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ABSTRACT
The goal of this paper is to propose a uniÐed treatment of di†usion, convection, semiconvection, salt

Ðngers, overshooting, and rotational mixing.
The detection of SN 1987A has served, among other things, to highlight the incompleteness of our

understanding of such phenomena. Moreover, the variety of solutions proposed thus far to deal with
each phenomenon separately, the uncertainty about the Ledoux-Schwarzschild criteria, the extent of
overshooting, the e†ect of a k gradient, the role of di†erential rotational mixing, etc., have added further
urgency to the need of a uniÐed, rather than a case-by-case, treatment of these processes. Since at the
root of these difficulties lies the fact that we are dealing with a highly nonlinear, turbulent regime under
the action of three gradients +T (temperature), +C (concentration), and +U (mean Ñow), it is not sur-
prising that such difficulties have arisen.

In this paper we propose a uniÐed treatment based on a turbulence model. A key di†erence with pre-
vious models is that we do not employ heuristic arguments to determine the Ðve basic timescales that
enter the problem and that entail a corresponding number of adjustable constants. These timescales are
computed using renormalization group (RNG) techniques. The model comes in three Ñavors : (a) all the
turbulent variables are treated nonlocally ; (b) the turbulent kinetic energy K and its rate of dissipation v
are nonlocal, while the remaining turbulence variables (Ñuxes, Reynolds stresses, etc.) are treated locally ;
and (c) all turbulence variables are local. In the latter case, one must specify a mixing length. Some of
the results are as follows :

1. The local model entails the solution of two algebraic equations, one being the Ñux conservation
law. By solving them, we obtain the desired versus relations for semiconvection and salt+[ +ad +kÐngers. We also derive other variables of interest, turbulent di†usivities, Peclet number, turbulent veloc-
ity, etc.

2. Schwarzschild and Ledoux criteria for instability are replaced by a new criterion that is physically
equivalent to the requirement that turbulent mixing can exist only so long as the turbulent kinetic
energy is positive. In addition to +, and the new criterion depends on the turbulent di†usivities+ad, +k,for temperature and concentration that only a turbulence model can provide.

3. We derive the dynamic equations necessary to quantify the extent of overshooting OV in the pres-
ence of a k barrier.

4. We prove that Although this result is physically understandable, noOV(+k)\OV(k \ const.).
direct proof has been available as yet.

5. We derive the turbulent di†usivity for a passive scalar, one that does not a†ect a preexisting turbu-
lence, e.g., a sedimentation of He. We show that it di†ers from that of an active scalar, e.g., a k Ðeld
causing semiconvection and/or salt Ðngers. Such di†usivity is a function of the temperature gradient
(stable/unstable) and shear (rotational mixing).

6. We show that the turbulent di†usivities of momentum (entering the angular momentum equation),
of heat (entering the model of convection), and concentration (entering the di†usion equation and/or
semiconvection and salt Ðngers) are di†erent from one another and should not be taken to be the same,
as has been done thus far.

7. We consider the e†ect of shear. We solve the local turbulence problem analytically and derive the
turbulent di†usivities for momentum, heat, and concentration in terms of the three gradients of the mean
Ðelds, +T , +C, and +U. Since shear is itself a source of turbulent mixing, one could expect it to enhance
the di†usivities. However, its interaction with salt Ðngers and semiconvection is a subtle one, and the
opposite may occur, a phenomenon for which we o†er a physical interpretation and a validation with
laboratory data.

8. A comparison is made with previous models.

Subject headings : di†usion È stars : interiors È stars : rotation È turbulence
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1. INTRODUCTION

1.1. General Considerations
There seems to be little disagreement that phenomena

like (1) turbulent convection, (2) semiconvection, (3) salt
Ðngers, (4) overshooting with and without a k gradient,
(5) turbulent di†usion of a passive scalar (e.g., sedimenta-
tion of heavy elements), and (6) rotational mixing would
greatly beneÐt from a predictive rather than descriptive,
and prognostic rather than diagnostic, treatment. The un-
certainties brought about by the constructional limita-
tions of the phenomenological approaches used thus far
have rekindled the need for a uniÐed treatment of the above
processes.

As noted by Langer (1992), many derived properties dis-
agree in several fundamental ways with results of stellar
evolution ; the discrepancies are larger than possible error
bars and cannot be overcome by adjusting free parameters.
SpeciÐcally, we can cite the fact that the progenitors of type
II supernovae were generally thought to be red giants
whereas SN 1987A showed a blue progenitor. For inter-
esting reviews, see Weiss (1989), Ritossa (1996), Woosley et
al. (1999), and Heger, Langer, & Woosley (1999). While
there is general agreement that low metallicity favors a blue
progenitor and moderate mass losses favor a red one, the
role of mixing induced by semiconvection is still under dis-
cussion. For example, Dent, Bressan, & Chiosi (1996a,
1996b) proposed a phenomenological model for the turbu-
lent semiconvective di†usivity that contains an adjustable
parameter. While this allowed them to Ðt WÈR stars, blue/
red supergiants counts, etc., the model failed to reproduce
the blue supergiant progenitor of SN 1987A, and perhaps
more worrisome was the extreme sensitivity of the results to
the adjustable parameter. The most recent work by the
same group (Salasnich, Bressan, & Chiosi 1998) employs a
simpler parameterization : the ratio of the turbulent di†usi-
vity for semiconvection to the thermal di†usivity is denoted
by To obtain the correct evolutionary HÈR diagrama2~1.
for a 20 solar mass star which then loops to the blue region
via a strong mass loss, the value of must bea2 50 ¹ a2¹
102, which implies that the di†usion timescale is much
shorter than the thermal timescale. These values of area2considerably smaller than the value Ðrst suggesteda2\ 104
by Woosley, Pinto, & Ensman (1988). Langer, El Eid, &
Baratte (1989) employed a model of semiconvection
(Langer, Sugimoto, & Fricke 1983 ; Langer, El Eid, &
Fricke 1985 ; Langer et al. 1989), which contains an adjust-
able parameter to represent the efficiency of semi-ascconvection (somewhat akin to the mixing-length theory
[MLT] a). The blue progenitor can be obtained only if

(see Fig. 1 of Langer et al. 1989). With0.05º ascº 0.008
this the model is however unable to reproduce the IUEasc,data concerning the high N/C ratio (8^ 4), since it yields
N/C \ 0.7È1.8. To accommodate this result, Langer (1991)
invoked an additional source of mixing, rotational mixing.
For a recent critical summary of the solved and unsolved
problems presented by SN 1987A see Woosley et al. (1998).
We shall comment on these models in ° 23.

The inability to match di†erent data is a symptom of
deeper problems of methodological nature and of internal
consistency. Not only does the need arise for a predictive
model for each of the processes 1È6, but one must be able
to correctly account for the feedback mechanismsÈfor
example, how does semiconvection a†ect overshooting, and

does di†erential rotation increase or decrease semi-
convection and salt Ðngers?

The main feature of the model adopted here is that it
abandons the bottom-up approaches used thus far and
adopts a top-down approach. Bottom-up models are those
that employ linear stability analysis (e.g., Kato 1966 ; Naka-
kita & Umezu 1994 ; Umezu 1998) and the criteria of
stability/instability that ensue from them to describe the
turbulent regime. The Ledoux versus Schwarzschild
dichotomy and the indeterminacy in the parameters anda2is a consequence of such approaches. Since in astro-ascphysics one does not have the luxury of witnessing the tran-
sition from laminarity to turbulence, as one does in a
controlled laboratory setting, the validity of the bottom-up
approach is justiÐably questionable. Linear stability
analysis can only give the rate at which velocity, tem-
perature, kinetic energy, etc., grow in time, but this corre-
sponds to a clearly unphysical circumstance that never
occurs, since the nonlinear interactions distribute the
(would-be divergent) energy among eddies of widely di†er-
ent sizes so as to attain a physically meaningful stationary
state, which is what is ultimately needed in stellar calcu-
lations. On these grounds alone, it seems unavoidable that
one adopts a top-down approach, one that begins with the
recognition that we are facing a turbulent stellar state and
are required to quantify itÈfor example, by predicting the
behavior of the turbulent kinetic energy (TKE) as a function
of some stability parameter like the Richardson number.
The point at which the TKE vanishes is where turbulent
mixing vanishes. We recall that linear stability analysis pre-
dicts that there should be no turbulent mixing beyond Ri \

while laboratory, oceanographic, and large eddy simula-14,
tion (LES) data indicate that turbulent mixing does exist
past As a concrete example, we recall that the depthRi\ 14.
of the ocean mixed layer is underestimated by the Ri\ 14rule. Turbulence models correctly predict that turbulence
survives past Ri \ 1È1.5, while linear stability analysis pre-
dicts that it does not. And yet the criterion has beenRi\ 14enforced in all studies of shear-driven (rotational) mixing in
stars (for a discussion see Canuto 1998).

In semiconvection, mixing is due to the unstable tem-
perature gradient, while is a sink. Using the bottom-up+kapproach, Langer et al. (1983, 1985, 1989) computed the
semiconvection turbulent di†usivity usingK

c
K

c
\ 13lv\

With the timescale q taken from KatoÏs linear stabil-13l2q~1.
ity analysis, one obtains

K
c
s~1\ 1

6
asc

1
Rk [ 1

, Rk4
+k

+[ +ad
, (1)

where s is the radiative conductivity and is a stabilityRkparameter analogous to the Richardson number. The effi-
ciency parameter is not predicted by the model, and weaschave already discussed the sensitivity of the results to it. The
turbulence model presented here provides a deterministic
relation free of adjustable parameters.

In a top-down approach, the Ledoux-Schwarzschild cri-
teria are replaced by the criterion is the turbulent heat(K

hdi†usivity)

K
h
(+[ +ad) [ K

c
+k , (2)

which follows from the requirement that for turbulent
mixing to exist, the source from the unstable temperature
gradient must be larger than the sink due to+ [ +ad[ 0
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the k gradient. Only a turbulence model can provide the
di†usivities as we now discuss.K

h,c,

1.2. Turbulent Di†usivities
Empirical models do not allow to construct the full func-

tional dependence of the turbulent di†usivities. Since the
dimensions of the di†usivities are cm2 s~1, one needs two
variables. Over the years, three expressions have been sug-
gested :

1. Richardson law: Di†usivityDl4@3v1@3 , (3a)

2. Prandtl law: Di†usivityDK1@2l , (3b)

3. Turbulence modeling : Di†usivityDKqDK2v~1 , (3c)

where l is a typical length scale, K is the turbulent kinetic
energy, v is the rate of dissipation of K, and q\ 2k/v is the
dissipation timescale. Richardson law (a precursor of Kol-
mogorov law) highlights the di†usive nature of large eddies,
while Prandtl law is reminiscent of mean free path argu-
ments. Both expressions entail a poorly deÐned length scale
l whereas equation (3c) does not, since it entails K and v, for
which we shall derive two di†erential equations. This avoids
the need of an l. On that basis alone, equation (3c) is prefer-
able to both equations (3a) and (3b). Even so, equation (3c)
is not yet satisfactory. In fact, consider the turbulent
Prandtl number

p
t
\ K

m
K

h
(4)

of the momentum and heat turbulent di†usivities forK
m

K
hstable stratiÐcation (radiative regions) when shear is the

source of turbulence. If we limit the functional dependence
to the forms (3a)È(3c), we obtain whereas it isp

t
\ constant,

known (Webster 1964 ; Wang, Large, & McWilliams 1996)
that increases with stratiÐcation. Therefore, equationsp

t(3a)È(3c) are incomplete.

1.3. Structure Functions
The complete form must be of the type

K
m,h,c \ 2

K2
v

S
m,h,c , (5)

where the dimensionless structure functions forS
m,h,cmomentum, heat, and concentration are di†erent from one

another and thus

K
m

D K
h
D K

c
. (6)

We shall derive the structure functions and show that they
are of the general form

S
m,h,c(+U, a

T
+T , a

c
+C oK, v) , (7)

where are the volume expansion coefficients. They rep-a
T,Cresent the e†ect on the density Ðeld o of a variation of the

temperature and c Ðelds. The turbulent variables K and v
provide a unit of time q\ 2k/v to measure shear (time~1).
Equation (6) implies that the momentum di†usivity that
enters the angular momentum equation is not the same as
the heat di†usivity and that both are di†erent from the
di†usivity that enters the concentration equations. We must
also remark that in some cases ratios like that in equation
(4) may be as large as 20 (e.g., see Fig. 6). Phenomenological
models cannot yield the structure functions, and that

explains why the di†usivities are often assumed to beK
m,h,cthe same (e.g., Talon et al. 1997).

Finally, we must distinguish between passive and active
scalars, a di†erence that is essential but often overlooked.
Semiconvection and salt Ðngers are the manifestations of a
k-Ðeld that is active in the sense that it can weaken and/or
enhance turbulence. This implies that its e†ect on the
density Ðeld cannot be neglected ; On the othera

c
D 0.

hand, the sedimentation of metals in stars and/or the disper-
sion of a contaminant driven by a wind Ðeld are examples of
processes that entail passive scalars, since they do not a†ect
the turbulent Ðeld that makes them turbulent. In that case,

In either case, the di†usivity can still be describe bya
c
\ 0.

equations (5) and (7). However, for a passive scalar, equa-
tion (7) becomes

S
c
(+U, a

T
+T , 0 oK, v) . (8)

1.4. T urbulence
In addition to the known difficulties of turbulence, we

have to account for three interacting Ðelds, temperature,
velocity, and concentration. The gradients of their mean
components,

+T , +U, +C , (9)

act as sources/sinks of instabilities. The three Ðelds have
also turbulent components

T @@, u
i
@@, c@@ (10)

that give rise to the following nonzero correlation func-
tions :

ou
i
@@ u

j
@@ , ou

i
@@ T @@, ou

i
@@ c@@, oT @@2, oc@@2, oT @@c@@ . (11)

The Ðrst three are the Ñuxes of momentum (Reynolds
stresses), temperature (convective Ñux), and concentration
(mass Ñux). The fourth and the Ðfth are proportional to the
potential energies of the Ñuctuating temperature and con-
centration Ðelds, while the last term represents the corre-
lation between the T @@ and c@@ Ñuctuating Ðelds. The Ðrst
three terms in expression (11) enter the dynamic equations
for the mean variables

L
Lt

U
i
] É É É \ [ L

Lx
j
ou

i
@@ u

j
@@ , (12a)

LT
Lt

] É É É \ [ L
Lx

j
ou

i
@@ T @@ , (12b)

LC
Lt

] É É É \ [ L
Lx

j
ou

i
@@ c@@ , (12c)

but the equations for the three second-order moments in
equations (12a)È(12c) depend on the last three correlations
in expression (11). Thus, the mean variables T , C, and U are
coupled by turbulence.

