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ABSTRACT

The effect on absorption in clouds of having an inhomogeneous distribution of droplets is shown to depend
on whether one replaces a homogeneous cloud by an inhomogeneous cloud that has the same mean optical
thickness, or one that has the same spherical albedo. For the purposes of general circulation models (GCMs),
the more appropriate comparison is between homogeneous and inhomogeneous clouds that have the same
spherical albedo, so that the radiation balance of the planet with space is maintained. In this case it is found,
using Monte Carlo and independent pixel approximation calculations, that inhomogeneous clouds can absorb
more than homogeneous clouds. It is also found that because of the different effects of cloud inhomogeneity
on absorption and on the transmission of the direct beam the absorption efficiency of an inhomogeneous cloud
may be either greater (for low and high optical depths) or lesser (for intermediate optical depths) than that for
a homogeneous cloud of the same mean optical depth. This effect is relevant both to in-cloud absorption and
to absorption below clouds. In order to include these effects in GCMs a simple renormalization of the single-
scattering parameters of radiative transfer theory is derived that allows the effects of cloud inhomogeneities to
be included in plane-parallel calculations. This renormalization method is shown to give reasonable results when
compared with Monte Carlo calculations, has the appropiate limits for conservative and completely absorbing
cases, and provides a simple interpretation of the effects of cloud inhomogeneities that could readily be incor-
porated in a GCM.

1. Introduction

There has been increasing evidence, accumulated
over the course of some four decades, that shortwave
absorption by clouds is greater than that predicted by
model calculations. This phenomenon has been termed
the cloud absorption anomaly and a detailed review of
the various contributions to the study of the absorption
of solar radiation in clouds has been given by Stephens
and Tsay (1990). More recent investigations (Cess et al.
1995; Ramanathan et al. 1995) appear to reveal even
larger absorption effects, though the spectrally unre-
solved nature of these studies makes it difficult to spec-
ulate on the physical mechanism(s) responsible for their
findings. One aspect of these studies that is of interest
is the comparison of theoretical calculations with ex-
perimental observations. A hierarchy of approximations
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exists that may be used in theoretical calculations of
radiation transport, some more accurate than others. As
Hignett (1987) noted regarding measurements related to
anomalous absorption, when ‘‘more computational ef-
fort is expended, then better agreement can be obtained
in any particular case.’’ Given that radiative transfer is
an asymptotic approximation to Maxwell’s equations
(Furutsu 1963; Barabenkov and Finkel’berg 1968) any
differences between theoretical calculations and exper-
imental observations (assuming negligible experimental
error) of cloud properties must be related to one, or
more, of the following: the equation of radiative transfer
is being inadequately modeled; the material constants
and microphysical information that determine the scat-
tering and absorbing properties of the cloud are not
being correctly specified; and/or the equation of radi-
ative transfer is not a good approximation to Maxwell’s
equations. The latter appears unlikely given that the
correction to radiative transfer is asymptotic in the pa-
rameter l/l (1028 for solar radiation), where l is the
wavelength and l is the scattering mean free path (John
1985).
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In this paper we assume that the material constants
(Hale and Querry 1973; Palmer and Williams 1974;
Downing and Williams 1975) and scattering properties
of water droplets are well known and devote our atten-
tion to the effect that different approximations to the
transfer of radiation have on the amount of absorption
within an inhomogeneous cloud. The radiative transfer
models that we compare range from a Monte Carlo sim-
ulation of transport through an inhomogeneous cloud to
the single Gauss point (SGP) approximation for plane-
parallel transport through a homogeneous cloud (Han-
sen et al. 1983). We also introduce a theoretical renor-
malization of the properties of inhomogeneous clouds
that can be used to correct plane-parallel calculations.
This type of renormalization allows the effects of cloud
inhomogeneity to be included in the simple two stream
(King and Harshvardhan 1986) and more complex and
accurate SGP approximations to radiative transfer that
are used in current general circulation models (GCMs),
without any modification to these algorithms.

2. Radiation and clouds

The problem of radiative transfer through inhomo-
geneous media has been of interest in the field of at-
mospheric radiation (McKee and Cox 1974; Romanova
1978) and in other fields for many years (Williams 1974,
1984; Borovoi 1984). For atmospheric radiation the
principal inhomogeneous medium problem is that of
radiative transfer through non-plane-parallel clouds, al-
though radiative transfer through vegetation is also of
some interest (Myneni et al. 1991). The transfer of ra-
diation through non-plane-parallel clouds has been an-
alyzed using Monte Carlo simulations (Barker and Da-
vies 1992; Kobyashi 1993; O’Brien 1992; Jonas 1994),
simple closure schemes for radiative transfer in binary
mixtures (Boissé 1990; Malvagi and Pomraning 1990;
Titov 1990), and other simplifying assumptions (Davis
et al. 1990; Evans 1993; Peltoniemi 1993; Cahalan et
al. 1994a). None of the various models of cloud fields
used in these studies provides a definitive description
of broken cloud fields, each having its own positive and
negative aspects. We therefore choose to use Fourier
power-law filtering of Gaussian noise to give a Kol-
mogorov (1941) spectrum, which is then exponentiated
(Evans 1993) to define a droplet density distribution.
Although a field of this type is not, strictly speaking,
scale invariant (Schertzer and Lovejoy 1987) it has eas-
ily controlled lognormal statistics and a three-dimen-
sional spatial structure that is in some respects similar
to internal cloud structure. The statistics of such a cloud
field are consistent with those observed in marine stra-
tocumulus clouds (Cahalan et al. 1994b), while retaining
both transverse (Cahalan et al. 1994a) and vertical struc-
ture (Stephens et al. 1991) of the droplet density dis-
tribution, both of which may be important for deter-
mining the average radiant properties of a cloud field.
This model is appropriate for considering the effect of

internal cloud inhomogeneities on absorption in clouds.
By contrast, binary mixtures may be an appropriate
model for broken cumulus cloud fields, though they
appear to provide only a lower bound on the difference
between broken cloud fields and corresponding plane-
parallel calculations (Hobson and Scheuer 1993).

