borne, and satellite weather observations are used for
ducing global 3-D analyses by the European Centre
Medium-Range Weather Forecasts~ECMWF! operationally
every 3 h. In this study we use an ECMWF Era-15 rea
lyzed dataset ~1978 to 1994! ~http://www.ecmwf.int/
research/era/ERA-15/!, which is concurrent with the Nim-
bus 7 TOMS data. In the Era-15 dataset, analyses
available every 6 h. To have cloud parameters every 3
short three-hour forecasts starting at each analysis
were also used. The spatial resolution of Era-15 data
about 1.6 deg in latitude and longitude, which is mu
coarser than the resolution of the current operational an
ses by ECMWF. The development of the following met
ods were done using a TOMS grid (131.25 deg), therefore
the Era-15 data was interpolated to this grid.

The easiest way of assimilating the model parame
into the TOMS UV operational processing algorithm is
scale TOMS effective cloud optical thickness proportio
ally to the diurnal changes of the ECMWF cloud optic
thickness,tE , estimated from the model total column wat
and ice content,LWC(t), assuming a homogeneous clou
layer withC1 droplet size distribution63 ~the same as in the
Version 1 TOMS UV algorithm!.

CT~l,t !5CT@l,t~ t !,AS ,u0~ t !#
~4!

t~ t !5t0~ t0!
tE~ t !

tE~ t0!
.

This algorithm becomes computationally unstable wh
LWC(t0) @and tE(t0)] approaches zero or there are lar
disagreements between the model and TOMS estimate
the cloud optical thickness at the overpass time. In s
cases, the following computationally stable algorithm c
be used:

t~ t !5t~ t0!1tE~ t !2tE~ t0!. ~5!
-

r

-

e
,

-

f

We note that Eq.~5! reduces to Eq.~4! if the TOMS and
model optical thickness agree at the overpass time:t(t0)
5tE(t0). The scheme also works when eithert(t0)50 or
tE(t0)50. If TOMS and ECMWF values are far apart
the overpass time~which is not uncommon!, Eq. ~5! gives
more reasonable values of cloud optical thickness than
~4!.

An example of the methodology is shown in Fig.
which shows the daily evolution ofLWC(t) and UV radia-
tion as measured by a Brewer instrument on 10 Aug
1992 at Sodankyla¨ ~Finland, latitude 67.37 °N). According
to the model ~and SYNOP observations!, both TC and
LWC(t) increased during that day. The UV dose rates c
culated with the old@Eq. ~3!# and new@Eq. ~5!# versions of
the TOMS UV algorithm are shown with approximate
10-min time steps. The dose rates calculated by the orig
algorithm@closed circles, Eq.~3!# closely follow the clear-
sky dose rates~open circles! because the overpass tim
(t058 UTC) was almost cloud-free. As a result, the orig
nal method overestimates the daily UV dose by 60%
compared to the ground-based data, while the new a
rithm gives a satellite estimate of daily exposure@Eq. ~5!#
that is close to the observation.

The proposed daily exposure cloud algorithm was tes
using combined noontime TOMS and 3-h ECMWF data
summer 1992 at Sodankyla¨ ~Fig. 3!. The overall perfor-
mance of the new algorithm is better than the old one. T
mean difference between the TOMS UV and Brewer dat
reduced from 182 J/m2 to 126 J/m2 during the period, at
the same time correlation increased from 0.86 to 0.89. T
specific improvement in cloud algorithm~i.e., CT) is even
better than the absolute numbers indicate, since a subs
tial portion ~about half! of the current bias between th
TOMS and the Brewer measurements is not related to
TOMS cloud algorithm.31