Under certain circumstances one can write

R
ij
4 o~1ou

i
@@ u

j
@@ \ [K

m
S
ij

, (13a)

J
i
4 o~1ou

i
@@ T @@\ K

h
b
i
, (13b)

'
i
4 o~1ou

i
@@ c@@\ [K

c
LC
Lx

i
, (13c)

where are the turbulent di†usivities of momentum,K
m,h,ctemperature, and concentration (cm2 s~1), while the shear
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and the superadiabatic temperature gradients are deÐned as

S
ij
\ 12(Ui,j ] U

j,i) , (14a)

b
i
\ [ LT

Lx
i
]
ALT
Lx

i

B
ad

. (14b)

For a discussion of equations (13a) and (13b) in the three-
dimensional case, speciÐcally regarding solar data see
(Canuto & ChristensenÈDalsgaard 1998). To show how dif-
Ðcult it is to generalize equation (13a) using only phenom-
enology, let us observe that equation (13a) does not account
for vorticity,

V
ij
\ 1

2
ALU

i
Lx

j
[ LU

j
Lx

i

B
, (15)

which is known to contribute to the Reynolds stresses.
However, since is an antisymmetric while is sym-V

ij
R

ijmetric, one cannot add to the right-hand side of equa-V
ijtion (13a). The only way to proceed is to add to equation

(13a) a symmetric tensor of the form

R
ik

V
jk

] R
jk

V
ik

, (16)

which, at the very least, complicates the Ðnal expression for
An additional shortcoming of equation (13a) is theR

ij
.

absence of the heat Ñux which, on physical grounds, isJ
i
,

expected to contribute to Thus, instead of equationR
ij
.

(13a) one expects a relation of the form

R
ij

\ [K
m

S
ij
] A(R

ik
V
jk

] R
jk

V
ik
)] B(g

j
J
i
] g

i
J
j
) ,

(17)

where is the gravity vector. Phenomenological models areg
iunable to provide A, and B. It is important to stressK

m
,

that it is the presence of the last two terms in equation (17),
namely,

Vorticity ] Buoyancy , (18)

that allows us to reproduce the solar data alluded to before.
As for equation (13b), in the case of stable stratiÐcation it
predicts a negative heat Ñux : while this is the general rule, it
is not always so. Positive Ñuxes have been measured even in
stably stratiÐed Ñows but equation (13b) is unable to repro-
duce them. This brief summary shows why one cannot use
phenomenological arguments to provide a quantitatively
reliable model for the turbulent di†usivities.

1.5. Structure of the Paper
In Paper I (Canuto & Dubovikov 1998), we considered

only one external stirring force, an unstable temperature
proÐle given by the Ðrst term in expression (9), which corre-
sponds to the case of convection. In Paper II (Canuto 1998),
a formalism was presented to deal with two nonzero gra-
dients, the Ðrst two in expression (9). In this paper we
present a formalism to include all three gradients of expres-
sion (9).

In °° 2È8 we derive the general nonlocal model to evalu-
ate the mean Ðelds and the turbulent variables. In ° 9 we
retain only two nonlocal equations, for K and v, while
the other turbulence variables are given analytically. In
°° 11È13 we discuss the general features of semiconvection
and salt Ðngers. In ° 16 we discuss qualitative results of the
model. In °° 18 and 19 we give the analytic solution of the
local without mean Ñow. We also solve the Ñux conserva-
tion law and obtain the versus relation for both+[ +ad +k

semiconvection and salt Ðngers. In ° 20 we discuss the e†ect
of a k gradient on the overshooting distance OV and show
that a k gradient decreases the OV. In ° 21 we give the
analytic expressions for the turbulent di†usivities in the
presence of all three gradients in expression (9), including
the case of a passive scalar. In ° 22 we present numerical
solutions to exhibit the e†ect of shear on the di†usivities. In
° 23 we discuss previous models of semiconvection. In ° 24
we present some conclusions.

Notation.ÈHere l is the kinematic viscosity, is theshradiative di†usivity where(K
r
\ c

p
osh, K

r
\ 4acT 3/3iopo,

is the opacity), and is the kinematic di†usivity for theiop s
cc Ðeld. The units are cm2 s~1. Expressions for l, can besh,cfound in equations (62), (16), and (61) of Spruit (1992) ; sh,care there called See also Table 1 of Stevenson (1979). Ini

t,s.the case of massive stars, l is contributed primarily by radi-
ation, (Kippenhahn, Ruschenplatt, &l\ 2aT 4/15ciopo2
Thomas 1980 ; MerryÐeld 1995). As shown in equations (13),
the turbulent di†usivities are denoted by andK

m
, K

h
, K

c
.

2. CONTINUITY EQUATION

Following the formalism presented elsewhere (Canuto
1997a), the total velocity, density, and pressure Ðelds are
split into a mean and a Ñuctuating part as follows :

u
i
\ U

i
] u

i
@@ , o \ o ] o@ , p \ P] p@ , p@\ o@\ 0 ,

(19a)

ou
i
@@\ 0 , u

i
@@\ [o~1o@u

i
@@ , U

i
\ o~1ou

i
. (19b)

The averaging process is known as the mass (or Favre)
average and is di†erent from the Reynolds average. The
relation between the two is discussed in Canuto (1997a).
Using the equation for the density o,

Lo
Lt

] L(ou
i
)

Lx
i

\ 0 ,
do
dt

] o
Lu

i
Lx

i
\ 0 ,

d
dt

4
L
Lt

] u
i

L
Lx

i
,

(20)

we obtain, upon mass averaging,

Do
Dt

] o
LU

i
Lx

i
\ 0 ,

D
Dt

4
L
Lt

] U
i

L
Lx

i
. (21)

3. MOMENTUM EQUATIONS

Next we consider the Navier-Stokes equations,

L(ou
i
)

Lt
] L(ou

i
u
j
)

Lx
j

\ F
i
, (22)

where is the sum of pressure forces, body forces, andF
iviscous forces :

F
i
4 [ Lp

Lx
i
[ og

i
] F

i
vis , F

i
vis 4 Lp

ij
Lx

j
, (23)

where is the viscous stress tensor,p
ij

p
ij
\ lo

ALu
i

Lx
j
] Lu

j
Lx

i

B
[ 2

3
lod

ij
Lu

k
Lx

k
. (24)

Mass-averaging equation (22), we obtain the dynamic equa-
tion for the large-scale Ñow U,

o
DU

i
Dt

\ [ L
Lx

j
(Pd

ij
] q

ij
) [ og

i
, (25)



No. 1, 1999 TURBULENCE IN STARS. III. 315

where are the turbulent Reynolds stresses,q
ij

q
ij

4 ou
i
@@ u

j
@@ \ oR

ij
. (26)

The kinetic energy of the large-scale Ðeld,

K
u
\ 12Ui

U
i
, (27)

satisÐes the equation (a
ij,k 4 La

ij
/Lx

k
, P,i4 LP/Lx

i
)

o
DK

u
Dt

\ [U
i
(P,i] q

ij,j ] og
i
) . (28)

It was shown in Canuto (1997a) that the Reynolds stresses
satisfy the dynamic equationsR

ij

o
ADR

ij
Dt

] D
ij

B
\ A

ij
] B

ij
[ n

ij
] 2

3
o@dd

ij
[ ov

ij
, (29)

where the nonlocal term representing the Ñux of Reynolds
stresses is given by

D
ij
\ o~1 L

Lx
k

A
oR

ijk
] 2

3
d
ij
p@u

k
@@ [ p

ik
u
j
[ p

jk
u
i

B
(30)

and represents the Ñux of the Reynolds stressesR
ijk

R
ijk

4 o~1q
ijk

\ o~1ou
i
@@ u

j
@@ u

k
@@ . (31)

The source term due to shear is represented by

[A
ij
\ o(R

ik
U

j,k ] R
jk

U
i,k) (32)

while the source (sink) term due to stratiÐcation is rep-
resented by

oB
ij
\ (o@u

j
@@ d

ik
] o@u

i
@@ d

jk
)P,k . (33)

The Ñuctuating pressure p@ gives rise to the pressure-velocity
correlation

%
ij
\ u

i
@@ p,j@ ] u

j
@@ p,i , n

ij
4 %

ij
[ 13dij

%
kk

. (34)

Finally, compressibility introduces a pressure-dilatation
term

2
3

p@u
i,i@@ 4

2
3

p@d , d 4
Lu

i
@@

Lx
i
, (35)

where d is the ““ dilatation,ÏÏ while is the dissipationv
ijtensor,

v
ij
\ 23ovd

ij
, (36)

for which we shall derive an independent dynamic equation
(see below). The trace of equation (29) yields the equation
for the turbulent kinetic energy K,

K 4 12o~1ou
i
@@ u

i
@@ \ 12Rii

, (37)

o
ADK

Dt
] D

f

B
\ [oR

ij
U

i,j ] o~1o@u
i
@@P,i] p@d [ ov ,

(38)

where is the nonlocal transport of K :D
f

D
f
4 o~1 L

Lx
i

A1
2

oR
kki

] p@u
i
@@ [ p

ij
u
j

B
. (39)

4. CONCENTRATION EQUATIONS

If we denote by o the total density of the Ñuid, and con-
sider a two-Ñuid model, the density of one component is oc

while that of the other is o(1[ c), c being the concentration.
While o satisÐes equations (20), the equation satisÐed by oc
is given by (no external sources)

L(oc)
Lt

] L(ocu
i
)

Lx
i

\ (oJ
i
),i , (40)

or, alternatively,

o
dc
dt

\ (oJ
i
),i , (41)

where is the di†usion Ñux. The two-Ñuid componentsJ
ioc and o(1[ c) have di†usion Ñux densities andcu

i
[ J

irespectively, so that their sum is If we(1[ c)u
i
] J

i
, u

i
.

deÐne a di†usion velocity as follows,u
i
d

J
i
\ [cu

i
d , (42)

Equation (40) can be rewritten as

Lo
*

Lt
] L(o

*
v
*i

)
Lx

i
\ 0 , (43)

o
*

\ oc , v
*i

\ u
i
] u

i
d , (44)

which bears a close similarity to the Ðrst of equations (20).
The vector has been discussed by Chapman & CowlingJ

i(1970) and by Landau & Lifshitz (1987). We shall write it as

J
i
\ s

c

A Lc
Lx

i
] i

T
T ~1 LT

Lx
i
] i

p
p~1 Lp

Lx
i

B
. (45)

Often, in the cited literature, J includes the density o and
has the opposite sign ; is called D, but for symmetrys

creasons we prefer to call it both and are dimen-s
c
; i

T
i
Psionless functions (Chapman & Cowling 1970). Di†erent

authors employ di†erent notations, e.g., equation (2.1) of
Aller & Chapman (1960), equation (3) of Schatzman (1969),
equation (1) of Michaud (1970), and equation (1) of Vauclair
& Vauclair (1982). As one can see from equation (45), isJ

icontributed not only by the gradient of the concentration, a
reasonable approximation under laboratory situations, but
also by temperature and pressure gradients, Ðrst introduced
by Chapman (1917), which may be important in stellar
interiors.

Following the procedure of averaging discussed in
Canuto (1997a), we have

oc\ oC , ocu
i
\ oCU

i
] F

i
(conc) , (46)

where C is mean concentration and is concentra-F
i
(conc)

tion Ñux :

C4 c , F
i
(conc)\ ou

i
@@ c@@\ o'

i
. (47)

Taking the mass average of equation (41), we obtain the
equation for the mean concentration C :

o
DC
Dt

\ LJ
i

Lx
i
[ L(o'

i
)

Lx
i

, (48)

or, more explicitly,

o
DC
Dt

\
A
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c
LC
Lx

i

B
,i
[ (o'

i
),i

] Mos
c
[i

T
(ln T ),i ] i

p
(lnP),i]N,i . (49)

It has been common practice (Cloutman & Eoll 1976 ; Cha-
boyer & Zahn 1992 ; Chaboyer, Demarque, & Pinsonneault
1995 ; Ventura et al. 1998 ; Maeder & Zahn 1998) to neglect



316 CANUTO Vol. 524

the last two terms, which is probably a justiÐable approx-
imation when one deals with a highly turbulent regime.