Initially we compare three different radiation calcu-
lations, Monte Carlo, independent pixel approximation
(IPA), and plane-parallel, which are supposed to model
the transfer of radiation through random distributions
of cloud droplets generated on a 256 3 256 3 16 grid.
The number of grid points used in the vertical is adjusted
to maintain the same physical scale of fluctuations in
the distribution of cloud droplets for different mean op-
tical depths. The Monte Carlo radiation calculations use
an optimally biased code (Marchuk et al. 1980), with
periodic boundary conditions in the horizontal plane,
and trace the path of photons through the actual droplet
density distribution. Most of the Monte Carlo results
are based on an ensemble of calculations, or, as in the
case of the spherical albedo, are an integral over a num-
ber of results. As expected, the largest relative variance
in the Monte Carlo results was found to be for very
thick clouds, t 5 256, and was 2.5%, or less. The IPA
(Ronnolm et al. 1980; Cahalan 1989) assumes that each
vertical column is independent of the surrounding col-
umns. This assumption is also made in the satellite re-
trieval of cloud properties (Rossow and Schiffer 1991).
The histogram of cloud optical depths required by the
IPA is therefore generated by integrating the droplet
density distribution for each vertical column. In the fol-
lowing examples the IPA is calculated by discretizing
the histogram of optical thicknesses into 300 bins and
performing a radiation calculation for each thickness
bin using a plane-parallel doubling–adding code (Han-
sen and Travis 1974). The IPA result is then given by
the weighted sum of these results. The average cloud
optical depth used in the plane-parallel calculation is
simply the horizontally and vertically averaged optical
depth, the radiation calculations being performed using
the doubling/adding code. These calculations corre-
spond to the calculation of radiative transfer through the
actual medium, through a vertically averaged medium
with no intercolumn coupling, and through a vertically
and horizontally averaged medium, respectively.

As an example of the type of variability that is pro-
duced in the cloud model that we are using, a horizontal
transect of the variability in extinction is shown in Fig.
1. Such variability in extinction, assuming a droplet
effective radius of approximately 10 mm, is consistent
with measurements that have been made by micro-
physics probes flown within clouds (Korolev and Mazin
1993) and lies within the range of values found by other
microphysical measurements (Nakajima et al. 1990). In
Fig. 2 we show the effect that redistributing the liquid
water droplets has on the spherical albedo (Fig. 2a) and
the absorption in a cloud (Fig. 2b), for various mean
optical depths, assuming for all calculations a Henyey–
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FIG. 1. Variation of extinction with distance through an inhomoge-
neous cloud field of the type used in this paper, with d 5 1.0.

FIG. 2. Variation of (a) spherical albedo and (b) absorption with mean optical thickness for a
homogeneous cloud (solid line), and for an inhomogeneous cloud as calculated using the Monte
Carlo method (dotted line) and the IPA (dotted–dashed line).

Greenstein phase function with an asymetry parameter,
g 5 0.85; a single scatter albedo, Ã 5 0.99; and a log
standard deviation of the droplet density, d 5 1.0. In
Fig. 2a it is apparent that, for the same mean optical
thickness, a homogeneous cloud reflects more radiation
than a cloud composed of inhomogeneously distributed
droplets. We also observe that the IPA underestimates
the magnitude of the reduction in spherical albedo by
cloud inhomogeneities, presumably because of its ne-
glect of vertical structure and intercolumn coupling
(Audic and Frisch 1993). Figure 2b shows that, for the
same mean optical thickness, an inhomogeneous cloud

absorbs less radiation than a cloud in which the droplets
are homogeneously distributed, and that the IPA pro-
vides a good estimate of the absorption in such a cloud.
These figures also indicate that reducing the optical
depth of the homogeneous cloud so that its spherical
albedo matches that of the inhomogeneous cloud cannot
simultaneously provide a reliable estimate of absorption
in the inhomogeneous cloud. Similar numerical results
were obtained by Stephens and Tsay (1990) for deter-
ministic cloud fields.

At this point we might conclude that the presence of
inhomogeneities in the distribution of water within a
cloud reduces the amount of absorption in the cloud.
However, the question remains as to whether we should
compare homogeneous and inhomogeneous clouds with
the same mean liquid water content or compare the ab-
sorption in homogeneous and inhomogeneous clouds
that have the same spherical albedo. This is an important
point given that the cloud albedo is probably more ac-
curately measured than the liquid water content (Na-
kajima et al. 1990). Also relevant is the observation
(Harshvardhan and Randall 1985) that in order to have
models that are in radiative balance with space, the water
content in GCM clouds is generally low compared to
observed liquid water contents. We should, however,
note that in GCMs with prognostic liquid water param-
eterizations the radiative heating for a synoptic-scale
region over a period of several days is effectively cal-
culated using an IPA over a distribution of cloud optical
properties (Del Genio et al. 1996). Thus, although a
plane-parallel bias will exist in GCMs at smaller space
scales and timescales the magnitude of the problem is
probably not as great as has been previously suggested
(Cahalan et al. 1994a). Nonetheless, if GCMs had in-
homogeneous clouds at a grid box level, then any re-
sidual bias in the water content of these clouds could
be removed while maintaining the same planetary al-
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FIG. 3. Variation of absorption with spherical albedo for a ho-
mogeneous cloud (solid line), and for an inhomogeneous cloud as
calculated using the Monte Carlo method (dotted line) and the IPA
(dotted–dashed line).

bedo and radiation balance with space (cf. Fig. 2a). The
comparison of the amount of absorption in homoge-
neous and inhomogeneous clouds with the same spher-
ical albedo is therefore of particular relevance to GCMs.

In Fig. 3 we compare the absorption in clouds with
an inhomogeneous distribution of water with the ab-
sorption in homogeneous clouds having the same spher-
ical albedo. For the same spherical albedo, we see that
there is more absorption in inhomogeneous clouds than
in homogeneous clouds. A simple explanation for this
effect is that absorption is less affected by cloud in-
homogeneities than scattering. This means that an in-
homogeneous cloud that has had its mean optical thick-
ness increased, so that it has the same spherical albedo
as a homogeneous cloud, will absorb more than the
homogeneous cloud. For the same spherical albedoes
we see that the IPA underestimates the increase in ab-
sorption in inhomogeneous clouds, principally because
it overestimates the spherical albedo (cf. Fig. 2a). Given
recent results concerning the cloud absorption anomaly
(Cess et al. 1995; Ramanathan et al. 1995), the increase
in absorption that can be obtained from inhomogeneous
cloud fields is interesting in its own right (Kliorin et al.
1990; Li et al. 1995). Nonetheless one might question
how generally applicable such results are, as well as
question their relevance to either remote sensing or cli-
mate model parameterizations, given that the results
may depend sensitively on the model cloud fields cho-
sen. In the next section we introduce a renormalization
procedure that allows the effects of cloud inhomoge-
neities to be included in plane-parallel calculations and

allows us to address the issue of the generality of the
effects caused by cloud inhomogeneities.