These results present a first-guess implementation u
only water content time-resolved cloud data from the E
MWF model. Fine tuning of the cloud algorithm will b
performed to improve the agreement between the obse
and the improved cases further. In the TOMS UV proje
the global comparability between different cloud mode
will be studied ~i.e., ECMWF, NOAA-NCEP, NASA-
Goddard, and NASA-ISCCP models!, and improvements in
the methodology will be made as needed. For example,
plan to compare cloud data from the ECMWF model w
the similar data from International Satellite Cloud Clim
tology Project ~ISCCP http://isccp.giss.nasa.gov/! when
both are available. ISCCP analysis combines satell
measured radiances from geostationary and polar sate
with ice/snow data to obtain information about clouds~op-
tical depth and cloud fraction! and the surface.64 Pixel
analysis is performed separately for each satellite radia
dataset and the merged results are reported in the Stage
data product with nominal resolution of 30 km and 3
Using ISCCP data operationally for TOMS processing
currently impossible because of the large time delay in
leasing ISCCP data products. The ISCCP data may be u
for future reprocessing of the global TOMS UV-exposu
maps. We will also analyze the possibility of using TOM
ozone and high-resolution satellite time-resolved cloud
formation to produce regional UV maps and overpa
3031Optical Engineering, Vol. 41 No. 12, December 2002
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3032 Optical Engi
Fig. 3 Comparison of daily erythemal (CIE) UV doses @J/m2# calculated with original [Eq.(3)] and
improved [Eq.(5)] cloudiness treatment in the TOMS UV algorithm with ground-based Brewer obser-
vations at Sodankylä from 8 July to 1 September 1992.
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datasets. One possibility is to use Meteosat Second Gen
tion ~MSG! Climate SAF products for producing UV map
over Europe and Africa,32 and NOAA-GOES data for US
and South America coverage.

3.2 Combining the ECMWF Cloud Fraction and
Water Content with the TOMS CT

One of the factors in the overestimation of the TOMS U
data for high irradiance levels~Fig. 3! may be related to the
broken-cloud effects. The ECMWF model can be combin
with the fractional cloud model,65 since it contains the
cloud cover informationTc(t). We study the possibility of
using both TC and water content information from th
model to improve estimation ofCT . For areas where ther
are ground-based measurements or a region of specific
logical interest, the cloud pattern data from high resolut
satellite images~ATSR-2, AVHRR, SeaWiFs, and geosta
tionary satellites, e.g., GOES! can also be used to estima
true cloud fractionTC(t0), so theCT cloud model data can
be adjusted. To assimilate both ECMWF cloud paramet
they first should be normalized using the TOMS radian
measurement at the overpass time:

I Measured~ t0!5Tc~ t0!I cloud
Calc @tF~ t0!#1@12TC~ t0!#I clear

Calc . ~6!

HeretF(t0) is the effective optical depth of the cloud po
tion of the TOMS FOV, derived from the TOMS measur
radiances by table lookup at the overpass time. Next,
ECMWF model time-resolved cloud data, normalized
theTc(t0) andtF(t0), can be used to predict diurnal varia
tion of CT(t), in a manner similar to Eq.~4!:

CT~ t !512TC~ t !$12CT@l,tF~ t !,AS ,u0#%. ~7!

The fractional cloud model described here still ignores
3-D cloud structure and related cloud-radiation effe
~cloud shadows, reflection from nonhorizontal surfac!
that are discussed briefly in Sec. 7 in the Appendix. T
broken cloud model will also be combined with trop
neering, Vol. 41 No. 12, December 2002
-

-

,

spheric aerosol models to study combined cloud/aero
radiation interactions. Before adopting either of these
proaches in the Version 2 TOMS UV algorithm, we w
perform validation studies using radiative transfer model
and comparisons with ground-based UV data for selec
stations.

4 Snow Effects

A major problem using satellite data to estimate UV irra
ance at high latitudes arises from the difficulty in identif
ing the presence of clouds when there is snow on
ground. When TOMS views a scene containing ice, sn
and clouds, there is no way to separate the effects of s
from clouds based on one reflectivity measurement. Ho
ever, if the surface reflectivity~albedo! AS is established for
various conditions in a geographical region, the exc
scene reflectivity can be used to estimate cloud trans
tance,CT , over a snow surface.36,41The current TOMS UV
algorithm uses the monthly minimum Lambert equivale
surface reflectivity (RM5MLER) global database60,61 to
estimateAs at 360 or 380 nm. The algorithm also assum
that AS does not change with wavelength in the UVA an
UVB spectral regions. Over land, these assumptions ar
reasonable agreement with direct ground-based meas
ments of UV albedo.57–59,66,67MLER is a reasonable esti
mate of the surface albedo for either snow-free conditio
or regions with permanent snow cover~Antarctica, Green-
land!. However, MLER is not a good estimator of actu
surface albedo during seasons when surface albedo v
daily, depending on the presence and state of snow co