5. EQUATION FOR THE MEAN TEMPERATURE

We begin with the equation for the entropy S (Landau &
Lifshitz 1987),

oT
dS
dt

\ [ L
Lx

i
(q

i
] ok8 J

i
)] oJ

i
Lk8
Lx

i
] p

ij
Lu

i
Lx

j
, (50)

where is the chemical potential andk8

q
i
\ F

i
r [ oJ

i

A
k8 [ T

Lk8
LT
K
p,c

B
[ oJ

i
i
T

Lk8
Lc
K
p,T

, (51)

where is the radiative Ñux. In the absence of di†usionF
i
r
but here depends also on the gradients of theq

i
\ F

i
r, q

iconcentration as well as on the gradient of Next, we workk8 .
out the entropy change dS/dt. We have

dS
dt

\ LS
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K
c,p

dT
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K
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K
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, (52)

and since

T
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K
c,p

\ c
p

,
LS
Lc
K
T,p

\ [ Lk8
LT
K
p,c

,

o2 LS
Lp
K
c,T

\ Lo
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, (53)

equation (50) becomes
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p
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dt
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i
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i
] p
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i
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j
, (54)

where we have taken (no radiationTo~1Lo/LT o
p,c\ [1

pressure). Use of equation (41) gives
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i
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i
] p

ij
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i
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j
, (55)

where h is deÐned as

h \ k8 [ T
Lk8
LT
K
p,c

. (56)

Next, we employ the deÐnition of the generalized Ñux q
igiven above (eq. [51]). We obtain
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i
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(57a)

or, alternatively,

c
p

C L
Lt

oT ] L
Lx

i
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i
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D

\ dp
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r
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i
] p

ij
Lu

i
Lx

j

] os
c

Lc
Lx

k

Lh
Lx

k

]
A
oJ

i
i
T

Lk8
Lc
K
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B
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. (57b)

The last two terms are due to di†usion, and the remaining
terms are identical to those of Canuto (1997a). The last term
is likely to be much smaller than the previous one, and thus
we can neglect it (even though the retention of it would not
cause conceptual difficulties). The neglect can be justiÐed in
the following way. Even at the lowest order in that is,J

i
,

retaining only the Ðrst term in equation (45), this term
would be proportional to the product of two ““molecular ÏÏ
variables, while the previous terms are linear in suchs

c
i
T
,

parameters. MerryÐeld (1995) has carried out a two-
dimensional numerical simulation of semiconvection using
this approximation. It was also shown that for an individual
species i, while for a binary mixture one canh

i
\ 5kT /2m

i
,

use the deÐnition of (Landau & Lifshitzk \k1/m1[ k2/m21987), where kÏs are the mean molecular weights of the two
species. Thus,

h \ 5
2

kT
k1,2

, k1,2\ (k1~1[ k2~1)~1 . (58)

For and one then has (MerryÐeldk1 4k(He) k2 \k(H),
1995)

h \ [258 RT . (59)

Next, we take the mass average of equation (57b).
Making use of the results derived in Canuto (1997a) and
recalling that we obtainp

ij
u
j,i \ ov,

oc
p
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\ [(F
i
c ] F

i
r [ p@u

i
@@),i]
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Dt

] u
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8
s
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where is the convective Ñux,F
i
c

F
i
c \ c

p
oT @@u

i
@@ \ oH

i
\ c

p
oJ

i
. (61)

In the last term we have kept only the largest term. The u
i
@@

term in equation (60) can be written using equation (19b).
Adding equation (60) to equation (38) yields
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U

i,j] o
D
Dt

(c
p
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i
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i
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s
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where is the Ñux of turbulent kinetic energy (summationF
i
ke

over the indices j),

F
i
ke\ 12 ou

j
@@ u

j
@@ u

i
@@ . (63)

A further simpliÐcation occurs if we add to both sides of
equation (62) the term given by equation (28). WeoDK

u
/Dt

obtain
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p
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i
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s
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where Equation (64) is the gen-g
i
oU

i
\oU

i
G,i\ oDG/Dt.

eralized Bernoulli equation with turbulence, di†usion, and
radiation.
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6. TURBULENCE

As already discussed, we need to evaluate the second-
order moments deÐned in expressions (11). The equation for
the Ðrst of them has already been given by equation (29). As
for the correlation

/\ 12oc@@2 , (65)

we Ðrst note that using equation (40), oc2 satisÐes the
dynamic equation (J

i,i 4 L(oJ
i
)/Lx

i
)

L(oc2)
Lt

] L(ou
i
c2)

Lx
i

\ 2cJ
i,i . (66)

Taking into account the relations

oc2\ oC2] oc@@2 , (67a)
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i
c2\ oU

i
C2] U

i
oc@@2] ou

i
@@ c@@2] 2Cou

i
@@ c@@ , (67b)

the mass average of equation (66) yields the following for / :
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2
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Lt
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(oU

i
C2),i[ (/U

i
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[ [CF
i
(conc)],i] cJ

i,i . (68)

Using equations (21) and (48), equation (68) can be reduced
to the following form:

D/
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] D
f
(/)\ [ /U

i,i[ F
i
(conc)C,i] cJ

i,i[ CJ
i,i . (69)

Finally, introducing the new function ',

12oc@@2\ o' . (70)

Equation (69) simpliÐes further to

o
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f
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\ [ LC
Lx

i
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i
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i,i[ CJ
i,i , (71)

where (conc) is deÐned in equations (47) and the nonlocalF
itransport of ' is given by

D
f
(')\ 1

2
o~1 L

Lx
i
(ou

i
@@ c@@2) . (72)

The last two terms in equation (71) will be computed as
follows :

cJ
i,i[ CJ

i,i \ CJ
i,i] c@@J

i,i[ CJ
i,i\ c@@J

i,i\ c@@J
i,@@i ,

(73)

which, using equation (45), becomes (whenever the equation
is rather complicated, we may employ angular brackets
instead of an overbar for ease of notation)
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Assuming, as seems natural, a higher degree of correlation
of c@@ among themselves than with the temperature and
pressure Ñuctuations, we approximate expression (74) as

follows :
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j
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~1' , (75)

where is the correlation timescale discussed below. Thus,q
cwe Ðnally have :
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i
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c
~1' . (76)

Next, we consider the third term in equation (11) and make
use of equations (47). Multiply equation (40) by and equa-u

ition (22) by c. Adding the results, we obtain
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Recalling that
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substitution into the mass-averaged form of equation (77)
gives, after several steps,
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where the function is given byA
i

A
i
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i
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i
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k,k . (80)

Recalling the deÐnition of (equation [23]), we have afterF
isome algebra
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where the dimensionless function is given in terms of the"
ipressure scale height H
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Since by deÐnition
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use of the expansion
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where the expansion coefficients are deÐned as
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gives
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The term will be approximated with 2' given by equa-c@@2
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To evaluate the last term in equation (87), we use equation
(40) and consider the quantity

L
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c
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where
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Since by deÐnition the only nonzero contributionou
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is
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where
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here we have kept only the largest terms in the (unwritten)
expansion. This is why in the last term in equation (91) we
have P in the denominator. Thus, we have
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This term is analogous to part of the term in equationg
i(34b) of Canuto (1992), namely,

g
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T
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(93)

where the radiative conductivity plays the role of andsh s
cc@@ is the analog of the temperature Ñuctuations h ; wasu
i
@@

denoted by Using the arguments developed in the citedu
i
.

reference, we shall write

L
i
\ 12s

c
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i,kk , (94)

which represents the dissipation of due to the di†u-u
i
@@ c@@

sivity We have neglected the extra terms due to tem-s
c
.

perature and pressure gradients because we believe that
equation (94) is the largest contribution. The last term we
must compute is the pressure correlation term
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. (95)

Using the analogy with the temperature case (Canuto 1992,
eq. [43a], [43b]), we shall write
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Finally, the complete equation for is'
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Next, we consider the fourth function in equation (11),
which we generalize to

t\ 12oT @@2\ o( . (98)

First we recall that, except for the last two di†usion terms,
the temperature equation (57b) can be treated as in Canuto

(1997a), where the equation for t is given by eq. (26f ). Thus,
we must add the last but one term in equation (57b),
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Keeping only the largest terms, the dynamic equation for (
becomes
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where the convective Ñux is deÐned in equation (61).H
iHere is the superadiabatic gradientb

i
b
i
\ T H

p
~1(+[ +ad) . (101)

Next, we consider the second term in equation (11),
namely, the convective Ñux (eq. [61]. Here, too, the relevant
dynamic equation was already derived in Canuto (1997a),
equation (24a), to which we must add the last but one term
of equation (57b). The result is
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where the pressure term gives rises to the relaxation term
Finally, we use the fact thatq

ph~1.

oT @@\ [o@T @@ (103)

and the expansion (84) to obtain
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so that equation (102) becomes

DH
i

Dt
] c

p
D

f
(H

i
) \ c

p
R

ij
b
j
[ H

j
U

i,j

[ c
p
g"

i
(2a( [ a

c
c@@T @@)

[ q
ph~1H

i
] 1

2
sh H

i,kk

[ 25
8

Rs
c
U

i
LC
Lx

k

LT
Lx

k
. (105)

Finally, let us consider the last term in equations (11), the
correlation between T @@ and c@@. We recall that in general
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and thus from equation (41)
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Subtracting the mass average of equation (107) from itself,
we obtain
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Multiplying equation (108) by T @@ and mass averaging, we
obtain
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where by ““ É É É ÏÏ (higher order terms) we mean all the terms
that entail correlations higher than the second-order terms
under consideration. For example, if we neglect the higher
orders, we must also neglect in equation (109) : in fact,u

i
@@

because of the second relation in equations (19b), isu
i
@@

already a second-order quantity. As for the equation for T @@,
we employ equations (27) and (32) of Canuto (1993 ; with
obvious change in notation), to which we must add the last
but one term of equation (57b). Keeping only the largest
terms, we have
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Once we multiply by c@@ and mass-average, we obtain
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Adding equation (109) to equation (111), we obtain
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where we have taken
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Since it is quite hard to provide an exact evaluation of the
terms in equation (113), we have followed a previous sugges-
tion of considering that the e†ect of these terms is a
damping of the Ñuctuations on a timescale whoseT @@u

i
@@ q

phevaluation will be discussed in Appendix B.

7. NONLOCAL MODEL

To simplify the use of the equations we have derived, we
list them here beginning with the equations for the mean
quantities :

Large-scale Ñow U
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Mean temperature T :
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where represents the last term in equation (64).f (s
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)

Mean concentration C :
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The pressure-velocity correlation is discussed in Appen-n
ijdix A.

Turbulent kinetic energy K \ 12Rii
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In both equations (117) and (119) we have not included the
dilatation term which, however, can be accounted forp@d,
using equations (45c) and (35c) of Canuto (1997a).

Convective Ñux c
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Temperature Ñuctuations 12oT @@2\o( :

D(
Dt

] o~1D
f
(() \ c

p
~1H

i
b
i
[ 2qh~1( ] sh (,kk .

(121)

Concentration variance 12oc@@2\ o' :
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Temperature-concentration correlation T @@c@@ :
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The equations for the timescale are givenqpc, q
ch, q

c
, q

ph, qhbelow.

8. THE RENORMALIZATION GROUP METHOD OF

DETERMINING THE TIMESCALES qpc, q
ch, q

c
, q

ph, qh
To make the above equations predictive, one must know

the dissipation timescales of the di†erent turbulent vari-
ables, namely, Not surprisingly, this is oneqpc, qch, qc, qph, qh.of the most difficult problems, since one-point closure
models, like the one we have used, are incapable of provid-
ing them. Thus far, two types of models have been
employed, namely, engineering and geophysical models.

8.1. Engineering and Geophysical Models
Since in most situations the kinematic di†usivities of heat

and/or concentrations are very small, they give rise to time-
scales which are considerably larger than thel2(sh~1, s

c
~1)

dynamic timescale q characterizing the turnover time of a
large eddy :

qD Kv~1 D K~1@2l . (125)

Under these conditions, it is expected that (i \ 1, . . . , 5)

qi \ (qpc, q
ch, q

c
, q

ph, qh)q~1 D Ci\ constant . (126)

Examples of the constants can be found in CanutoCi(1994).

8.2. Astrophysics
In this case equations (126) can only be valid in the case

of very efficient convection when radiative losses are unim-
portant. In the most crucial and interesting case of ineffi-
cient convection, + detaches itself from and tends+adtoward owing to the increasing dominance of radiative+

rlosses that weaken the efficiency of convection as a heat
transport mechanism. Since the efficiency of convection is
described by the Peclet number (Pe), the above timescales
should depend on Pe in such a way that when Pe ? 1, they
satisfy equation (126), while in the opposite case of Pe \ 1,
they become smaller than the dynamical timescale q. Thus,
instead of equation (126), one should write

(qpc, q
ch, q

c
, q

ph, qh)q~1\ f (Pe) ,

f (x)\ constant for x ? 1, f (x)\ 1 for x > 1 .

(127)

Without a theory, the construction of the function f (x) is a
major hurdle. Grossman & Taam (1996) and Xiong (1985a,
1985b, 1986) have suggested empirical functions of the type

f (x)\ ax
1 ] bx

, (128)

but even so, there is no a priori reason why the constants a
and b should be the same for all the ratios considered in
equation (126). Since we have Ðve timescales, this means 10
adjustable parameters, which, at the very least, are hard to
control. As the authors just cited have stressed, this is the
major shortcoming of their methodology. They prevent the
proliferation of constants by demanding that all length

scales (which are equivalent to timescales) be taken pro-
portional to a master length scale which itself, however, is
not determined by the model and must be Ðxed empirically.

In the present formalism we try to overcome these diffi-
culties by adopting results obtained from the renormaliza-
tion group (RNG) formalism.

8.3. T he RNG method
We recall that the Peclet number is actually a function of

the form

PeD
l
t

s
, l

t
(k) \

P
k

=
t(k@)dk@ , (129)

where the turbulent viscosity which depends on thel
t
(k),

eddy size Dk~1, is the key quantity. From the Ðrst model
by Heisenberg to the most modern ones (Lesieur 1991), l

t
(k)

is expressed as a UV property, since it is contributed by all
eddies smaller than k~1. The construction of the function

has improved considerably through the use of thel
t
(k)

RNG-based techniques. As discussed elsewhere in detail
(Canuto & Dubovikov 1996, 1998 and references therein),
the RNG-based model yields the following expressions for
the Ðve of equation (126) :qi

(q
ph, qpc)q~1 \ aPe(1] bPe)~1 , a \ 1

4n2 ,

b \ 5a(1] p
t
~1) , (130)

(qh, q
c
)q~1 \ aPe(1] aPe p

t
~1)~1 , a \ 4

7n2 , (131)

q
ch q~1\ aPeh(1] bp

th~1Peh)~1 a \ 4
7n2

A
1 ] Peh

Pe
c

B~1
,

b \ 15(7n2)~1
A
1 ] p

th
p
tc

BA
1 ] Peh

Pe
c

B~1
. (132)

The Ðnal result does justify empirical models of the type
shown in equation (128), with the advantage that the
parameters a and b are no longer free, and in most cases
they are not even constant, since they depend on the turbu-
lent Prandtl number which itself is a function of Pep

t
,

(Canuto & Dubovikov 1996) :

c2 p
t
~1\ 1 ] 2

5
n2c2 Pe~1

]
GC

1 ] 5
2n2 Pe(p

t
~1] c1~1)

D~![ 1
H

. (133)

The constants are given by

2c1\ (c2] 4c)1@2[ c , c2\ c1] c ,

!\ c1/c2 , c\ 0.3 . (134)

Equation (133) has the following limits :

Pe? 1 : p
t
\ 0.72 , Pe> 1 : p

t
D Pe~1 . (135)

As one can observe, in the large Pe limit we recover equa-
tion (126), but the various constants are di†erent, as indeed
is known from several studies of engineering Ñows. We have
used only one symbol for both and but,Peh, Pe

c
p
th, p

tc
,

clearly, in each speciÐc case one must insert the correspond-
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ing Pe and The Peclet numbers are deÐned asp
t
.