3. Renormalization theory

There have been many attempts to obtain simple ap-
proximations to the propagation of light through ran-
domly inhomogeneous media, some of which make sta-
tistical assumptions without providing any analysis of
the errors implicit in such assumptions (Anisimov and
Fukshansky 1992; Kliorin et al. 1990), while others have
been developed for isotropic scattering phase functions
(Malvagi and Pomraning 1990; Hobson and Scheuer
1993) and only have simple forms for binary mixtures.
Using standard methods from statistical physics (Abri-
kisov et al. 1963; Feynman and Hibbs 1965; Arya and
Zeyher 1983) it is possible to obtain a closed form so-
lution for the effect of fluctuations in the droplet density
on the transport of radiation through a randomly in-
homogeneous medium. Although this solution is in the
form of a nonlocal integro-differential equation that is
not readily soluble, an expansion can be obtained that
allows us to calculate the lowest-order consistent cor-
rection to plane-parallel transport theory and demon-
strates that such a correction is a universal feature of
radiative transfer in randomly inhomogeneous media.

We will now briefly define the problem of radiative
transfer in a general inhomogeneous random medium
and present the solution of the problem for the mean
specific intensity. It should be noted that similar results
can be obtained for the higher-order moments of the
specific intensity, which are relevant to satellite remote
sensing (Cairns 1992). Our starting point is the equation
of radiative transfer for the specific intensity I(r, s) in
an inhomogeneous medium,

s · =I(r, s) 1 s N(r) B(s · s9)I(r, s9) ds9 5 0, (1)ext E
4p

where sext is the extinction cross section; N(r) is the
number concentration of scatterers; B(s · s9) is the Boltz-
mann collision operator; and r and s are, respectively,
a three-dimensional position vector and a two-dimen-
sional direction vector. The Boltzmann collision oper-
ator is defined to be

B(s · s9) 5 d(s · s9) 2 Ãp(s · s9), (2)

where d(s · s9) is the solid angle delta function, Ã is the
single scatter albedo, and p(s · s9) is the phase function.
Although this is not standard notation for atmospheric
radiative transfer it provides a compact and natural no-
tation for the following analysis and it is, in fact, an
eigenanalysis of a discretized version of the Boltzmann
collision operator on which the commonly used discrete
ordinates method is based.

The solution of (1) with appropriate boundary con-
ditions, for the unaveraged specific intensity I(r, s), de-
scribes the distribution of incident and emitted photons
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that will be transported through the particular distri-
bution of droplets N(r), to the point r traveling in the
direction s. However, we are generally not interested in
how a photon is transported through a particular cloud,
but rather in the mean transport properties for a statis-
tically representative ensemble of clouds. We therefore
need to calculate the mean specific intensity, based on
the statistical properties of the cloud fields that we are
interested in. Since we are interested in the effects of
inhomogenities in the scatterer concentration on the
transport of radiation, it is useful to separate the number
concentration of scatterers into its mean N, which is
spatially invariant, and a spatially fluctuating random
component of zero mean h(r), namely,

N(r) 5 N 1 h(r). (3)

We will assume for the purposes of this analysis that
the scatterers are bounded by a slab geometry within
which N is constant, so that the geometry admits the
usual well-known solutions for plane-parallel problems
when there are no fluctuations. Smooth variations of N
that are slow compared with the mean diffusion length

do not affect the following results and are more naturally
the subject of the independent pixel approximation than
the method presented here. We can now average (1) to
obtain an expression for the mean specific intensity:

s · =^I(r, s)& 1 s N B(s · s9)^I(r, s9)& ds9ext E 1

4p

5 2s B(s · s9)^h(r)I(r, s9)& ds9, (4)ext E
4p

where the angle brackets denote an ensemble average
over random fluctuations in h(r). This is not a closed
equation for the mean specific intensity because of the
presence of the term ^h(r)I(r, s9)& on the right-hand side
of (3). This coupling of the mean specific intensity to a
higher-order moment is a classic problem in fluid me-
chanics, statistical physics, and quantum mechanics
(Abrikisov et al. 1963; Feynman and Hibbs 1965; Frisch
1968; Arya and Zeyher 1983) and can be dealt with using
a number of different techniques. Conceptually, the sim-
plest method is to rewrite (1) as an integral equation,

I(r, s) 5 I (r, s) 2 s G (r, s; r9, s9) B(s9, s0)h(r9)I(r9, s0) ds0 ds9 dr9, (5)0 ext E E 0 E
V 4p 4p

where I0(r, s) is the solution of (1), with appropriate
boundary conditions, when there are no fluctuations in
the scatterer concentration and the mean concentration
of scatterers is N, that is, the solution of the usual plane-
parallel problem. The function G0(r, s; r9, s9) is the
associated Green’s function for this problem (Rybicki
1971; van der Mark et al. 1988). If we perform a per-
turbation expansion of (5) and then average this series
term by term, we obtain a solution for the mean specific
intensity in terms of an infinite sum over statistical mo-
ments of h(r) of all orders. The terms in this expansion
can be implicitly resummed to give an expression for
the mean specific intensity that has the functional form

s · =^I(r, s)& 1 s N B(s · s9)^I(r, s9)& ds9ext E
4p

5 Q(r, s; r9, s9)^I(r9, s9)& ds9 dr9. (6)E E
V 4p

This perturbative expansion and the approach to the
implicit summation is described in the appendix. It
should be emphasized that although (6) is an exact for-
mal solution to the problem of obtaining an equation
for the mean specific intensity, in general only approx-
imations to the function Q(r, s; r9, s9) can be determined.
Nonetheless, the functional form of (6) is useful in that

it demonstrates that the effect of fluctuations in the scat-
terer concentration is to turn the equation of radiative
transfer into one where the collision process is effec-
tively nonlocal in space. This means that if (6) were
solved using a Monte Carlo method, then the model
would have to allow for the probability of scattering
being conditional on the location of the previous scat-
tering event. The necessity of including such conditional
processes in modeling radiative transfer in inhomoge-
neous media has previously been noted by Evans (1993).

The perturbative method noted above and discussed in
the appendix is essentially a diagrammatic resummation
(Feynmann and Hibbs 1965) and can be used to derive
and to analyze the conditions of validity of approximate
expressions for the mean specific intensity that have been
justified elsewhere by ‘‘dishonest’’ (Keller 1962) closure
assumptions (Anisimov and Fukshansky 1992; Kliorin et
al. 1990). Furthermore, aspects of scattering that are par-
ticular to randomly inhomogeneous media, such as the hot
spot effect, are naturally included in such an iterative ex-
pansion and may readily be identified using a diagram-
matic analysis (Frisch 1968). The backscattering direction
is a special direction in the case of inhomogeneous dis-
tributions of infinitesimal scatterers because of the com-
plete correlation between fluctuations along the forward-
and backward-scattering paths. This contrasts with the hot
spot in vegetation, which is due to the effects of shadowing
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(Myneni et al. 1991), or coherent backscattering, which is
a result of the effects of phase coherence (MacKintosh
and John 1989; van der Mark et al. 1988).