In the absence of actual snow information, the curr
TOMS algorithm uses a climatological snow/ice flag~prob-
ability of the presence of snow on a given day at a giv
location! to estimate the presence of snow. If snow is a
ticipated, the algorithm first determines a snow albe
threshold~SAT!. Currently the SAT is simply the MLER
value bounded from below by a constant value of 0.4. T
value 0.4 was selected as appropriate for snow cove
urban/suburban populated areas containing at least mo
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Fig. 4 Statistical relationship (regression) between snow depth and regional snow albedo estimated
from the TOMS reflectivity measurements (50350 km) on cloud-free days with snow at Churchill,
Canada.
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ate densities of roads, houses, and trees~e.g., Toronto,
Moscow!.36,41 The daily estimation ofAS is based on the
comparison of SAT with the actual TOMS measured refl
tivity ~LER! at 360 nm. If LER is less than (SAT10.05),
the cloud-free conditions are assumed andAS is set equal to
LER (CT51). If LER is more than SAT10.05, AS is set
equal to SAT and all additional measured reflectivity is
signed to a cloud above the snow surface. The algori
proceeds to the calculation of the effective cloud opti
thickness andCT as described before.

The constant threshold value 0.05 was chosen bec
of the difficulty in detecting thin clouds over snow surface
This problem is worse at high latitudes over areas w
permanent snow cover~Greenland, Antarctica!. For such
regions, the possible error in cloud correction could exc
the error due to neglect of the clouds.36,41Therefore, cloud-
free conditions are also assumed if the SAT value is m
than 0.9. On average, the current TOMS algorithm lead
underestimation of UV radiation in winter conditions.35,37,46

To obtain a more realistic treatment of the albedo
snow-covered terrain, a new method was developed.68 This
method is based on an empirical relation between UV
flectivity and snow depth. To establish such a relati
cloudless days with snow cover were selected based on
total cloud cover and snow depth~SD! parameters from the
ECMWF ERA-15 reanalysis dataset~covering the time pe-
riod 1979 to 1994!. These data, together with the coincide
and colocated Nimbus 7 TOMS reflectivity measuremen
were used to develop regression models for each gro
pixel according to the following equation:

R5u3SDg, ~8!

whereR is the measured TOMS reflectivity for a given si
on cloud-free days with snow,SD is the snow water
equivalent, andu is a fit parameter, specific to each gr
point andg is a global fit parameter.68 Figure 4 shows an
e

e

d

example of the regression for Churchill, Canada, fro
which the parameteru was estimated. Similar regression
were obtained for each global grid point. In the future, t
snow depth information could be obtained on the same
of satellite radiance acquisition from the models or oth
satellites. Then the actual snow albedo,AS , can be calcu-
lated from Eq.~8! for each ground pixel and used~instead
of MLER! in satellite-retrieved UV calculation ofEclear

@Eq. ~1!# andCT @Eq. ~3!#. Figure 5 shows a comparison o
the proposed method with the current MLER algorithm f
Sodankyla, Finland and Churchill, Canada. As expect
this method improved the correspondence between
satellite-retrieved results and ground-based measurem
particularly during the melting period in those locatio
where the regional snow albedo is high.

5 Aerosol Effects

For the purposes of estimating UV irradiance at the Ear
surface, there are two major classes of aerosols that mu
considered: aerosols that only scatter UV radiation, a
aerosols that both scatter and absorb UV radiation. The
category is included in the measured scene reflecti
~cloud optical thickness!, and attenuates UV radiation in
manner that approximates clouds of equivalent reflectiv
However, since these aerosols decrease the direct sola
diation but increase the diffuse radiation, they have re
tively small effect on the total surface UV irradiance.27

Moreover, satellite UV instruments can see the increas
the reflected radiation and correct for it. Typical attenuat
by such aerosols ranges between 1 and 10%. Though
operational~Version 1! TOMS UV algorithm does not dis-
tinguish between water clouds, haze, ice clouds, and n
absorbing aerosols, for a nominal aerosol optical thickn
of 0.5 at 380 nm, the error in estimating the UV attenuat
by these various sources is;1%.41

By contrast, aerosols that absorb the UV radiation
tenuate both the direct and diffuse radiation, so the surf
3033Optical Engineering, Vol. 41 No. 12, December 2002



Krotkov et al.: Version 2 total ozone mapping spectrometer . . .