Peh,c \ 4n2
125

K2
v
A 1
sh

,
1
s
c

B
. (136)

9. K-v MODEL

A widely used turbulence model is the nonlocal K-v
model, in which both K and v are treated nonlocally while
the remaining turbulence variables are treated locally. The
equations for the mean variables are unchanged. Thus, we
have two nonlocal equations :

Kinetic energy K :

DK
Dt

] D
f
\ [R

ij
U

i,j ] gj
i
(aJ

i
[ a

c
'

i
)[ v . (137)

Dissipation rate v :

Dv
Dt

] D
f
\ [c

s
R

ij
U

i,j ] c1 gj
i
(aJ

i
[ a

c
'

i
)vK~1

[ c2 v2K~1 . (138)

while the other turbulence variables are given by the follow-
ing local expressions :

Convective Ñux F
i
c\ c

p
ou

i
@@T @@\ c

p
oJ

i
:

q
ph~1J

i
\ R

ij
b
j
[ J

k
U

i,k [ (oT )~1(2a( [ a
c
T c@@T @@)P,i .

(139)

Temperature Ñuctuations 12oT @@2\o( :

( \ 12qh J
i
b
i
. (140)

Concentration variance 12oc@@2\ o' :

'\ [12q
c
'

i
C,i . (141)

Concentration Ñux oc@@u
i
@@ \ o'

i
:

qpc~1'
i
\ [R

ij
C,j [ '

j
U

i,j [ o~1(aT @@c@@[ 2a
c
')P,i .

(142)

Temperature-concentration correlation T @@c@@ :
q
ch~1T @@c@@\ b

i
'

i
[ J

i
C,i . (143)

Reynolds stresses (Appendix A) :

b
ij

\ R
ij
[ 23Kd

ij
, (145a)

2qpv~1b
ij
\ [ 815KS

ij
[ (1[ p1)&ij

[ (1[ p2)Zij
] b5B

ij
.

(145b)

10. TURBULENT DIFFUSIVITIES

Solving equations (141)È(143), we obtain

(d
ij
] g

ij
)'

j
\ [d

ik
LC
Lx

k
, (146)

where

d
ik

\ qpc(Rik
] agq

ch j
i
J
k
) , (147a)

g
ij
\ qpc

C
U

i,j [ gj
i

A
aq

chbj
] q

c
a
c

LC
Lx

j

BD
, (147b)

j
i
\ [(go)~1 LP

Lx
i
. (147c)

We recall that the pressure gradient must be computed con-
sistently with equation (114). Equation (146) begins to
acquire a familiar form, but to obtain an explicit form for

we must apply the Hamilton-Cayley theorem. The result'
i
,

is

'
i
\ [(K

c
)
ij

LC
Lx

j
, (148)

where the turbulent concentration di†usivity tensor is(K
c
)
ijgiven by

(K
c
)
ij
\ A(A0 d

ik
] A1 g

ik
] g

im
g
mk

)d
kj

, (149)

with

A0\ 1 ] L 1 [ L 2 , A1 \ [1 [ L 1 , A\ (A0] L 3)~1 ,

(150)

L 1\ g
ii

, 2L 2\ [L 12 ] g
ij
g
ji

,

6L 3\ L 13] 2g
im

g
mk

g
ki

[ 3L 1 g
ij
g
ji

. (151)

From equations (141) and (143), we then obtain the
expressions for the concentration variance and corre-T @@c@@
lation :

'\ 1
2

q
c
(K

c
)
ij

LC
Lx

i

LC
Lx

j
, (152)

T @@c@@\ [q
ch[Ji

] b
k
(K

c
)
ki
]

LC
Lx

i
. (153)

Analogously, inserting equations (140), (148), and (153)
into equation (139), we obtain an expression for the convec-
tive Ñux which is structurally similar to equations (146)ÈJ

i(147c),

(d
ik

] k
ik
)J

k
\ c

ik
b
k

, (154)

where

c
ik

\ q
ph
C
R

ik
] a

c
gq

ch ji(Kc
)
kj

LC
Lx

j

D
, (155a)

k
ij
\ q

ph
C
U

i,j [ gj
i

A
qh ab

j
] q

ch a
c

LC
Lx

j

BD
. (155b)

Using the Hamilton-Cayley theorem, we can solve equation
(154). The convective Ñux is given by

J
i
\ (K

h
)
ij
b
j
. (156)

The turbulent heat di†usivity tensor has the following(K
h
)
ijform:

(K
h
)
ij
\ B(B0 d

ik
] B1 k

ik
] k

im
k
mk

)c
kj

, (157)

with

B0\ 1 ] M1[ M2 , B1\ [1 [ M1 ,

B\ (B0] M3)~1 , (158)

M1\ k
ii

, 2M2\ [M12] k
ij
k
ji

,

6M3\ M13] 2k
im

k
mk

k
ki

[ 3M1 k
ij
k
ji

. (159)

Finally, equations (148) for and (156) for must be'
i

J
isubstituted in equation (A7) in order to obtain the tensor

Once that is done, the result is substituted in equationB
ij
.

(145b) and the Reynolds stresses can then be obtained in
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terms of the gradients of the mean variables. The solution of
equation (145b) entails a system of algebraic equations. We
recall that there are only Ðve independent components of

since the kinetic energy K satisÐes a separate di†erentialR
ij
,

equation, equation (119).
The two turbulence variables, K and q\ 2K/v, are solu-

tions of equations (137) and (138).

11. TURBULENT DIFFUSIVITIES : ONE-DIMENSIONAL CASE

The one-dimensional case is particularly interesting, since
it allows a completely analytical solution of the problem
and is of direct interest in stellar structure computations
where one considers only the radial direction r. Using equa-
tions (148) and (156), one obtains the solutions

oJ 4 ow@@T @@\ oK
h
b , (160a)

o'
Z
4 ow@@c@@\ [oK

c
LC
Lz

, (160b)

where the turbulent di†usivities are given byK
h,c

K
h
\ l

T
A

h
, K

c
\ l

T
A

c
, (161)

and the turbulent viscosity is given by

l
T

4 qw2 , (162a)

A
h
\ n4(1] gx ] n1 n2 xRk)D~1 , (162b)

A
c
\ n1(1] kx [ n2 n4 x)D~1 , (162c)

D\ (1] gx)(1] kx)] n1 n22 n4 x2Rk , (162d)

g \ n1(n2[ n3Rk) , k \ n4(n5[ n2Rk) , (162e)

where we have introduced the following dimensionless func-
tions :

x \ q2N
h
2 , (163a)

n1,2,3,4,5\ (qpc, q
ch, q

c
, q

ph, qh)q~1 . (163b)

We have also introduced the timescales of the T and C
Ðelds :

N
h
2 \ [ga

T
b \ [gH

p
~1(+[ +ad) , (164a)

N
c
2\ ga

c
LC
Lz

\ [gH
p
~1+k , (164b)

a
c
LC
Lz

\ [H
p
~1+k , +k 4

L ln k
L ln P

. (164c)

In oceanography, one also deÐnes the Turner number asRo(Kelley 1984)

Ro \ ga
c
LC/Lz

ga
T

LT /Lz
, (165)

which weighs the relative importance of the two gradients.
In the stellar case, the equivalent of is the ratioRo

Rk \ [ga
c
LC/Lz

ga
T

b
\N

c
2

N
h
2\ +k

+[ +ad
. (166)

Equation (161) is still not the Ðnal solution, since it depends
on two unknown variables, and x, which we mustl

Texpress in terms of calculable variables like To computeRk.we need an expression for w2. For that, we use thel
T
,

equation for the Reynolds stresses, equations (145b), (A7)È

(A9), and (165). We obtain

l
T

\ 13 vq2[1] 215 (A
h
[ A

c
Rk)x]~1 . (167)

Next, we need an equation for x. We shall take the local
limit of the kinetic energy equation, equation (39), which
reads

v\ ga
T

J [ ga
c
'3\ l

T
N

h
2(A

c
Rk [ A

h
) . (168)

Substituting equation (168) into (167), we obtain the equa-
tion for x :

x(A
c
Rk [ A

h
) \ 157 , (169)

which changes equation (167) to

l
T

\ 7
15

vq2\ 28
15

K2
v

. (170)

Thus, is expressed in terms of K and v. Finally, using thel
Texpressions for equations (162b) and (162c), equationA

h,c,(169) becomes

A(x)x2] B(x)x [ 157 \ 0 , (171)

where A(x) and B(x), which can depend on x (see below), are
given by

A\ n1(k [ n2 n4)Rk [ n4(g ] n1 n2Rk)
[ 157 (gk ] n1 n22 n4 Rk) , (172a)

B\ n1 Rk [ n4[ 157 (g ] k) . (172b)

Thus, x is expressed entirely as a function of Finally, weRk.have

K
h
\ 28

15
K2
v

A
h

, K
c
\ 28

15
K2
v

A
c

, (173)

where we still have to determine K and v, which in principle
are solutions of the two dynamic equations (137) and (138).
Equation (137) has already been used in the local form, that
is, equation (168). The equation for v, equation (138), has
not yet been used, and it can be taken to be local or not.
Below, we give the solution corresponding to the case where
equation (138) is taken to be local, which means

v\ K3@2
"

, (174)

where " is a mixing length ; the speciÐcation of " is the price
that one has to pay for not solving equation (138). From the
deÐnition of x, equation (163a), and the deÐnition
q\ 2Kv~1, we obtain, using equation (174),

K \ 4"2N
h
2 x~1 , (175)

and thus the Ðnal expressions for the di†usivities K
h,cfollow from equations (173) and (174).

K
h
\ 56

15
"2
AN

h
2

x
B1@2

A
h

, K
c
\ 56

15
"2
AN

h
2

x
B1@2

A
c

. (176)

T hus, the problem is completely solved analytically. In fact,
both di†usivities are now expressed in terms of the gra-
dients b and Clearly, for (corresponding to+k. N

h
2\ 0

unstable stratiÐcation), x must be taken as the negative
solution of equation (171), since K is positive (eq. [175]).
Numerical solutions are presented in ° 18.

12. SEMICONVECTION AND SALT FINGERS : GENERALITIES

Using the previous formalism, one can study semi-
convection and salt Ðngers, since they can be viewed as
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di†usion processes. For example, when there is a nonzero
gradient of the mean molecular weight k, it is because of the
presence of species whose main concentrations have gra-
dients opposite to that of the mean temperature and whose
kinematic di†usivities are also di†erent from the radiative
one. On Earth, the most common example is that of salt
and temperature in the ocean, a phenomenon that is
referred to as thermohaline and/or thermosolutal convec-
tion. When both T and the mean salinity S increase from
the ocean surface toward the bottom, the result is cold fresh
water over warm salty water. The S Ðeld is stable, the T Ðeld
is unstable (heavy at the top), and one refers to the pheno-
menon as di†usive convection (Turner & Stommel 1964 ;
Turner 1973 ; Marmorino & Caldwell 1976 ; Turner 1985 ;
Kelley 1984, 1990 ; Schmitt 1994). Examples are several
lakes, water underneath an ice island, and the Red Sea.

In astrophysics, di†usive convection is called semi-
convection, and it has been studied by several authors
(Stothers 1970 ; Spiegel 1972 ; Stothers & Chin 1975, 1976 ;
Stevenson 1979 ; Langer et al. 1983, 1985, 1989 ; Spruit 1992 ;
Grossman & Taam 1996 ; Umezu 1998). Yet there does not
seem to be a generally agreed upon procedure to treat the
phenomenon. Stothers (1970) critically analyzed 11 di†erent
prescriptions and concluded that only two were physically
acceptable : one used by Schwarszchild & (1958), whoHa� rm
adopted the K Schwarzschild criterion, and the other by
Sakashita & Hayashi (1959), who adopted the Ledoux cri-
terion (Ledoux 1947). In the absence of a turbulence model,
Langer et al. (1983, 1985, 1989), suggested a phenomeno-
logical model that we shall discuss below. MerryÐeld (1995)
found that none of his two-dimensional numerical simula-
tions exhibited any close resemblance to the models by Ste-
venson and/or the Spruit models and that the closest
similarity is with a Langer et al. model. Xiong (1985a,
1985b, 1986) and Grossman & Taam (1996) have carried
out a nonlinear study of semiconvection. However, no study
has included the e†ect of a mean Ñow (di†erential rotation)
on semiconvection.

Semiconvection is characterized by the following condi-
tions :

+[ +ad [ 0 , +k[ 0 , +
r
[ + , (177)

and thus

+
r
[ + [ +ad . (178)

When both the T and S Ðelds increase from the bottom
to the top of the ocean, the result is warm salty water over
cold fresh water. Since the T Ðeld is stable while the S Ðeld is
unstable (heavy at the top), the latter causes an instability
called salt Ðngers. An example is the Atlantic Ocean under-
neath the Mediterranean outÑow of very salty water. In
astrophysics, this instability occurs when a layer with a
higher k lies above a region of lower kÈfor example, when
the He Ñash does not occur at the center of a star. Salt
Ðngers were Ðrst suggested by Stothers & Simon (1969) and
later studied by Ulrich (1972) and by Kippenhahn et al.
(1980). The k Ðeld causes the instability, while plays+ [ +adthe role of a stabilizing gradient. The salt Ðngers phenome-
non is characterized by the following conditions :

+ad [ +[ 0 , +k\ 0 , + [ +
r
, (179)

and thus

+ad [ + [ +
r
. (180)

For both semiconvection and salt Ðngers, the stability
parameter

Rk\ +k
+[ +ad

[ 0 (181)

is positive. Finally, in the case of binary stars, the accreted
material has a higher k but a lower T than the material
underneath, (Proffitt 1989).

13. STABILITY CRITERIA

We begin by recalling that dynamical stability is govern-
ed by the frequency N (Kippenhahn &Brunt-Va� isa� la�
Weigert 1991) :

d2dz
dt2 \ [N2dz , (182)

where

N2 \ [ g
o

Lo
Lz

\ N
h
2[ N

c
2\ gH

p
~1[+k [ (+[ +ad)] .

(183)

A system is stable or unstable depending on whether
N2[ 0 or N2\ 0 :

Ledoux stable : +k [ +[ +ad , (184a)

Ledoux unstable : +[ +ad[ +k . (184b)

Since equations (184a) and (184b) apply to both semi-
convection and salt Ðngers, we have

Semiconvection :

+[ +ad[ 0 , +k [ 0 , N
h
2\ 0 , N

c
2\ 0 , Rk [ 0 ,

Ledoux stable : N2[ 0 , +k [ +[ +ad , Rk[ 1 ,

Ledoux unstable : N2\ 0 , +[ +ad [ +k , Rk\ 1 .