To demonstrate that the formal solution (6) has sim-
ple, readily calculable consequences, we will use one

particular infinite subseries of terms in an estimate of
the function Q(r, s; r9, s9). This approximation, some-
times known as the nonlinear approximation (Rosen-
baum 1971; Frisch 1968), yields a transport equation
for the mean specific intensity:

s · =^I(r, s)& 1 s N B(s · s9)^I(r, s9)& ds9ext E
4p

25 s B(s · s9)^G(r, s9; r9, s0)&^h(r)h(r9)&B(s0 · s-)^I(r9, s-)& ds9 ds0 ds- dr9. (7)ext E E E E
V 4p 4p 4p

Evidently, for a homogeneous medium the covariance
of the droplet density distribution ^h(r)h(r9)& is zero
and we recover the usual plane-parallel radiative transfer
equation. The reason that this approximation is known
as the nonlinear approximation is because the Green’s
function ^G(r, s9 ; r9, s0)& is the Green’s function asso-
ciated with the solution of (7). As we noted for (6), the
effect of fluctuations in scatterer concentration is to
make (7) a nonlocal transport equation, which can also
be written as a pair of coupled transport equations with
structure similar to those for a two-state binary mixture
(Malvagi et al. 1993). However, if we make the follow-
ing approximation,

^G(r, s9; r9, s0)&^h(r)h(r9)&^I(r9, s-)& dr9E
V

ø ^G(r, s9; r9, s0)&^h(r)h(r9)& dr9^I(r, s-)&, (8)E
V

we can reduce (7) to the usual type of transport equation
with a spatially local collision integral and renormalized
single scattering parameters. This approximation may
be justified by observing that the contribution of the
diffuse (long range) part of the mean Green’s function
^G(r, s9 ; r9, s0)&, in the integrals in (8), is of the order
Ã2(1 2 Ã) compared with its coherent, or direct beam,
contribution (Frisch 1968). A more detailed analysis of
the behavior of the mean Green’s function that includes
ballistic transport (MacKintosh and John 1989) does not
significantly alter this result. Thus, although the trans-
port of radiation in the solar spectrum tends to be dom-
inated by multiple scattering interactions that are long
ranged, the dominant part of the correction term given
by (8) is short ranged and may therefore be considered
to be local in nature. In essence, the multiply scattered
diffuse radiation self-averages over the cloud variability.
This observation is born out by the work of Gabriel and
Evans (1996) who found that evaluating the source term
exactly for an inhomogeneous cloud and then perform-
ing multiple scattering calculations for the average cloud

properties provides a reasonable approximation to exact
calculations of radiative transfer through inhomoge-
neous cloud fields.

When the approximation given by (8) is substituted
into (7) the following renormalized single scattering pa-
rameters, denoted by a prime, are obtained:

s9 5 s (1 2 «), (9a)ext ext

«
Ã9 5 Ã 1 2 (1 2 Ã) , and (9b)[ ]1 2 «

«
p9(s · s9) 5 p(s · s9) 2[ 1 2 «

3 p(s · s9) 2 Ã p(s · s0)p(s0 · s) dV0E1 2]
4p

«
4 1 2 (1 2 Ã) .[ ]1 2 «

(9c)

The self-consistent expression for the correction factor,
«, that is obtained by substituting (8) into (7) and solving
the nonlinear equation for the coherent part of the mean
Green’s function is

2a 2 Ïa 2 4V
« 5 , (10a)

2

where V is the relative variance

^h(r)h(r)&
V 5 and (10b)

2N

1 1 s lext ca 5 . (10c)
s lext c

For thin clouds the integral on the right-hand side of
(8) is defined by the optical depth of the cloud. This
modifies the renormalization of single scattering param-
eters given above such that as the cloud becomes thinner
the effects of renormalization become smaller (Borde
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and Isaka 1996). One expects this behavior on the
grounds that when single scattering dominates the ra-
diative interaction there should be no renormalization.
This effect is given by multiplying the correction term
« by the factor [1 2 exp(t /cosu0)] where t is the mean
optical depth of the cloud and u0 is the solar zenith
angle.

If a2 . 4V, (10a) can be expanded in a Taylor series.
The validity of (10a) as a resummation of a subset of
terms in approximating the function Q(r, s; r9, s9) can
then be checked by direct calculation. In calculating the
correction term in (10) we have assumed that the random
medium is statistically isotropic and homogeneous with
an effective correlation length lc (Rytov et al. 1989),
though these restrictions can easily be removed. Statis-
tical anisotropy of the random medium can be included
in this formalism and its effect is to give a renormalized
extinction length and single scatter albedo that depend
on the direction of propagation and a renormalized
phase function that is anisotropic. Spatial variation in
the statistical properties of the droplet concentration can
also be included in the effectively plane-parallel renor-
malization method by using a quasi-homogeneous mod-
el (Rytov et al. 1989) of statistical variability. Similar
expressions for the renormalized coefficients were given
by Kliorin et al. (1990), although their expression for
the correction factor is not self-consistent and only re-
duces to that given here when V K 1 and a k 1. It
should be noted that (9) and (10) make no assumption
regarding the statistics of the droplet density distribu-
tion. They are generic corrections to plane-parallel ra-
diative transfer, caused by introducing weak variability
into the distribution of droplets in a cloud, and only
depend on the second-order statistics of the droplet den-
sity distribution.

There are a number of aspects of the renormalization
equations (9) and (10) that should be noted. The atomic
mix result, that very rapid fluctuations in optical prop-
erties should have no effect on the radiative transfer equa-
tion, is correctly retrieved since as the correlation length
lc tends to zero the renormalization correction « also tends
to zero. There is no renormalization of the single scatter
albedo for purely scattering or purely absorbing media,
and when the initial phase function is isotropic there is
no renormalization of the phase function. This means that
no unrealistic modification of the single scattering prop-
erties is caused by this renormalization.