3034 Optical Engi
Fig. 5 The effect of the new snow albedo treatment on the computed surface UV. TOMS original UV
is based on MLER60,61 whereas TOMS modified UV is based on the snow albedo regression with
ERA-15 snow depth data, and coincident and colocated Nimbus 7 TOMS reflectivity measurements
(covering the time period 1979 to 1994).68 Top: comparison at Sodankylä, Finland; and bottom:
Churchill, Canada.
ols
pth
oin
ls a
ing
V
e
t of
edo
m

u
V
-

V-

d

ion

y in
the

into
ma
ce

at-
ch
rm
de-
res-
ls
ve-

or-

t
tive

ing
ke

.
oke
al-
is-
UV radiation is more strongly attenuated by such aeros
than by nonabsorbing aerosols of the same optical de
Moreover, since these aerosols also attenuate the outg
radiation, the satellite algorithms that treat these aeroso
nonabsorbing underestimate their optical depth, amplify
the error further, causing overestimation of U
irradiance.27,41 This overestimation is proportional to th
aerosol absorption optical thickness, which is a produc
extinction optical thickness and single scattering co-alb
(1-v0). Though it is well know that mineral aerosols fro
the deserts and soot produced by biomass burning and
ban transportation strongly absorb the U
radiation,27,31,69–74properties of other potential UV absorb
ers, e.g., nitrated and aromatic aerosols,56 are poorly
known. To make matters worse, the distribution of U
absorbing constituents of aerosols~iron-oxide, soot, ni-
trated inorganics, etc.! is highly variable, both in space an
time, even within a large urban area.56 Though satellite UV
instruments can detect such aerosols when the condit
are right ~absence of clouds, large elevated plumes!, they
typically miss them when the aerosols are located mostl
the planetary boundary layer. A correction scheme for
former aerosol types is described next.

When the absorbing aerosol plumes are transported
the free troposphere, they absorb the diffuse radiation e
nating from lower altitudes and reaching the satellite. Sin
neering, Vol. 41 No. 12, December 2002
.
g
s

r-

s

-

the diffuse radiation, produced largely by molecular sc
tering, is a strong function of wavelength, the effect of su
aerosols also varies with wavelength. In its simplest fo
they cause the satellite-derived LER to decrease with a
crease in wavelength, which can be used to detect the p
ence of such aerosols.~By contrast, nonabsorbing aeroso
typically cause the LER to increase with decrease in wa
length, though this effect is usually quite small.! This is the
basis for deriving the TOMS aerosol index~AI !.75,76 Using
this AI, one can construct a simple absorbing aerosol c
rection ~AAC! algorithm27,31 as follows:

Eaerosol

Eclear
5exp~2g(HA)AI !, ~9!

where conversion factorg is a function of aerosol heigh
HA , observational geometry, and aerosol type. Radia
transfer calculations show that for the same altitudeg fac-
tor is smaller for dust aerosol than for biomass burn
smoke.41 Without discrimination between dust and smo
aerosol types, a compromise value ofg50.25 was recom-
mended as a first-order correction for tropical regions27

This value should be refined based on dust versus sm
discrimination techniques. Currently the TOMS aerosol
gorithm employs a geographical approach for such d
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crimination, because the TOMS aerosol channels in the
to 380-nm range are not sufficiently separated to all
enough spectral contrast between these two aerosol typ77

The information content of aerosol measurements fr
space will certainly be increased in the future by combin
UV, visible, and near-IR channels of the advanced sate
sensors~MODIS, GOME, SCIAMATCHY, OMI! and ex-
ploiting additional radiation signatures~polarization, angu-
lar dependence!.