(185)

Salt Ðngers :

+ad[ +[ 0 , +k \ 0 , N
h
2[ 0 , N

c
2[ 0 , Rk [ 0 ,

Ledoux stable : N2[ 0 , +ad [ +[ o+k o , Rk \ 1 ,

Ledoux unstable : N2\ 0 , o+k o[ +ad [ + , Rk [ 1 .

(186)

As these relations show, nothing has yet been said about
turbulence, which has not been used in any of the previous
expressions that only establish the criteria for dynamical
stability/instability. The uncomfortable uncertainty still
surrounding the Ledoux versus the Schwarzschild criteria is
due to the lack of separation of the above relations that do
not involve turbulence and the ones that follow that do
involve turbulence.

We begin by using equations (13a) and (84) to rewrite
equation (137) as

DK
Dt

] D
f
(K) \ K

m
N

u
2 [ go~1o@w@@[ v , (187)

where

Fo4 o@w@@ (188)

is the ““ mass Ñux,ÏÏ and the time scale is related to theN
upresence of shear, which we have included for the sake of

generality. In analogy with equations (164b) and (164c), we
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have deÐned

N
u
24 2S

ij
S
ij

, (189)

where is the mean shear, equation (14a). In analogy withS
ijthe ““ momentum di†usivity ÏÏ is represented byK

h,c, K
m
.

Quantifying the strength of shear by the dimensionless
parameter ) (Hamilton, Lewis, & Ruddick 1989),

)\ K
m

N
u
2 v~1[ 1 , (190)

we have, in the stationary and local case,

o@w@@\ og~1)v . (191)

If we further write the mass Ñux is

o@w@@\ [Ko
Lo
Lz

, (192)

use of equation (183) gives the following expression for the
““ mass di†usivity ÏÏKo :

Ko \ )
v

N2 . (193)

An alternative expression for follows from equationsKo(84), (160a) and (160b), and (164b) and (164c), which yield

g
o

o@w@@\ K
h
N

h
2 [K

c
N

c
2 . (194)

Using equations (192) and (183), we obtain the expression
for in terms of andKo K

h
K

c
:

Ko\ N~2(K
h
N

h
2[ K

c
N

c
2) . (195)

Finally, use of equation (166) gives the Ðnal expression for
Ko :

Ko \ (K
h
[ K

c
Rk)(1[ Rk)~1 . (196)

Clearly, if one assumes it follows thatK
h
\ K

c
,

Ko \ K
c
\ K

h
. (197)

We shall distinguish two cases.

13.1. No Shear : )\ [1
In this case, equation (191) shows that we have a down-

ward mass Ñux

o@w@@\ 0 . (198)

13.1.1. Semiconvection, Stable Case : N2[ 0, Rk[ 1

Equations (193) and (196) imply that

Ko\ 0 , (199)

K
h

K
c
[ Rk4

+k
+[ +ad

[ 1 , (200)

The last two conditions in equation (200) can be written as a
unique relation :

K
h

K
c
(+[ +ad)[ +k [ +[ +ad . (201)

A region that is Ledoux stable (last inequality) but
Schwarzschild unstable, is known as+[ +ad[ 0,
““ vibrationally unstable ÏÏ (Kippenhahn & Weigert 1991, eq.
[6.20]). The requirement of dynamical stability sets the lower
limit for while the requirement of turbulent mixing sets the+k,upper limit of This is a natural result, since transgressing+k.the upper limit would mean that which acts like sink, is+k,too strong for turbulent mixing to survive. The Schwarz-

schild instability criterion corresponds to taking, in the Ðrst
inequality in equation (201), the turbulent k number as

pk \K
h

K
c
] O , (202)

which is not consistent with model results (Fig. 6) or with
available data. Finally, we notice that equation (201) implies
that

K
h
[ K

c
, (203)

which, as we show below, is predicted by the full model and
in agreement with the data.

13.1.2. Semiconvection, Unstable Case : N2\ 0, Rk\ 1

Equations (193) and (196) imply that

Ko[ 0 , (204a)

+[ +ad [
K

c
K

h
+k , (204b)

+[ +ad[ +k , (204c)

where the second inequality expresses Ledoux instability.
Once again, if one adopts equation (202), equation (204b)
becomes the Schwarzschild instability criterion, which is
di†erent from equation (204c). This may have been the
source of the problem in the choice of the two criteria.

13.1.3. Salt Fingers, Stable Case : N2[ 0, Rk\ 1

Equations (193) and (196) imply that

Ko\ 0 , (205a)

o+k o[
K

h
K

c
(+ad[ +) , (205b)

+ad [ +[ o+k o . (205c)

In this case we have

K
c
[ K

h
. (206)

13.1.4. Salt Fingers, Unstable Case : N2\ 0, Rk [ 1

Equations (193) and (196) imply that

Ko[ 0 , (207a)

o+k o[
K

h
K

c
(+ad[ +) , (207b)

o+k o[ +ad[ + . (207c)

13.2. Nonzero Shear, )[ 0
An analogous set of conditions can be worked in this

case. We only recall that equation (191) shows that we have
an upward mass Ñux

o@w@@[ 0 . (208)

14. THE CASE OF A PASSIVE SCALAR

Mixing (di†usion) in stellar interiors has been studied for
many years (Pinsonneault 1997), but the nonlinear, turbu-
lent nature of the problem makes it very difficult to study.
In the absence of turbulence, di†usion was studied by Aller
& Chapman (1960), Michaud (1970), Vauclair & Vauclair
(1982), and Bahcall & Pinsonneault (1992). Schatzman
(1969), (1996) and Schatzman & Baglin (1991) attempted to
include turbulence via an enhanced di†usion coefficient.
The e†ect of a mean shear was not included. Zahn (1974),
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Chaboyer & Zahn (1992), and Maeder (1997) used phenom-
enological expressions for shear-induced mixing, which are
discussed in Canuto (1998).

A nonzero in equation (84) implies that the c Ðelda
ca†ects the overall density Ðeld. On the other hand, a passive

scalar does not change the density Ðeld ; rather, it is carried
along by the preexisting turbulence, to which it does not
contribute. The case of a passive scalar is thus recovered by
taking As one can, however, observe from equationsa

c
\ 0.

(47) and (48), even with the c Ðeld is turbulent.a
c
\ 0,

15. THE PRINCIPLE OF WEAKENING OF THE SINK

To characterize the relative strength of two opposing gra-
dients, one acting like a source, the other like a sink, it is
useful to introduce a stability parameter. The most frequent
case is that of shear (source) in the presence of stable stratiÐ-
cation (LT /Lz[ 0) acting as a sink of turbulence. The stabil-
ity parameter is the Richardson number,

Ri\ ga LT /Lz
(LU/Lz)2 , (209)

where U is the mean Ñow. Turbulence can be sustained only
for values of Ri less than a critical value Ricr

Ri\ Ricr , (210)

above which it dies out (Canuto 1998). In stars there is the
additional consideration that the sink may be weakened by
nonturbulent processes such as radiative losses, which tend
to erode the temperature gradient. Since such losses can be
characterized by a Peclet number we expect(Peh\ wlsh~1),
equation (210) actually to be of the form

Peh(1] Peh)~1Ri\ Ricr , (211)

which implies that when radiative losses are important
the e†ective Ri is actually which, by virtue(Peh\ 1), Peh Ri,

of being smaller than Ri, more easily satisÐes equation (210),
thus allowing a wider margin of turbulence (Canuto 1998).

In the case of semiconvection, is stabilizing while+kis destabilizing, and the analog of equation (210) is+[ +adthen taken to be

Rk \ Rkcr , (212)

or, more explicitly,

Rkcr(+[ +ad)[ +k . (213)

The Ledoux instability criterion assumes that

Rkcr \ 1 , (214)

which, as we shall discuss below, is an over restrictive
assumption not supported by the available data, which
instead suggest In further analogy with equationRkcr[ 1.
(211), we expect that when the kinematic di†usivity of the c
Ðeld becomes large, there will be a weakening of the sink +kand thus a relation of the type is the Peclet number of(Pe

cthe c Ðeld)

Pe
c
(1] Pe

c
)~1Rk \ Rkcr , (215)

or, for small Pe
c

Rkcr(+[ +ad)[ Pe
c
+k . (216)

A thus facilitates the possibility of beingPe
c
\ 1 + [ +adable to overcome the k barrier. Whether the kinematic dif-

fusivity is sufficiently large to give rise to smalls
c

Pe
cdepends clearly on the problem at hand.

In the case of salt Ðngers, the source of instability is the k
gradient, while the T gradient acts like a sink. We can still
use equation (212), since it is a positive quantity in this case
also. In analogy with the above discussion,

Rkcr +k [ Peh(+ad[ +) , (217)

which shows again that radiative losses favor the changes
that will overcome the sink+k +ad[ +.

These results are physically intuitive, and it will be shown
below that the model of turbulence developed here satisÐes
the above results.

16. QUALITATIVE RESULTS

Before presenting the numerical solutions of the model,
we present some qualitative results. Using the deÐnitions of

equations (176) and (169), we derive the relationsK
h,c,

K
h

K
c
\ Rk[ 15

7
1

xA
c

. (218)

In semiconvection, equations (164b) and (163a) give x \ 0,
and since in the stable case we conclude that (see eq.Rk[ 1,
(203))

K
h
[ K

c
, (219)

which is in accordance with the measurements (Kelley
1984). In salt Ðngers, we use the equivalent expression

K
c

K
h
\ Rk~1

A
1 ] 15

7
1

xA
h

B
. (220)

Since x [ 0 and it follows that (see eq. [206])Rk \ 1,

K
c
[ K

h
, (221)

which is in agreement with the measurements (Hamilton et
al. 1989, Fig. 2). Furthermore, in semiconvection, the Ñux
ratio

R
F
\ a

c
'3

a
T

J
\ Rk

A
Rk[ 15

7
x~1A

c
~1
B~1

(222)

is predicted to be (x \ 0)

R
F
\ 1 , (223)

also in agreement with the data (Kelley 1990, Fig. 2). Simi-
larly, in salt Ðngers we derive that the Ñux ratio,

R
F
\ a

T
J

a
c
'3

\ K
h

K
c

Rk~1\
A
1 ] 15

7
x~1A

h
~1
B~1

, (224)

is predicted to be (x [ 0)

R
F
\ 1 , (225)

in accord with the measurements (Turner 1967, Fig. 4 ;
Schmitt 1979, Fig. 4 ; McDougall & Taylor 1984, Fig. 4 ;
Taylor & Buchens 1989, Fig. 6 ; Ozgokmen, Esenkov, &
Olson 1998, Fig. 13). Since is the ratio of the potentialR

Fenergy gained by the T Ðeld to the energy lost by the C Ðeld,
it must be less than unity, otherwise the system would be
gaining energy.

17. THE LIMIT+
k
] 0

We now show that the expression for for the case ofK
hsemiconvection in the limit reduces to the standard+k ] 0

expression for the convective Ñux (Canuto & Mazzitelli
1991). Equation (169) becomes so thato x oA

h
(x) \ constant,
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equation (176) yields

K
h
D (+[ +ad)1@2Ah

3@2D (+[ +ad)1@2n43@2 . (226)

In the Pe[ 0 limit, and thusn4 D constant K
h
D (+ [

which coincides with the standard model. In the+ad)1@2,opposite limit, Pe\ 1, and we have insteadn4D Pe,

K
h
D (+[ +ad)1@2Pe3@2 , (227)

which also coincides with previous results (Canuto 1996,
eqs. [32e]È[32g]). Furthermore, since

PeD K2v~1D (+[ +ad)1@2 o x o~1@2 D (+[ +ad)1@2
] A

h
1@2 D (+[ +ad)1@2n41@2 D (+[ +ad)1@2Pe1@2 , (228)

we have The Ðnal form of is thenPeD (+[ +ad). K
h

K
h
D (+[ +ad)2 , (229)

in agreement with the standard result for inefficient convec-
tion.

18. SEMICONVECTION : VERSUS RELATION+[ +ad +k
The Ðnal expressions for the di†usivities are given by

equations (176), (171), and (162a)È(162e). The functions A
and B in equation (171) may or may not depend on x itself.
This comes about because the dimensionless functions n
(eq. (163b)), given in Appendix B, depend on Pe, which is
deÐned by equation (B7) :

Peh,c \ 4n2
125

K2
v
A 1
sh

,
1
s
c

B
, (230)

where s and are the molecular di†usivities of the T and Cs
cÐelds, respectively. For the results presented below, we only

consider the case of large and thus we retain onlyPe
c

Pehfor the T Ðeld, which we shall call Pe for simplicity. Using
equation (175), we derive

Pe\ !U([x)~1@2 , x \ 0 , (231)

where the dimensionless function U and the dimensionless
constant !Ïs are deÐned by

U \
A+[ +ad
+
r
[ +ad

B1@2
,

!4
8n2
125

[g"4H
p
~1(+

r
[ +ad)s~2]1@2 . (232)

We note that

0 ¹ U ¹ 1 . (233)

Here ! represents the ““ efficiency of convection ÏÏ : the more
efficient the heat transport by convection, the smaller the
role of the radiative losses represented by s and thus the
larger the !. Thus, Pe depends on x, and if the nÏs depend
on Pe, they also depend on x. In the case of large convective
efficiencies, Pe? 1, the nÏs are constant.