A limit of this perturbative approach is demonstrated
by the fact that if the relative variance becomes too
large, the correction term given by (10) becomes imag-
inary. This is simply an indication that the infinite sum
used to approximate the function Q(r, s; r9, s9) is in-
adequate and that higher-order statistics than the second
need to be included in the evaluation of Q(r, s; r9, s9),
which can readily be done. Since no closure assumptions
were made in deriving (7), we can always check whether
any given order of approximation is adequate and es-
timate the corrections to (9) and (10) required to include

higher-order terms. In the random medium we are con-
sidering in this paper, the correlation length is of the
same order as the mean free path and the droplet density
fluctuations have lognormal statistics. For this case a
better estimate of the renormalization equations than
(10) that fits a simple functional form to the correction
terms obtained from higher-order moments is

21s9 5 s (1 1 V ) (11a)ext ext

Ã9 5 Ã /[1 1 V(1 2 Ã)] and (11b)

g9 5 g[1 1 V(1 2 Ã)]/[1 1 V(1 2 Ãg)]. (11c)

In these equations, V is the relative variance (10b),
which is related to d, the log standard deviation of the
droplet density distribution, by the formula V 5 exp(d2)
2 1. Rather than renormalizing the phase function, in
(11c) we give a renormalization equation for the asym-
metry parameter g. This is done because higher-order
corrections to the phase function require successively
higher-order convolutions [cf. (10c)] that are not readily
calculable. If we assume that the phase function is well
approximated by a Henyey–Greenstein phase function
with asymmetry parameter g, the expression (14c) pro-
vides a renormalized asymmetry parameter.

The renormalization equations (11) show the usual
feature of radiative transfer though a randomly inho-
mogeneous medium. The medium appears more trans-
parent than a homogeneous medium with the same mean
droplet density, since the effective extinction length is
greater (Dolin 1984; Borovoi 1984). The effective single
scatter albedo is reduced, which has been noted for bi-
nary mixtures (Boisse 1990; Hobson and Scheuer 1993)
and in fractal cloud calculations (Borde and Isaka 1996),
and the effective phase function is more isotropic (Klior-
in et al. 1990; Cairns 1992), which is the manifestation
of limb brightening as a result of inhomogeneities in
this method. The poor results that have been observed
when only the extinction length is renormalized (Barker
1992; Evans 1993; Audic and Frisch 1993; Cahalan et
al. 1994a) are therefore not unexpected, since such an
ad hoc method for including the effect of cloud inho-
mogeneities is inconsistent with the equations of radi-
ative transfer. The renormalization of single scattering
parameters that we have derived here provides a theo-
retical basis for the type of ‘‘closures’’ (Stephens 1988)
and renormalizations (Borde and Isaka 1996) that have
been presented previously. In the following section we
will compare the simple, effectively plane-parallel re-
normalization equations for radiative transfer through
an inhomogeneous cloud, with the more numerically
intensive IPA and Monte Carlo methods.

4. Using the renormalization method

In this section we apply the renormalization method
to calculate scattering from an inhomogeneous medium
that has lognormal statistics, as discussed in section 2.
We use (11) to obtain renormalized single scattering pa-
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FIG. 4. Deviation of (a) diffuse reflection and diffuse transmission coefficients and (b) direct
transmission and absorption coefficients for an inhomogeneous cloud from those for a homoge-
neous cloud with the same mean optical thickness, as a function of the log standard deviation of
the droplet density distribution for t 5 8, Ã 5 0.99, m0 5 1.00, and g 5 0.85. The renormalization
method is shown with a dashed line and the Monte Carlo method by circles with error bars.

rameters (single scatter albedo and asymmetry parameter)
and optical depth, that are then used in a doubling–adding
plane-parallel radiative transfer code (Hansen and Travis
1974) to calculate the mean reflection and transmission
from the inhomogeneous random medium.

The range of log standard deviations over which the
renormalization method is valid is shown in Fig. 4, for
a cloud of mean optical thickness t 5 8 (two grid boxes
used in vertical for Monte Carlo calculations), asym-
metry parameter g 5 0.85, and single scatter albedo 5
0.99, with a solar zenith angle of m0 5 1.0. In this figure
the deviation from their plane-parallel values of the frac-
tional flux reflected and the fractional flux diffusely (Fig.
4a) and the fractional flux directly transmitted and the
fractional flux absorbed (Fig. 4b) are plotted as a func-
tion of the log standard deviation of the droplet density
variations. The usual reduction in reflection and increase
in transmission for an inhomogeneous cloud compared
with a plane-parallel cloud with the same mean optical
depth can be seen in this figure. The dashed line rep-
resents the renormalization method and the circles rep-
resent Monte Carlo calculations, with one-sigma-error
bars estimated from five realizations of the inhomoge-
neous cloud field. It is apparent that at a log standard
deviation of d . 1.0 the renormalization method starts
to break down. In particular, the partitioning between
diffuse and direct transmission is incorrectly modeled,
although the estimates of absorption and reflection con-
tinue to be reasonable. However, up to a log standard
deviation of d ø 1.0 the renormalization method gives
fairly good results, which is encouraging given its ex-
treme simplicity. To put these values in context, we note
that Cahalan et al. (1994a) estimated that the log stan-
dard deviation of the liquid water path in stratocumulus
was d 5 0.4 and that it would be necessary to have a
log standard deviation d 5 0.7 in order to have albedos

in GCMs that are consistent with observed liquid water
paths. If such a range of variability of liquid water paths
can be considered representative, then the renormali-
zation method would appear to provide a useful model
for the modification of radiative transfer by inhomo-
geneities in the distribution of droplets in clouds. It
should, however, be noted that the liquid water is dis-
tributed inhomogeneously in three dimensions in the
calculations presented here, whereas Cahalan et al.
(1994a) use a one-dimensional distribution of variabil-
ity. The effects of inhomogeneity that we find here are
therefore more directly comparable to the work of Evans
(1993) and Borde and Isaka (1996).