For the AAC method, an additional problem arises fro
uncertainty in aerosol plume height. The current TOM
AAC algorithm assumes the nominal height of 3 km f
plumes of desert dust and biomass burning smoke in
tropics.27,31 The uncertainty in the actual aerosol height
included in the error budget of the TOMS UV products
shown in Table 2.31 In the second version of the TOMS UV
algorithm, theHA could be estimated using the GSFC da
assimilation winds in the GOCART model78 or other
sources.

Since AI is not sensitive to UV absorbers in the boun
ary layer, the AAC technique cannot correct for such ae
sols. This may be the reason why the TOMS seems to o
estimate surface UV in industrial/urban regions. Since th
is very little understanding of the type and amount of U
absorbers that may be present in these areas, this pro
currently remains unsolved.

6 Conclusions

We describe and evaluate the effects of enhancemen
the current~Version 1! TOMS surface UV irradiance algo
rithm. The enhancements include a more detailed treatm
of tropospheric aerosols, effects of diurnal variation
cloudiness, and an improved treatment of snow/ice. So
of the proposed improvements will be implemented in
second version of the TOMS UV algorithm after an exte
sive validation period~2002 to 2003!. Validation of spa-
tially averaged UV irradiance~satellite! with temporally av-
eraged UV data~ground station! under broken cloud
conditions would require implementation of special subs
ellite UV validation campaigns and an optimal ground U
validation strategy. Use of the new algorithm will redu
the differences between ground-based and satellite est
tions of UV irradiance and exposure.

7 Appendix: Cloud Shape Effects

The fractional cloud model described still ignores the 3
cloud structure and related cloud-radiation effects~cloud
shadows, reflection from nonhorizontal surfaces!. Here we

Table 2 Expected errors in absorbing aerosol correction (AAC)
method due to uncertainty in aerosol plume height 0.5 km for biom-
ass burning smoke and dust.31 Aerosol models from Ref. 76.

Model/Parameter
Aerosol single scattering albedo

at 324 nm Error

Smoke C1 0.92 1.5%

Smoke C2 0.84 7.5%

Dust D1 0.90 1.7%

Dust D2 0.72 11%

Dust D3 0.63 16%
-

m

o

t

-

estimate some cloud shape errors on the FOV aver
cloud transmittance (CT) using more detailed cloud mode
and a Monte-Carlo radiative transfer code.79 Figure 6
shows one possible cloud model, which describes a
weather cumulus cloud field. This cloud model relates s
chastic field characteristics with cloud amount, mean clo
diameter, and aspect ratio. Based on these input parame
a representation of a cloud field is constructed as a con
lution of a 2-D Fourier series with random coefficient
Calculations of the radiance at the top of the atmosph
and irradiance at the surface are performed using a
Monte-Carlo~MC! code.79

Figure 7 shows the simulated normalized angular dis
bution of the 380-nm radiance at the top of the atmosph
~Anisotropic function, AIF80! backscattered from the clou
scene shown in Fig. 6. The AIF angular distribution
slightly asymmetrical in the solar principal plane wi
larger relative reflection in the backscattering directio
where a satellite does not see any cloud shadows~hot spot!.
A different AIF angular distribution is assumed in the cu
rent TOMS UV algorithm, which results from the assum
plane-parallel C1 cloud model. The TOMS AIF has a re
tively larger forward reflection and does not have a hot s
spike. It is the difference between the actual and TOM
assumed AIFTOMS, that produces the error in cloud tran
mittance for estimation of surface irradiance. The corr
tion factor is proportional to the AIF ratio
AIFactual/AIFTOMS averaged over TOMS FOV. It is a func
tion of assumed cloud parameters, observational geom
and surface albedo.

Figure 8 shows the correction factor for the cloud sce
shown in Fig. 6. The factor should be applied to the st
dard CT value calculated using the optically equivale
~i.e., providing the same UV reflectance in the satellite
rection! homogeneous cloud model@see Eq.~2!#. As ex-
pected, the factor is maximal in the solar principal plan
For this particular cloud scene anduo554 deg, the factor
ranges from 0.85 (w50 deg, forward reflecting! to 1.2 (w
5180 deg, backward reflecting, i.e., hot spot!.