Next, consider the temperature equation. In the station-
ary limit, and in the absence of a mean Ñow, equation (115)
becomes

+] H
p
(T K

r
)~1F

c
\ +

r
* , (234)

where and where we have neglected theFr \ K
r
H

p
~1T +,

kinematic term The modiÐed radiative gradientf (s
c
). +

r
*

includes the Ñux of turbulent kinetic energy

+
r
* \ +

r
[ H

p
(T K

r
)~1Fke , (235)

where For the convective Ñux,K
r
\ c

p
os. F

c
\

we have from equation (160a)c
p
ow@@T @@4 c

p
oJ,

J \ K
h
b . (236)

Equation (234) becomes

U2(1] K
h
s~1) \ 1 ] (+

r
* [ +

r
)(+

r
[ +ad)~1 , (237)

where represents the ratio of turbulent to radiativeK
h
s~1

heat di†usivity s. Using equation (176), we have

K
h

s
\ 175

3n2 !([x)~1@2A
h
(x)U . (238)

Equation (234) then becomes the equation for the variable
U :

U3 ] p(U2[ 1)\ q , (239)

where

q 4 p(+
r
* [ +

r
)(+

r
[ +ad)~1 , (240a)

p~1\ 175
3n2 !([x)~1@2A

h
(x) . (240b)

Since depends on U, we must writeRk

Rk\ rkU~2 , rk\ +k
+
r
[ +ad

, (241)

so that the variables and ! can be considered given. Inrkterms of the variable U, the turbulent di†usivities are given
by

K
h

s
\
A
1 ] q

p
B
U~2[ 1 , K

c
\ K

h
pk~1 , (242)

where is the turbulent Prandtl k numberpk

pk \ K
h

K
c
\ A

h
A

c
. (243)

The turbulent kinetic energy K is given by equation (175) as

K \
A125
4n2
B2

Pe2
As
"
B2

, (244)

while the rms vertical velocity is given by

(w2)1@2\
A14
15
B1@2A125

4n2
B
Pe
As
"
B

. (245)

The turbulent pressure is then easily evaluated.p
t
\ ow2

In conclusion, in semiconvection, the versus+[ +ad +krelation is obtained by solving equation (239). The function
x is a solution of equations (171)È(172b), in which mustRkbe taken as in equation (241) and depends on U itself. The
functions n are deÐned in equation (163b) and are given in
Appendix B as a function of the Peclet number, which in
turn is a function of both x and U via equation (231). The
result is

+[ +ad versus rk for di†erent ! . (246)

We have solved the above equations for q \ 0 and di†er-
ent values of the parameter !. In Figure 1 we show the
Peclet number versus for di†erent values of the convec-rktive efficiency !. In Figure 2 we present the turbulent kinetic
energy K (in units of s2"~2) versus and in Figure 3 werk,show the ratio versus In Figure 4 we exhibitK

h
/s rk. K

h
/s

versus ! for di†erent As expected on physical grounds,rk.the case in Figure 4 corresponds to the standardrk \ 0
convection model (e.g., Canuto & Mazzitelli 1991). The



FIG. 1.ÈSemiconvection. Peclet number vs. for two values of therk,convective efficiency parameter ! (eq. [232]).

FIG. 2.ÈSemiconvection. Turbulent kinetic energy K in units of s2"~2
vs. (eq. [244]).rk

FIG. 3.ÈSemiconvection. Turbulent heat di†usivity (eq. [242])K
h
/s

versus for the q \ 0 case.rk

FIG. 4.ÈSemiconvection. The ratio vs. ! for di†erent values ofK
h
/s rk.The case corresponds to the standard local model of convection.rk \ 0

FIG. 5.ÈSemiconvection. Turbulent concentration di†usivity vs.K
c
/s

(eq. [242]).rk

FIG. 6.ÈSemiconvection. The ratio vs. (eq. [243]). The behav-K
h
/K

c
rkior is in agreement with the data by Kelley (1984).
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FIG. 7.ÈSemiconvection. The Ñux ratio in eq. (222) vs. The behaviorrk.agrees with the data by Kelley (1990).

larger the that is, the larger the k barrier, the lower therk,heat di†usivity. The turbulent di†usivity of the c Ðeld K
c
/s

is shown versus in Figure 5, while the ratio given inrk pkequation (243) is shown in Figure 6 ; is near unity only forpkvalues of close to zero, while for large the ratio reaches+k rkan asymptotic value, in agreement with the data (Kelley
1984, Fig. 2). In Figure 7 we show the Ñux ratio in equation
(222) ; the behavior agrees with the measurements (Kelley
1990, Fig. 2).

The variable of most direct astrophysical interest is
versus In Figure 8 we present+[ +ad +k. (+[ +ad)versus for di†erent !. The whole region is(+

r
[ +ad)~1 rkSchwarzschild unstable. The Ledoux-unstable region is to

the left of the dashed line, while the Ledoux-stable region is
to the right of it. This latter region is often referred to as
““ vibrationally unstable ÏÏ (Kippenhahn & Weigert 1991,
chap. 6, eq. [6.20]), and several authors (e.g., Maeder &
Conti 1994) refer only to it as semiconvection. For large

FIG. 8.ÈSemiconvection. The variable versus (both nor-+[ +ad +kmalized to for di†erent values of !. The whole region is+
r
[ +ad)Schwarzschild unstable. The Ledoux-unstable region is to the left of the

dashed line, while the Ledoux-stable region is to the right of it. See eqs.
(184a) and (184b). The latter region is often referred to as ““ vibrationally
unstable.ÏÏ

FIG. 9.ÈSemiconvection. The function vs. for+[ +ad +k +
r
[ +ad \

0.05. The asterisks correspond to the values computed by Grossman &
Taam (1996).

!, the curves lie mostly outside the Ledoux-unstable region,
while the smaller ! is, the larger the portion of the Ledoux-
unstable region. In Figure 9, we plot versus for+[ +ad +k(Grossmann & Taam 1996). The asterisks+
r
[ +ad\ 0.05

correspond to their values.

19. SALT FINGERS : THE VERSUS RELATION+
ad

[ + o+
k
o

Since from equation (186) we have that +ad [ +[ 0,
equation (163a) implies that x [ 0,+k \ 0, Rk[ 0, N

h
2[ 0,

so that K [ 0 equation (175),

K \ 4gH
p
~1"2(+ad[ +)x~1 . (247)

At the same time the Peclet number becomes

Pe\ !Ux~1@2 , (248)

where in this case

U \
A+ad[ +
+ad [ +

r

B1@2
, !4

8n2
125

[g"4H
p
~1(+ad[ +

r
)s~2]1@2

(249)

The equation for the variable U (we consider only the case
q \ 0) is given by

U3 ] p(U2[ 1)\ 0 , (250)

p~1\ 175
3n2 !x~1@2A

h
(x) , (251)

and

K
h

s
\ 175

3n2 !x~1@2A
h
(x)U , K

c
\ K

h
pk~1 , (252)

where, as before,

pk \ K
h

K
c
\ A

h
A

c
. (253)

In this case, we have

Rk\ rkU~2 , rk\ o+k o

+ad [ +
r
. (254)

Finally, equations (244) and (245) are formally unchanged.
In Figure 10 we present the Peclet number Pe versus rkfor two values of !. We recall that the smaller the smallerrk,is the source, that is, the k gradient. In Figure 11 we present



FIG. 10.ÈSalt Ðngers. Peclet number Pe vs. for two values of ! ; seerkeqs. (247)È(254).

FIG. 11.ÈSalt Ðngers. Turbulent kinetic energy K in units of s2"~2 vs.
(eqs. [247]È[254]).rk

FIG. 12.ÈSalt Ðngers. Turbulent heat di†usivity vs. (eq. [252])K
c
/s rk

FIG. 13.ÈSalt Ðngers. Turbulent concentration di†usivity vs.K
c
/s rk(eq. [252]).

FIG. 14.ÈSalt Ðngers. The ratio vs. (eq. [253])K
c
/K

h
rk

FIG. 15.ÈSalt Ðngers. Flux ratio vs. (eq. [224]). The behavior is inR
F

rkagreement with the data.



330 CANUTO Vol. 524

FIG. 16a FIG. 16b

FIG. 16.ÈSalt Ðngers. (a) Temperature gradient vs. For a small (small and a large ! (low radiative losses), the negative convective Ñux+ad [ + rk. rk +k)is relatively important and + is far from When radiative losses are important, s is large, ! is low, convection is less efficient as a sink, and + is closer to+
r
. +

r
.

(b) vs. for+ad [ + o+k o +ad [ +
r
\ 0.05.

the turbulent kinetic energy K (in units of s2"~2), whereas
in Figure 12 we show the temperature turbulent di†usivity

versus In Figure 13 we exhibit the c Ðeld turbulentK
h
/s rk.di†usivity As expected, because the latter is theK

c
/s.

driving instability, we have as already discussed inK
c
[K

h
,

equation (206), a result that is in agreement with the mea-
sured data. The ratio is displayed in Figure 14.pk\ K

h
/K

cThe Ñux ratio deÐned in equation (224) is displayed inR
FFigure 15 ; as predicted by qualitative arguments, the ratio

is found to be less than unity, in agreement with the data. In
Figure 16a, we present the variable of direct astrophysical
interest, (in units of versus For a large+ad[ + +ad[ +

r
) rk.(large and a large ! (small radiative losses), therk +k)(negative) convective Ñux is relatively important and + is far

from When s is large (! small), convection is less impor-+
r
.

tant as a sink and + is closer to The numerical results+
r
.

reÑect these expectations. In Figure 16b we plot +ad [ +
versus for a typical value ofo+k o +ad[ +

r
\ 0.05.

20. OVERSHOOTING AND THE BARRIERk

It is frequently stated that semiconvection is ““ depressed ÏÏ
by penetrating convection, namely, overshooting. We
believe that the logic of this statement is upside down. Over-
shooting is a dynamical consequence of NewtonÏs law and,
as such, is unavoidable. On the other hand, semiconvection
is a e†ect whose existence is not required by any funda-+kmental laws of physics. It is the result of a peculiar state of
a†airs in a star. Thus, we suggest that the logically consis-
tent way to state the problem is as follows : given an over-
shooting distance, which cannot be zero, computed as if the
medium were homogeneous, what e†ect has on it a k gra-
dient? It is the overshooting distance that gets depressed by
semiconvection, not the other way around. In what follows,
we shall prove the following general result :

(OV)+k
(OV)k/const

\ 1 . (255)

The relevant dynamic equations are given by equations
(117)È(124). We shall neglect the large-scale Ñow U, not
because it is unimportant but because we Ðrst want to

compare the results with the case without concentration
gradients, namely, with equations (19a)È(19d) of Canuto &
Dubovikov (1998), as well as with eqs. (2a)È(2d) of Canuto
(1997b). To facilitate the comparison with previous work,
we adopt the same notation :

o~1oT @@24 h2 , o~1ou
z
@@2 4 w2 . (256)

Using equation (A12), we obtain

LK
Lt

] D
f
\ gaJ [ v] X1(c) , (257a)

L
Lt
A1
2

h2
B

] D
f
\ bJ [ qh~1 h2] 1

2
sh2,zz , (257b)

LJ
Lt

] D
f
\ bw2] gah2[ q

ph~1J

] 1
2

sJ,zz ] X3(c) , (257c)

L
Lt
A1
2

w2
B

] D
f
\ [qpv~1

A
w2[ 2

3
K
B

] 2
3

gaJ [ 1
3

v] X4(c) . (257d)

We have used the same symbol to represent all nonlocalD
fterms, but they are clearly di†erent from each other.

Explicit forms for the various can be found in CanutoD
f
Ïs

& Dubovikov (1998). The new terms X(c) are given by

X1(c) \ [ga
c
'

z
, (258a)

X3(c) \ [ga
c
T @@c@@] 12s

c
'

z,zz , (258b)

X4(c) \ 23X1(c) . (258c)

The equations for and follow from equations'3 T @@c@@
(122)È(124) :

D'
Dt

] D
f
\ [ '

z
C,z [ 2q

c
~1' , (259a)
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L'
z

Lt
] D

f
\ [w2C,z] g(aT @@c@@[ 2a

c
')

[ qpc~1 '
z
] 1

2
s
c
'

z,zz , (259b)

D
Dt

(T @@c@@)] D
f
\ b'

z
[ JC,z[ q

ch~1T @@c@@ , (259c)

For a qualitative treatment of the e†ect of the k barrier on
the extent of the OV, it is sufficient to consider the station-
ary, nondi†usive, local limit of equations (259a)È(259c),
which become algebraic with the solutions

'
z
\ [K

c
C,z , K

c
\ d

1 [ g
, d \ qpc(w2] agq

chJ) ,

(260a)
g \ gqpc(abq

ch ] q
c
a
c
C,z) , (260b)

T @@c@@\ [q
ch(J ] K

c
b)C,z (260c)

'\ 12qc K
c
(C,z)2 . (260d)

The functions X then become

X1(c)\ gK
c
a
c
C,z \ [gK

c
H

p
~1+k , (261a)

X3(c)\ gq
ch ac

(J ] K
c
b)C,z\ [q

ch gH
p
~1(J ] K

c
b)+k ,

(261b)
X4(c)\ 23gK

c
a
c
C,z \ [23gK

c
H

p
~1+k . (261c)

Substituting back into equations (257a)È(257d), we obtain

LK
Lt

] D
f
\ gaJ [ (v] gK

c
H

p
~1+k) , (262a)

L
Lt
A1
2
h2
B

] D
f
\ bJ [ qh~1 h2] 1

2
sh2,zz , (262b)
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] D
f
\ b(w2 [ q

ch gH
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~1K
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+k)] gah2
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ph~1] q

ch gH
p
~1+k)J ] 1
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sJ,zz , (262c)
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A
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K
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[ 1
3
v(1] 2K

c

] gH
p
~1v~1+k [ 2gaJv~1) . (262d)

The physical interpretation of these equations is clear : (1) In
the kinetic energy equation, increases the dissipation+krate v, increases the sink, and lowers K ; with less available
kinetic energy, one expects smaller overshooting. (2) In the
equation for the convective Ñux J, lowers the source of+kpotential energy by lowering the kinetic energy and12h2 w2,
it increases the damping of represented by the last but12w2,
one term (J \ 0). (3) In the equation for the energy w2, +kincreases the overall sink, since J \ 0 ; this leads to a lower

and to a smaller overshooting.w2
To give a more tangible feeling of what this entails, we

employ the OV Criterion expressed by equation (4a) of
(Canuto 1997b ; we assume adiabaticity, a simpliÐcation
that does not a†ect the present argument). We have

g
c
p

P
r1

r*
T ~2 o L

N
[ L

r
o dr

\ g
c
p

P
rp

r
T ~2 o L

N
[ L

r
o dr ] 4n

P
r1

r2
T ~1r2oveff dr , (263)

where the ““ e†ective dissipation ÏÏ is given byveff
veff \ v(1] gK

c
H

p
~1 v~1+k) 4 Qv . (264)

Here are the endpoints of the convective zone ;r1,2 r2[ r*
is the extent of the OV. Since the second term on the right-
hand side has been increased by the presence of in+k veff,the Ðrst term need not be large in order to compensate the
left-hand side. The OV extent may be small andr2 [ r*
equation (263) still be satisÐed. Thus, decreases the+kextent of the OV.