Since the renormalization method appears to work
adequately for a log standard deviation of d 5 1.0, Fig.
5 shows the results of applying this method to the prob-
lem discussed in section 2. The curves in Fig. 5a use
the same set of parameters as in Fig. 3, namely, g 5
0.85, Ã 5 0.99 with d 5 1.0, and show the difference
in absorption caused by replacing a plane-parallel cloud
with an inhomogeneous cloud of the same spherical
albedo. In this case the renormalization method, al-
though underestimating the effect of cloud inhomoge-
neities on absorption, is comparable in accuracy to the
IPA. Figure 5b shows the difference in absorption
caused by replacing a plane-parallel cloud with an in-
homogeneous cloud of the same spherical albedo, for
the same phase function, g 5 0.85, and degree of in-
homogeneity, d 5 1.0, as Fig. 5a but with a reduced
single scatter albedo, Ã 5 0.98. Comparing Figs. 5a
and 5b we can see that, for a fixed degree of inhomo-
geneity, the increase in absorption caused by replacing
a plane-parallel cloud with an inhomogeneous cloud of
the same spherical albedo is roughly proportional to the
coalbedo (1 2 Ã). Based on these two examples the
renormalization method appears to offer a simple, ef-
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FIG. 5. Difference in absorption between an inhomogeneous cloud and a homogeneous cloud
with the same spherical albedo, calculated using the Monte Carlo method (dotted line), the IPA
(dotted–dashed line), and the renormalization method (dashed line) with d 5 1.0 and g 5 0.85:
(a) Ã 5 0.99 and (b) Ã 5 0.98.

FIG. 6. The two components of the absorption efficiency that vary
with the mean optical depth are shown for the single scattering param-
eters g 5 0.85 and Ã 5 0.99. The left two families of curves compare
the variation of [1 2 ^exp(2t /m0)&] for an inhomogeneous cloud with
d 5 0.7, using the Monte Carlo method (dotted line) and the renor-
malization method (dashed line), with the variation for a homogeneous
cloud of the same mean optical depth, using the doubling/adding meth-
od (solid line), for the solar zenith angles m0 5 0.5 and m0 5 1.0. The
right two families of curves show a similar comparison for absorption.

ficient, and relatively accurate model of the effect of
cloud inhomogeneities on absorption in clouds.

We will now present some more results comparing
the effect of cloud inhomogeneities on cloud absorption
with both plane-parallel doubling–adding calculations
and a simplified SGP scheme for plane-parallel calcu-
lations, which is used in the Goddard Institute for Space
Studies (GISS) GCM. A useful measure of cloud ab-

sorption is the absorption efficiency, which is defined
such that it is unity for very thin clouds and is given
by the expression

A
A 5 , (12)eff (1 2 Ã) 3 [1 2 ^exp(2t /m )&]0

where t is the optical thickness of the clouds, m0 is the
solar zenith angle, and A is the fraction of the incident
flux that is absorbed. The angle brackets indicate that an
ensemble average is performed, numerically in the case
of the Monte Carlo calculations and analytically in the
case of the renormalization method. It is this measure
that we will use to evaluate the effect that including cloud
inhomogeneities might have on absorption in a GCM. In
Fig. 6 the separate contributions to the absorption effi-
ciency are shown as they vary with the mean optical
depth for Ã 5 0.99 and g 5 0.85. These provide the
basis for understanding the following set of absorption
efficiency plots. It is apparent from Fig. 6 that the term
in the denominator, [1 2 ^exp(2t /m0)&], is always less
for an inhomogeneous cloud than for a homogeneous
cloud of the same mean optical depth (Jensen 1906). By
contrast, the absorption, which is initially less for in-
homogeneous clouds than homogeneous clouds of the
same mean optical thickness, becomes greater for in-
homogeneous clouds than for homogeneous clouds when
the mean optical depth is very large (t ø 100). This
behavior can be understood on the basis of photons in
thin inhomogeneous clouds flying farther between scat-
tering events than photons in homogeneous clouds and
therefore making fewer (absorbing) collisions before be-
ing transmitted, or reflected. However, when the optical
depth becomes very large there is negligible transmission
and the photons in inhomogeneous clouds penetrate far-
ther than photons in homogeneous clouds of the same
mean optical depth and must subsequently undergo more



1 MARCH 2000 709C A I R N S E T A L .

FIG. 7. Variation of absorption efficiency as a function of mean optical
depth for a homogeneous cloud using the doubling/adding method (solid
line) and for an inhomogeneous cloud using the Monte Carlo method
(dotted line) and the renormalization method (dashed line). The two
families of curves in this plot are for the solar zenith angles m0 5 0.5
and m0 5 1.0 and use the parameters d 5 0.7, Ã 5 0.99, and g 5 0.85.

(absorbing) collisions in returning to the surface. This
type of behavior has been noted and studied extensively
for binary mixtures (Boissé 1990; Hobson and Scheuer
1993) and for some types of fractal clouds (Borde and
Isaka 1996). This feature of inhomogeneous clouds can-
not be obtained using the IPA since it depends on the
penetration of radiation through voids in the clouds and
its subsequent trapping as a result of scattering deep with-
in the cloud. The competing effects of the denominator
and the numerator of the absorption efficiency explain
why the absorption efficiency at small mean optical
depths is initially larger for inhomogeneous clouds than
for homogeneous clouds (the effect of [1 2 ^exp(2t /
m0)&] in the denominator) and why one expects the dif-
ference to decrease as the optical depth increases. As the
mean optical depth increases, the absorption efficiency
of a homogeneous cloud may become larger than that of
an inhomogeneous cloud of the same mean optical depth
(see the numerator A as shown in Figs. 2b and 6) before
reaching its asymptotic value where the absorption ef-
ficiency (absorption) will be larger for an inhomogeneous
cloud than for a homogeneous cloud of the same mean
optical depth. This behavior can be seen in Fig. 7, for
solar zenith angles of m0 5 1.00 and m0 5 0.5 with d
5 0.7, Ã 5 0.99, and g 5 0.85. Similar functional be-
havior was found for a wide range of single scattering
properties. Although for a fixed mean optical depth the

renormalization method was found to be adequate for
values of d up to 1.0, it was found when comparing the
Monte Carlo and renormalization results for absorption
efficiency, over a range of optical depths, that a more
reasonable value at which to stop using the renormali-
zation method is d 5 0.7. In Fig. 7 we compare the
absorption efficiency of clouds with the same mean op-
tical depth. Evidently if the comparison was for clouds
with the same spherical albedo the absorption efficiency
of inhomogeneous clouds would tend to be greater than
that for homogeneous clouds with the same spherical
albedo (see Figs. 3 and 6).