Because the equatorial overpass occurs close to s
noontime, the TOMS instrument scans in a direction tha

Fig. 6 Fragment of the broken cloud field as model input. The
model is based on the normal random (Gaussian) field with a fixed
lower boundary.79 Spatially inhomogeneous cloud structure is de-
scribed by a 3-D array of cells each with prescribed cloud proper-
ties. The dimensions of each cell should be sufficiently small com-
pared to the photons free path. In most cases 50 to 100-m cells
were found to be sufficient in modeling TOMS and OMI FOVs. The
dimensions of the calculated field are similar to a single OMI FOV
(10320 km). Cloud cover 0.5, aspect ratio 1, scattering coefficient
50 km21, and cloud average diameter 1 km.
3035Optical Engineering, Vol. 41 No. 12, December 2002
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3036 Op
Fig. 7 Anisotropic function AIF(u0 ,u,w) of the broken cloud scene (Fig. 6) for u0554 deg as a
function of the satellite vertical angle u (giving by distance from the center of the figure—nadir direc-
tion) and solar azimuthal angle, w (given by polar angle: forward reflecting in on the right and backward
reflecting on the left). The AIF is defined as the ratio of the equivalent Lambertian flux, pL(u0 ,u,w), to
the actual reflected flux, M(u0); AIF5pL(u0 ,u,w)/M(u0),80 where L(u0 ,u,w) is the satellite mea-
sured radiance at the top of the atmosphere. Representing reflectance to albedo ratio, the AIF is a
direct measure of the angular anisotropy of the scene reflectance: AIF,1 (shown by green color)
means that the actual measured radiance is less than would be measured in the case of isotropic
(Lambertian) scene reflectance with the same albedo. On the other hand, AIF.1 (red colors) means
that the actual measured radiance for a broken cloud scene is greater than those from the isotropic
(Lambertian) scene with the same albedo.

Fig. 8 Example of a correction factor for a broken cloud scene (Fig. 6), which should be applied to the
satellite UV data calculated with the TOMS method (i.e., using a homogeneous plane-parallel cloud
model). Depending on the satellite viewing direction (explained in Fig. 7), the correction factor ranges
from 0.85 to 1.2. Cloud anisotropy is much less in the plane perpendicular to the solar principal plane
than in the solar principal plane. Surface reflectivity is 5%. Solar zenith angle is 54 deg. The equivalent
optical thickness of the homogeneous plane parallel cloud layer is close to 5.
tical Engineering, Vol. 41 No. 12, December 2002



he
tion
w-
er-
th

er-
on.
fer
re-

s.
ef-

er

an,

nd
m-

nd
m-

for
e,’’

nd

ork

li,
to

-
New

a-

en
and

her
c-

n-

di-

s in
one

ch,
e,’’
rld
nd

a,

ci-
rna-

a-

ci-

ci-

P.
-
ul-
,’’

f-

ess-
s.,

l-
,

d
ral

.,

c-
,’’

one

.
er

om

rr,
nce

let
,

ce
-

an,
’’

he
a-

ver
’’

rs,
te-
,’’

or

ing
n-

h-
cts

, T.
G.
our

ion
]

M.
r, T.
tal
’

d
d
ts,’’

Krotkov et al.: Version 2 total ozone mapping spectrometer . . .
approximately perpendicular to the principal plane of t
sun. Figure 8 shows that for these directions the correc
factor is much less than in the solar principal plane. Ho
ever, the errors may be still significant for specific obs
vational conditions~we found that the error increases wi
solar zenith angle, i.e., at high latitudes!.

The same approach is being applied to quantify the
rors due to an assumption of Lambertian snow reflecti
To quantify the error, the Monte-Carlo radiative trans
model has to be run for a realistic snow bidirectional
flection distribution function~BRDF! to calculate the sur-
face UV irradiance over snow with and without cloud
Preliminary calculations have shown that broken cloud
fects over snow differ from uniform cloud effects ov
snow.
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