To derive our result, we employ a relation for the decay of
the velocity w in the OV, due to Unno, Kondo, & Xiong
(1985) :

w(r) \ w(r*)ex ln (P@P*) , P\ P
*

, (265)

where r is an arbitrary point in the OV region, r* \ r \ r2.The key parameter is x, which can only be provided by a
turbulence model. If we consider a polytrope of index m,
PD r~m, then

w(r) \ w(r*)
Ar*

r
Bxm

. (266)

Since by construction if we takeOV\ r2[ r* > r2, r \ r2,we have

w(r2) \ w(r*)
A
1 [ OV

r2

Bxm
B w(r*)

A
1 [ xm

OV
r2

B
. (267)

Since the extent of the OV is and sincew(r2) \ 0, r2/xm,
we Ðnally deriveH

p
\ r2m~1,

OV
H

p
\ 1

x
. (268)

From the work of Unno et al. (1985) one can deduce that
under the scaling v] Qv, the variable x scales as

x ] Qx , (269)

and thus in the presence of a the decay law (eq. [268])+k,changes to

OV
H

p
\ 1

x
1
Q

, (270)

and thus Ðnally,

OV(+k)
OV(+k\ 0)

\ 1
Q

\ 1 , (271)

which is the desired result : the k barrier increases the rate of
dissipation of available turbulent kinetic energy and leads to a
decrease of the extent of the OV. The role of the dissipation v
in determining the core OV has been recently analyzed by
Rosvick & VandenBerg (1998).

21. DIFFERENTIAL ROTATION : ITS EFFECT ON

SEMICONVECTION AND SALT FINGERS

In this section, we study the e†ect of di†erential rotation
on semiconvection and salt Ðngers. In what follows, we
present the analytic solution of the turbulence equations in
the presence of the three gradients (eq. [9]) which we shall
take to be of the form given below in equation (278). We
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leave K and v to be treated either locally or not. It is conve-
nient to introduce the following variables :

n
i
4 (q

c
q
ch q~2)gaq2b

i
, (272a)

c
i
4 gq

c
2 a

c
LC
Lx

i
, (272b)

t
i
4 b5K~1agqpv J

i
\ 25agv~1J

i
, (272c)

/
i
4 b5K~1a

c
gqpv'i

\ 25a
c
gv~1'

i
, (272d)

j
i
\ [(go)~1P,i , (272e)

where and are dimensionless and where we haven
i
, c

i
, t

i
, /

ichosen and (Appendix B). The turbulenceb5\ 12 qpv/q\ 25equations then take the following forms.

Reynolds stresses :

a
ij

4 K~1R
ij
[ 23d

ij
, (273a)

2a
ij

\ [ 815S3 ij[ (1[ p1)&3 ij[ (1[ p2)Z3 ij] (
ij
[ T

ij
,

(273b)

(
ij
4 j

i
t

j
] j

j
t

i
[ 23j

k
d
ij
t
k

, (273c)

T
ij
4 j

i
/

j
] j

j
/
i
[ 23jk

d
ij

/
k

. (273d)

Concentration Ñux :

(d
ik

] g
ik
)/

k
\ [[p4(aik] 23dik

)] p5 j
i
t

k
]c

k
, (274a)

g
ij
\ p3 U3

i,j [ j
i
p11(nj

] c
j
) . (274b)

Temperature Ñux :

(d
ik

] k
ik
)t

k
\ p6(aik

] 23d
ik

[ p7 j
i
/

k
)n

k
, (275a)

k
ij

\ p8U3
i,j [ j

i
(p9 n

j
] p10 c

j
) . (275b)

Here

U3
i,j4 qpv U

i,j , S3
i,j4 qpv S

ij
, &3

ij
\ qpv &

ij
,

Z3
ij
\ qpvZij

. (276)

The functions p are deÐned as follows :

p1\ 0.832 , p2\ 0.545 , p3\ 5
2

qpc
q

,

p4\ 1
5

qqpc q
c
~2 , p5\ qpc qch q

c
~2 , p6\ 1

5
q
q
c

q
ph

q
ch

,

p7\ 5
q
ch
q

, p8\ 5
2

q
ph
q

, p9\ qh
q
c

q
ph

q
ch

,

p10\ q
ch qph q

c
~2 , p11\ qpc

q
c

. (277)

There is a case in which we can give a complete algebraic
solution of the previous turbulence equations. It corre-
sponds to

L
Lx

i
(T , C)] d

i3
L
Lz

(T , C) , U \ (U(z), V (z), 0) . (278)

Shear and vorticity become

S3
ij
\

1

2

(

t

:

t

t

0 0 LU3 /Lz
0 0 LV3 /Lz

LU3 /Lz LV3 /Lz 0

)

t

;

t

t
,
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1
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(

t

:

t

t

0 0 LU3 /Lz
0 0 LV3 /Lz

[ LU3 /Lz [ LV3 /Lz 0

)

t

;

t

t
. (279)

Since we are dealing with only one component of the
vectors we simplify the notation and writen

i
, c

i
,

n34 n \ n0 gabq2 , n0\ q
c
q
ch q~2 , (280a)

c34 c\ c0 gq2a
c
LC
Lz

, c0\
Aq

c
q
B2

, (280b)

b3\ b . (280c)

The dimensionless shear is given by

y \ (qpvNu
)2 , N

u
2\

ALU
Lz
B2 ]

ALV
Lz
B2

. (281)

If we introduce the simplifying notation,

w4 o~1ou
z
@@ , h 4 T @@ , (282)

we obtain the following results :

Momentum Ñux :

uw\ [K
m

LU
Lz

, vw\ [K
m

LV
Lz

, K
m

\ 2
K2
v

S
m

.

(283)
Heat Ñux (in units of c

p
o) :

wh \ K
h
b , K

h
\ 2

K2
v

S
h
. (284)

Concentration Ñux :

wc@@\ [K
c
LC
Lz

, K
c
\ 2

K2
v

S
c

. (285)

As one can notice, the turbulent di†usivities are indeed of
the general form of equation (5) and satisfy equation (6). The
dimensionless structure functions are given by

S
m

\ 4
15

qpv
q

A
m

D~1 , S
h
\ 4

15
q
ph
q

A
h
D~1 ,

S
c
\ 4

15
qpc
q

A
c
D~1 , (286a)

A
m

\ 12 ] a1 n2] a2 nc] a3 c2] a4 n ] a5 c , (286b)

A
h
\ (1] b1 c] b2 n)(60] b3 y ] b4 c] b5 n) , (286c)

A
c
\ (1] b6 c] b7 n)(60] b3 y ] b4 c] b5 n) , (286d)

D\ 24 ] d1 yn2] d2 ync] d3 yc2] d4 n3] d5 n2c
] d6 nc2] d7 c3] d8 yn ] d9 yc] d10 n2

] d11 nc] d12 c2 ] d13 y ] d14 n ] d15 c . (286e)
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As one can see, the dimensionless functions A, as well as D,
depend on the gradients of the mean temperature, concen-
tration and mean velocity represented by n, c, and y. The
functions and (Appendix C) depend on the time-a

k
, b

k
, d

kscales etc., which in turn depend on the Pecletq
c
, qpc,numbers. The apparent algebraic complexity of the func-

tions is a small price to pay if one considers that theS
m,h,cabove equations are the solution of a fully turbulent

problem in the presence of three external Ðelds, T , U, and C.
It is in fact quite surprising that such a complex problem
could be expressed via a set of algebraic relations. Finally, it
is important to stress that these analytic solutions are
already telling us a great deal, since equations (286a) exhibit
the ratios

qpv
q

,
q
ph
q

,
qpc
q

(287)

as the dominant factors in the di†usivities. As shown in
Appendix B, these ratios entail the dependence on the
Peclet numbers and thus on the efficiency of convection.
For large Peclet numbers, and become constantai, bi, di(Appendix C), and we suggest beginning with these values.
The variables K and v are in principle solutions of equa-
tions (137) and (138).

21.1. L ocal Model
In the case of a local model, equation (137) gives

[R
ij

U
i,j ] gaj

i
J
i
[ ga

c
j
i
'

i
\ v . (288)

Using equations (283)È(285), we then obtain

(qN
u
)2S

m
[ (qN

h
)2S

h
] (qN

c
)2S

c
\ 2 . (289)

The frequencies and have been deÐned in equa-N
h
, N

c
, N

utions (164a), (164b), and (281). Using the deÐnition of y
given in equation (281), we then have

y(S
m

[ Ri S
h
] RiRk S

c
)\ 825 , (290)

where we have used equation (166) and deÐned the Richard-
son number Ri as follows :

Ri\ N
h
2

N
u
2 , (291)

so that it is positive for stable stratiÐcation. The solution of
the algebraic equation (290) yields the function y, or, equiv-
alently, the timescale q\ 2Kv~1, as a function of the two
stability parameters :

y \ y(Ri, Rk) . (292)

We recall that in equations (286b)È(286e) we must substitute

n \ [254 n0 y Ri , (293)

c\ 254 c0 RiRk y . (294)

Once the function y(Ri, is obtained, one must solveRk)the Ñux conservation law. In the stationary case, equation
(115) becomes

F
i
c ] F

i
r] F

i
ke ] oU

j
[(c

p
T ] K ] K

u
] G)d

ij
] R

ij
]

\ constant . (295)

With the structure given in equation (278) of the U Ðeld, we
obtain (i \ 3)

Fc ] Fr] Fke [ K
m

o
L
Lz

K
u
\ constant (296)

where is the kinetic energy of the mean Ðeld, equationK
u(27). The analog of equation (234) is then

+] K
h
s~1(+[ +ad) [ H

p
(c

p
T s)~1K

m
L
Lz

K
u
\ +

r
* ,

(297)

where we have exhibited the fact that the heat and momen-
tum di†usivities are measured in units of the radiative con-
ductivity the length z in units of and thes(\K

r
/c

p
o), H

p
,

kinetic energy in units of Contrary to the case weK
u

c
p
T .

studied earlier, without a speciÐc expression for weK
u
,

cannot solve equation (297). We therefore exhibit the turbu-
lent di†usivities and leaving the solution ofK

m
, K

h
, K

cequation (297) to the speciÐc stellar case one might con-
sider. The di†usivities are obtained by combiningK

m,h,cequations (283)È(287) with the result

K
m

\ C1 y~1@2A
m

D~1 , (298a)

K
h
\ C2 y~1@2A

h
D~1 , (298b)

K
c
\ C3 y~1@2A

c
D~1 , (298c)

where

C1\ 16
15

C0
Aqpv

q
B2

, (299a)

C2\ 16
15

C0
Aqpv

q
BAq

ph
q
B

, (299b)

C3\ 16
15

C0
Aqpv

q
BAqpc

q
B

, (299c)

C0\ N
u
"2 . (299d)

The Peclet number and thus s, characterizing radiative
losses, enter through the timescales and as well as inq

ph qh,the functions and in equations (286b)È(286e).a
k
, b

k
, d

k

22. NUMERICAL RESULTS

Here we consider only the case of Pe? 1 corresponding
to negligible radiative losses. Thus, s drops out of the
problem as in the case of efficient convection, since for large
Pe, the functions and in equations (286b)È(286e)a

k
, b

k
, d

kbecome Pe-independent and are given by equations (B9)È
(B16). Substituting equations (286b)È(286e), (293), and (294)
into equation (290), one obtains the variable y, equation
(292), which is then used in equations (298a)È(298c) to
compute the turbulent di†usivities K. In Figures 17È19 we
plot the versus Ri for di†erent The right-handK

m,h,c Rk.panel corresponds to salt Ðngers, and the left-hand panel
corresponds to semiconvection. Consider Ðrst the case of
salt Ðngers. At a Ðxed Ri, the di†usivities increase as Rkincreases, which is physically understandable, since the
instability is generated by salt, and thus the larger the
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FIG. 17.ÈThe e†ect of shear. Momentum turbulent di†usivity (inK
munits of vs. Ri for di†erent See eqs. (298a). The thick line corre-N

u
"2) Rk.sponds to the case of a passive scalar (a

c
\ 0).

FIG. 18.ÈThe e†ect of shear. Same as Figure 17, but for the heat turbu-
lent di†usivity vs. Ri for di†erent See eq. (298b). Same units as inK

h
Rk.Figure 17.

FIG. 19.ÈThe e†ect of shear. Same as Figure 17, but for the concentra-
tion turbulent di†usivity vs. Ri for di†erent See eqs. (298c). SameK

c
Rk.units as in Figure 17.

source, the larger the di†usivity. Next, consider the depen-
dence on Ri. First, we must note the change of curvature in
going from a passive (thick curve) to an active scalar. In the
Ðrst case, the decrease with Ri, the stronger the levelK

m,h,cof stratiÐcation, the smaller the level of turbulence (Canuto
1998). The opposite occurs when We notice that theRk[ 0.
smaller the shear (large Ri), the larger are the whichK

m,h,c,at Ðrst sight may seem paradoxical : since both and shear+kcontribute to the instability, one might expect that their
e†ects add up. What we Ðnd is that the larger the shear, the
smaller the di†usivity, which implies that shear and salt
Ðngers work in opposite directions. Laboratory and analyti-
cal work (Linden 1971, 1974) have shown that in a steady
shear the only instability that can grow is in the form of
sheets aligned with the shear. More speciÐcally, Kunze
(1990, especially Fig. 15) has also shown that Ðngers are
tilted so rapidly that they are damped before they produce
signiÐcant Ñuxes. The two lower curves correspond to the
stable case, while the upper three curves correspond to
the unstable case (in the Ledoux sense) ; see equations
(184a)È(186).

Consider now semiconvection. At a given Ri, the di†usi-
vities decrease as increases, the opposite of the saltRkÐngers case. This is in accordance with the fact that in this
case acts as a sink of turbulent mixing (which is caused+kby an unstable temperature gradient), and thus the stronger
the sink, the lower the level of turbulence, a circumstance
that is reÑected in the decrease of the di†usivities. As for the
e†ect of shear, we notice that here, too, the smaller the shear
(large negative Ri), the larger the di†usivities, which implies
that shear prevents the mixing caused by the temperature
instability. However, this is not true in general : the curves
Ðrst decrease with increasing negative Ri, which indicates
that for moderate negative Ri shear helps mixing, as one
would expect, but the trend does not continue, since the
curves change curvature. However, there is a saturation
phenomenon, which does not occur in the salt Ðnger case.
At large (large sink), the help in mixing from shear satu-Rkrates. Finally, the lowest three curves correspond to a stable
situation, while the second and third correspond to an
unstable situation (in the Ledoux sense) ; see equations (185)
and (186). In Figures 20È22 we plot the ratios K

m
/K

h
,

and which show quite clearly the validity ofK
m
/K

c
, K

h
/K

c
,

FIG. 20.ÈThe e†ect of shear. The ratio vs. Ri for di†erentK
m
/K

h
Rk(see text).
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FIG. 21.ÈThe e†ect of shear. The ratio vs. Ri for di†erentK
m
/K

c
Rk(see text).

equation (6), that is, the di†usivities are in fact di†erent
among themselves.