We will now examine how the absorption efficiency
calculated using the doubling–adding method compares
with the SGP method in order to compare the different
effects of approximations in the radiative transfer cal-
culations and the inclusion of cloud inhomogeneity. In
GCMs, radiation calculations are usually made using
two-stream, or equivalent, methods. The fact that the
optical path of radiation through a plane-parallel cloud
is inadequately modeled by having only two fluxes means
that GCMs will not consistently get the correct absorption
in clouds for all optical depths and solar zenith angles.
The SGP method uses a doubling–adding calculation, but
with only one Gauss point to calculate the layer-to-layer
scattering of solar radiation by clouds and one ‘‘extra’’
angle (Lacis and Hansen 1974) to keep track of the solar
zenith angle dependence. The SGP method is tuned to
give the correct albedo for all optical depths and solar
zenith angles when there is no absorption. This is ac-
complished by means of a lookup table, which for any
given optical depth and asymmetry parameter selects the
required backscatter ratio in the SGP formulation to give
the correct albedo at all solar zenith angles. The SGP
formalism also gives the correct result in the totally ab-
sorbing case when v 5 0. It is the more common case
of intermediate absorption where the SGP parameteri-
zation shows deviations from reference doubling–adding
results. In Fig. 8 we compare the absorption eficiency
calculated using the SGP method with the absorption
efficiency calculated using the full doubling–adding
method (31 Gauss points) for the same pairs of single
scatter albedo and asymmetry parameter as used in Fig.
7. We see that, in all cases, for a solar zenith angle of
608 (m0 5 0.5) the SGP method underestimates the ab-
sorption efficiency for smaller values of mean optical
depth and marginally overestimates the absorption effi-
ciency for large values of the mean optical depth. At a
solar zenith angle of 08 (m0 5 1.00) the converse is true,
with the SGP method initially overestimating the ab-
sorption efficiency at smaller mean optical depths and
slightly underestimating the absorption efficiency at large
mean optical depths. The absorption efficiency of the
SGP method does not, therefore, change as a function of
solar zenith angle in the same way as the full doubling–
adding method at intermediate optical depths and inter-
mediate levels of absorption. This emphasizes the diffi-
culty in obtaining accurate estimates of absorption effi-
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FIG. 8. Variation of absorption efficiency as a function of mean
optical depth for a homogeneous cloud using the doubling/adding
method (solid line) and the SGP method. The two families of curves
in this plot are for the solar zenith angles m0 5 0.5 and m0 5 1.0
and use the parameters Ã 5 0.99 and g 5 0.85.

ciency using simple effective two-stream methods, even
though the SGP method is exact for conservative and
completely absorbing media. The effect on absorption
efficiency of the SGP approximation contrasts with the
effect of including inhomogeneous clouds (see Fig. 7)
where the inhomogeneous cloud biases depend on both
optical depth and level of variability but have a similar
sign for different solar zenith angles.

The more common alternative to the SGP approxi-
mation that is used in GCM radiation calculations is the
two-stream approximation. An advantage of this ap-
proximation that has been noted by Barker (1996) is
that the effects of inhomogeneity can be included by
performing an IPA average over a gamma distribution
of optical depths analytically. This yields a parameter-
ization of the effects of cloud inhomogeneity of great
simplicity and speed. Since this approach is not readily
applicable to other more accurate radiative transfer ap-
proximations (such as the SGP approximation), one lim-
itation of this method is the lack of accuracy of the two
stream approximation (King and Harshvardhan 1986).
Thus, even for current GCM radiation codes, the neglect
of cloud inhomogeneities may introduce a bias in the
efficiency with which GCM clouds absorb radiation,
compared with inhomogeneous clouds.

5. Conclusions
In this paper we showed, using both Monte Carlo and

independent pixel approximation (IPA) calculations, that

for a particular model of cloud inhomogeneity, the ab-
sorption in inhomogeneous clouds is greater than that in
homogeneous clouds with the same spherical albedo. We
also showed that for a range of mean optical depths the
absorption efficiency of inhomogeneous clouds is greater
than that for homogeneous clouds of the same mean optical
depth. Although the differences in absorption and absorp-
tion efficiency between homogeneous and inhomogeneous
clouds depends on the degree of inhomogeneity, these
results may be pertinent to recent suggestions regarding
anomalous absorption in clouds (Cess et al. 1995; Ra-
manathan et al. 1995). It should be noted that this change
in the absorbing properties of clouds does not depend on
unknown physics or on making arbitrary changes to the
single scattering parameters of radiative transfer theory.
The physics has been known about at least since 1906,
when Schwarzchild (1906) commented that it is ‘‘custom-
ary, as a first approximation to substitute mean steady state
conditions for spatial and temporal variations’’; the inclu-
sion of a statistical model of cloud inhomogeneities is
merely a second approximation.

If the effects of such cloud inhomogeneities are to be
included in GCMs, then a simple, physically based meth-
od for parameterizing their effect is required. To this end
we presented a set of coupled equations that provide an
exact representation of the mean radiative properties of
an inhomogeneous medium. Such a theoretical under-
standing of how the mean properties of radiative transfer
are affected by cloud inhomogeneities provides a rigorous
means for determining which characteristics of a cloud
field are relevant to the transfer of radiation and how they
affect it. We showed that, under certain circumstances,
the mean radiative properties of an inhomogeneous me-
dium can be evaluated using plane-parallel radiative
transfer theory, but with a simple renormalization of the
single scattering parameters to include the effects of an
inhomogeneous distribution of droplets within the cloud.
Since this simple renormalization method is derived from
a set of exact equations, we can easily evaluate the do-
main of validity and corrections to this and other (Kliorin
et al. 1990; Anisimov and Fukshansky 1992) methods.
Although the renormalization method developed here is
no more of a universal panacea than any other approx-
imate method for modeling cloud inhomogeneities
(Evans 1993; Malvagi et al. 1993; Peltoniemi 1993; Zuev
and Titov 1995), there are a number of advantages to
using such a simple method compared with more nu-
merically intensive and complicated methods, which may
be more accurate for particular cloud models. The first
is its simplicity, which allows us to identify in a relatively
simple way how the transfer of radiation will be modified
by inhomogeneities, for clouds of different mean optical
depths, single scatter albedos, and phase functions. The
second is its speed, because the effects of inhomogene-
ities can be included in plane-parallel codes that have
already been heavily optimized. The effects of inho-
mogeneity can therefore be included in any GCM that
includes a prognostic cloud water parameterization ca-
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pable of predicting the variability of liquid water in a
cloud. The third is its parametric dependence on mea-
surable properties of cloud variability, which means that
it is both experimentally testable and also of use in es-
timating the sensitivity of the retrieval of microphysical
quantities to the spatial structure of cloud inhomogene-
ities. Finally, the lack of assumptions, in this theory,
about the statistical properties of the random medium
means that features such as a hot spot effect, that depend
on the non-Markovian nature of backscattering can be
identified and evaluated. A number of other studies (Ste-
phens 1988; Cahalan et al. 1994a,b; Borde and Isaka
1996) have also indicated that much of the effect of cloud
inhomogeneity can be included in plane-parallel calcu-
lations by some rescaling, or renormalization of the single
scattering parameters. This study merely emphasizes the
theoretical justification for such a simple approach.

The type of renormalization developed here, which
is based on a continuous droplet density distribution, is
particularly appropriate for treating internal cloud in-
homogeneities. An alternative approach (Titov 1990;
Malvagi et al. 1993; Zuev and Titov 1995) makes sim-
plifying assumptions about the droplet density distri-
bution in order to obtain a relatively simple, but ac-
curate, set of equations for radiative transfer through a
model of broken cumulus clouds. This model approx-
imates the density distribution of droplets by a discrete
set of droplet densities. In its simplest incarnation the
sky is treated as a binary mixture of clear and cloudy
random elements, which, though it may be a good ap-
proximation for large-scale cloud variability, tends to
underestimate the effect of droplet density fluctuations
on the transfer of radiation (Hobson and Scheuer 1993).
The combination of the renormalization method, de-
veloped here, for a general statistical model of smaller-
scale variability and the binary mixture approach for

larger-scale variability (Malvagi et al. 1993) might
therefore provide a realistic model of the transfer of
radiation by inhomogeneous cumulus clouds.
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APPENDIX

Perturbative Expansion

Here we describe how (5) can be expanded in a
perturbation series and then resummed. We first rewrite
(5) as

I(r, s) 5 I (r, s)0

2 F(r, s; r9, s9)h(r9)I(r9, s9) ds9 dr9.E E
V 4p

(A1)

The function F(r, s; r9, s9) is defined to be

F(r, s; r9, s9) 5 s G (r, s; r9, s0)B(s0 · s9) ds9ext E 0

4p

(A2)

and is introduced simply to compress the length of the
equations that we will obtain when we expand (A1), so
that a representative set of terms in the expansion can
be written down. If we now expand (A1) and average
over fluctutations in h(r), we obtain the expression

^I(r, s)& 5 I (r, s) 1 F(r, s; r , s )F(r , s ; r , s )^h(r )h(r )&I (r , s ) ds dr ds dr0 E E E E 2 2 2 2 1 1 2 1 0 1 1 1 1 2 2

V 4p V 4p

2 F(r , s ; r , s )F(r , s ; r , s )F(r , s ; r , s )E E E E E E 4 4 3 3 3 3 2 2 2 2 1 1

V 4p V 4p V 4p

3 ^h(r )h(r )h(r )&I (r , s ) ds dr ds dr ds dr3 2 1 0 1 1 1 1 2 2 3 3

1 F(r, s; r , s )F(r , s ; r , s )F(r , s ; r , s )F(r , s ; r , s )E E E E E E E E 4 4 4 4 3 3 3 3 2 2 2 2 1 1

V 4p V 4p V 4p V 4p

3 ^h(r )h(r )h(r )h(r )&I (r , s ) ds dr ds dr ds dr ds dr ,4 3 2 1 0 1 1 1 1 2 2 3 3 4 4 (A3)

contribution from fifth-order moment of h(r), etc. This
expansion can obviously not be resummed since all the
terms depend on different moments that, depending on

the distributional properties of h(r), will have different
relations with respect to one another. However, if we
recall that moments can be written as the sum of per-
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mutations of products of lower-order moments and the
cummulant of that order (Gnedenko 1963; Fradkin
1966), then we can at least resum an infinite subseries
of the terms generated in the expansion (A3). For ex-
ample, the fourth moment of h(r) can be written as

^h(r )h(r )h(r )h(r )&4 3 2 1

5 ^h(r )h(r )&^h(r )h(r )& 1 ^h(r )h(r )&^h(r )h(r )&4 3 2 1 4 1 3 2

1 ^h(r )h(r )&^h(r )h(r )& 1 K (r , r , r , r ),4 2 3 1 4 4 3 2 1

(A4)

where K4(r4, r3, r2, r1) is the fourth-order cummulant

of the random process h(r). Similar relations apply for
higher-order moments. The cummulant can therefore be
regarded as that part of the moment that cannot be fac-
torized into products of lower-order moments and in
that sense can be regarded as the only irreducible con-
tribution from a given moment. The last term in (A3)
is therefore determined by products of second-order mo-
ments and the fourth-order cummulant. The contribution
of the first term in (A4) and a contribution to all of the
even higher-order moments in the expansion (A3) can
be included in an implicit resummation that is given by
the expression

^I(r, s)& 5 I (r, s) 1 F(r, s; r , s )F(r , s ; r , s )^h(r )h(r )&^I(r , s )& ds dr ds dr (A5)0 E E E E 2 2 2 2 1 1 2 1 1 1 1 1 2 2

V 4p V 4p

for the mean specific intensity. Expanding this expres-
sion in a perturbation series indicates which terms in
(A3) are included in such an implicit summation. Equa-

tion (A5) is simply an integral form of the equation of
radiative transfer, which, when written in its differential
form, becomes

s · =^I(r, s)& 1 s N B(s · s9)^I(r, s9)& ds9ext E
4p

25 s B(s · s9)G (r, s9; r9, s0)^h(r)h(r9)&B(s0 · s-)^I(r9, s-)& ds9 ds0 ds- dr9. (A6)ext E E E E 0

V 4p 4p 4p

It should be noted that (A6) is identical to the results
obtained using the method of smoothing (Frisch 1968;

Pomraning 1991). The expression given in the body of
the text is

s · =^I(r, s)& 1 s N B(s · s9)^I(r, s9)& ds9ext E
4p

25 s B(s · s9)^G(r, s9; r9, s0)&^h(r)h(r9)&B(s0 · s-)^I(r9, s-)& ds9 ds0 ds- dr9, (A7)ext E E E E
V 4p 4p 4p

which is a better approximation to (A3), in that it in-
cludes the first two terms of (A4) and a substantially
larger number of higher-order terms than are provided
by using (A6). Evidently, if the distribution of h(r) has
significant skew, or kurtosis, associated with it, then (7)
must be modified to include the higher-order cummu-
lants. The local approximation to (7) that is used in this

paper to provide renormalized single scatter parameters
that model the effect of cloud inhomogeneities on ra-
diative transfer is only one method for solving (7). A
set of coupled transport equations that are structurally
similar to those used for binary and ternary mixtures
(Malvagi et al. 1993; Hobson and Scheuer 1993) can
be derived that is equivalent to (7). This coupled set of
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equations reduces to those given by Anisimov and Fuk-
shansky (1992) when the kurtosis of the distribution of
h(r) is negigible and when the correlation lengths as-
sociated with the second and third moments of h(r) are
long compared with the transport mean free path.
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