23. PREVIOUS MODELS

To obtain the turbulent di†usivities K, all previous
models had to rely on some heuristic arguments, though for
di†erent reasons and in di†erent degrees. The models of
Xiong (1985a, 1985b, 1986) and Grossman & Taam (1996)
have already been discussed in section ° 8, and we shall
therefore comment only on the recent work of Umezu
(1998). We shall then discuss the work of Langer et al. (1983,
1985, 1989), Woosley et al. (1998), and Salasnich et al.
(1998). These models were extensively used to study massive
stars and the problem of the red/blue SN 1987A progenitor.

Umezu (1998) employed the results of Kato (1966), as well
as those of a mixing-length model developed earlier by
Nakakita & Umezu (1994). The results are presented in dual
form, since the expression for the convective Ñux depends
on a parameter B. In the model with B\ 0, is positive,F

cwhile in the other case is negative. We believe that onlyF
cB\ 0 is acceptable. We give three reasons for our conclu-

sion. First, in semiconvection the T gradient is unstable and
this induces a necessarily positive convective Ñux. The pres-
ence of a acts like a sink and lowers as is indeed+k F

c
,

shown on Figure 4, but remains positive. A negativeF
cconvective Ñux, in addition to a negative k Ñux, would mean

that both T and the k Ðelds act like sinks, but without a
source turbulence cannot exist. The second argument is a
direct consequence of the assumption of locality that under-
lies UmezuÏs model and mixing-length type models in
general. Consider the turbulent kinetic energy equation,

LK
Lt

] D
f
(K)\ P[ v , (300)

where represents the nonlocal process of di†usion ofD
f
(K)

K, P is the total production of K, and v is its rate of dissi-
pation. P is given by

P\ (ga/c
p
o)F

c
[ gK

c
H

p
~1+k . (301)

A local model is deÐned as one in which there is no di†usion

FIG. 22.ÈThe e†ect of shear. The ratio vs. Ri for di†erent (seeK
h
/K

c
Rktext).

(in addition to stationarity), and thus the local version of
equation (300) is

P\ v , (302)

To balance v[ 0, P must be positive, which means that
A negative convective Ñux is inconsistent with theF

c
[ 0.

underlying assumption of locality. The third argument is
based on the fact that one can identify the form of the
convective Ñux from the Ñux conservation law. The latter is
the result of taking the stationary limit of the dynamic
equation for the mean temperature. The basic equation for
T is given by equation (57b), and the only e†ect of a c Ðeld
(or k Ðeld) is in the last two terms, which are proportional to
kinematic di†usivities that are assumed small in a turbulent
regime. Thus, no e†ect appears, and a Ñux conservation+klaw discussed by Umezu (1998, his equation [14]),

+] Pe(+[ +ad) ] BPe+k\ +
r
, (303)

can only be consistent with the proceeding arguments if
B\ 0. This in turn means that the second term is the
convective Ñux, which is by necessity positive, since
+[ +ad[ 0.

Umezu (1998) also attempted to reproduce the low di†u-
sivities required by Langer and collaborators and Deng et
al. (1996a), 1996b. He concludes that this is an indication
that the mixing length must be very small. As Figures 23
and 24 show, even a large convective efficiency, !D "2, is
compatible with a small provided In manyasc Rk D 10.
other respects, and for B\ 0, the general trend of UmezuÏs
results is in essential agreement with ours, even though a
one-to-one comparison is not possible because his value

is larger than the one we have considered in thisrk \ 100
paper (though easily included). In conclusion, the short-
coming discussed in ° 8 concerning the need to rely on some
heuristic arguments to determine several timescales applies
here as well.

Next, we consider the work of Langer et al. (1983, 1985,
1989. They adopt the viewpoint than when is muchK

c
/s

larger than unity, the di†usion timescale is short enough to
produce rapid mixing, thus allowing them to treat it as
homogeneous convection. Thus, they only treat the case of
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FIG. 23.È(a) Semiconvection efficiency parameter vs. as deÐned by Langer et al. (1983, 1985, 1989) computed from the present model (see text).asc Rk(b) Same as (a), but for a di†erent range of values.Rk

slow mixing, and their model for is given by equation (1)K
cfor the Ledoux stable region. Equating our expression for

given by equation (242) and Figure 5 to the right-handK
c
/s

side of equation (1) gives the parameter which we plot inasc,Figure 23. Several considerations are in order. First, isascnot constant with respect to either or !. Second, it has aRkmaximum where and the values in Figure 23 rep-asc[ 1
resent the beginning and end portions of the versusasc Rkcurve. Third, these are the only regions in which we Ðnd
values of which are of the same order as those used byascLanger et al. (1983) and Woosley et al. (1998). Fourth, !
does not appear in Langer et al.Ïs formulation, since it is
assumed to be very large. On the other hand, Salasnich et
al. (1998) have taken a simpler approach and written

They Ðnd that In Figure 24, weK
c
/s \ a2~1. a2\ 50È100.

reproduce an expanded version of Figure 5 in order to
exhibit the small regime. As in the previous case,K

c
/s

values of the order of those required by Salasnich et al.
(1998) can be reproduced by the present theory provided
that One may also notice that n [ 1, asrk [ 2È3. K

c
D rk~n,

assumed by Eggleton (1971, 1972).
In conclusion, at Ðrst sight the models and param-

eterizations used thus far do not appear inconsistent with
the theoretical predictions, but a complete consistency
check is still missing, since the values of and ! mustRk, rk,also match. It is also clear that the present model shows
that the di†usivities K exhibit a texture, structure, and com-
plexity that we formally represent as

K \ K(Rk, Ri, !) (303)

that previous models could not account for, especially the
e†ect of di†erential rotation.

24. CONCLUSIONS

We have presented a formalism to treat turbulent di†u-
sion in the presence of three nonzero gradients, +T , +U,
and +C. We have derived the nonlocal dynamic equations
that govern the turbulence variables. We have then solved
the local problem analytically and given the explicit expres-
sions for the turbulent di†usivities. The whole turbulence
problem is reduced to the solution of an algebraic equation.

We have applied the formalism to study semiconvection
and salt Ðngers. We have also solved the Ñux conservation
equation and exhibited the behavior of the temperature gra-
dient + versus +k.We have analyzed the Schwarzschild and Ledoux criteria
and suggested an alternative criterion which is derived from
the turbulence model. We have shown that the extent of
overshooting is lowered by the presence of semiconvection,
a result of general validity. Finally, we have encountered a
new phenomenon: shear (di†erential rotation) and mixing
caused by the gradient do not reinforce each other, as+kone might expect ; rather, shear tends to weaken the +kmixing.

A comparison is made with some previous formulations
of semiconvection di†usivities calibrated to the H-R dia-
grams of massive stars and to the phenomenon of SN
1987A. We show that, while not inconsistent with the turbu-
lence model presented here, these models leave out several
important features and are probably inadequate to include
the nontrivial e†ect of shear. The formalism also yields the
di†usivity corresponding to the case of a passive scalar.
Perhaps the simplest and most immediate result is that

FIG. 24.ÈExpanded version of Figure 5 (see text)
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momentum, heat, and concentration di†usivities are dis-
tinct quantities that cannot be assumed to be equal.

We Ðnally stress that we have avoided the empiricism of
all previous formulations in determining the turbulence
timescales through the use of the RGN techniques discussed
in ° 8. The hope is that this formalism will now be tested on
a speciÐc case of stellar structure and evolution.

I would like to thank R. Stothers, N. Langer, and C.
Chiosi for discussions concerning semiconvection and salt
Ðngers, and Guang Yu for solving the equations numeri-
cally. I also want to thank W. MerryÐeld for useful corre-
spondence on his work and S. Shore for advice on how to
improve the paper.

APPENDIX A

REYNOLDS STRESS EQUATIONS

We introduce the traceless tensor

b
ij
\ R

ij
[ 13dij

R
kk

\ R
ij
[ 23dij

K , (A1)

where K satisÐes equation (137). Equation (117) then becomes
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where the (traceless) tensors R and Z representing shear and vorticity are deÐned as
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where and are shear and vorticity :S
ij

V
ij

S
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j,i) , (A5)
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The tensor is given byB
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We recall that

j
i
\ [(go)~1 LP
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i
. (A10)

Finally, we have to treat the pressure-velocity tensor. Following the procedure described in Canuto (1994), we take

o~1%
ij
\ 2qpv~1b

ij
[ 45KS

ij
[ p1&

ij
[ p2Z

ij
] (1[ b5)Bij

, (A11)

where the numerical constants and are given in the text. The timescale is discussed in Appendix B. Finally, equationp1,2 b5 q
pv(A2) becomes
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APPENDIX B

THE TURBULENT TIMESCALES

The versus q relation is (Canuto & Dubovikov 1998) :(q
pv

, q
ph, qh)

q\ 2Kv~1, q
pv

\ 25q . (B1)

For the T Ðeld we have

q
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For the C Ðeld we have
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7n2 Pe
c
p
tc
~1
D~1

. (B5)

For the T -C correlation, we have

q
ch
q

\ 4
7n2 Peh

A
1 ] Peh

Pe
c

B~1C
1 ] 15

7n2 Peh p
th~1
A
1 ] p

th
p
tc

BA
1 ] Peh

Pe
c

B~1D~1
. (B6)

The Peclet numbers are deÐned asPeh,c

Peh,c \ 4n2
125

K2
v
A 1
sh

,
1
s
c

B
. (B7)

The turbulent Prandtl numbers are themselves functions of the corresponding Peclet numbers and satisfy the generalp
t,h, ptcequation. Calling we havep

t
~14 &,

c2&\ 1 ] 2
5

n2Pe~1(c2[ p)
CA

1 ] 5
2n2 Pe

c1&] 1
c1] p

B~![ 1
D

, (B8)

with c\ 0.3 and The Prandtl number p \ l/s is usually O(10~8) and thus2c1\ (c2] 4c)1@2 [ c, c2\ c1] c, !\ c1/c2.negligible.
The Peclet number can safely be taken much larger than unity, in which case both equation (B4) and equation (B5)Pe

cbecome constant. When also we havePeh ? 1,

p
t
\ 0.72 , (B9)

and thus

q
ph
q

\ qpc
q

\ 1
5

(1] p
t
~1)~1 ,

qh
q

\ q
c
q

\ p
t
,

q
ch
q

\ 2
15

p
t
, (B10)

or

q
ph
q

\ qpc
q

\ 0.0837 ,
qh
q

\ q
c
q

\ 0.72 ,
q
ch
q

\ 0.096 . (B11)

These values in turn imply that equations (277) become

p1\ 0.832 , p2\ 0.545 , p3\ 0.2093 , p4\ 0.0323 , p5\ 0.0155 ,

p6\ 0.2422 , p7\ 0.4799 , p8 \ 0.2093 , p9\ 0.8721 , p10 \ 0.0155 ,

p11 \ 0.1163 , p1m \ 0.168 , p2m \ 0.455 . (B12)

Thus

a1\ 1.0494 , a2\ 0.9239 , a3\ 0.0163 , a4\ [10.4205 , a5\ [1.3656 , (B13)

b1\ [0.1008 , b2\ [0.1163 , b3\ 0.5702 , b4\ [0.9689 , b5\ [7.2674 , b6\ [0.0155 , b7\ [0.7558

(B14)
and

d1\ 0.1111 , d2\ 0.1042 , d3 \ 0.0017 , d4\ [0.3494 , d5\ [0.4353 , d6\ [0.0572 ,

d7\ [0.0007 , d8 \ [1.0938 , d9\ [0.1435 , d10\ 6.2271 , d11 \ 4.0950 , d12\ 0.1034 ,

d13 \ 1.1857 , d14 \ [30.5038 , d15\ [4.0196 . (B15)

The quantities and entering equations (280a) and (280b) as well as equations (293) and (294) are thenn0 c0
n0\ 0.0691 , c0\ 0.5184 . (B16)
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APPENDIX C

THE COEFFICIENTS IN EQUATIONS (286)

The functions a, b, c, and d entering equations (286b)È(286e) are given by

a1\ p11[12p9] 8p6 [ 30p6 p8[ 5p6(p1m ] 3p2m)] ,

a2\ [5(p4 p9] p6 p11 [ 2p4 p6 p7)(p1m ] 3p2m)

] 8(p4 p9] 2p6 p11[ 2p5 p6) ] 12(p11 p9] p10 p11 [ p5 p6 p7)
[ 30(p3 p4 p9] p6 p8 p11[ p5 p6 p8[ p3 p5 p6) ,

a3\ p10[8p4] 12p11[ 30p3 p4 [ 5p4(p1m ] 3p2m)] ,

a4\ [p6(8[ 30p8[ 5p1m [ 15p2m) [ 12(p9] p11) ,

a5\ [p4(8[ 30p3[ 5p1m [ 15p2m) [ 12(p10] p11) , (C1)

b1\ p4 p7[ p11 , b2\ [p11 , b3\ 15p2m2 ] 2p1m [ 5p1m2 [ 6p2m ,

b4\ [30p4 , b5\ [30p6 , b6\ [p10 , b7\ p6 p7[ p9 , (C2)

d1\ p11[p2m2 (p6] 6p9) ] 2(p1m [ 3p2m)p6 p8 [ p1m2 (p6] 2p9)] ,

d2\ (p1m2 [ p2m2 )(2p4 p7 p6[ p6 p11[ p4 p9)
] 2(p1m2 [ 3p2m2 )(p4 p6 p72[ p11 p9[ p10 p11)
] 2(p1m [ 3p2m)(p3 p4 p9] p6 p8 p11 [ p4 p6 p7 p8[ p3 p4 p6 p7) ,

d3\ p10[p2m2 (p4] 6p11) ] 2(p1m [ 3p2m)p3 p4 [ p1m2 (p4] 2p11)] ,

d4\ [4p6 p11(2p6] 3p9) ,

d5\ 4p4 p7 p62(4] 3p7)[ 4p4 p9(3p11] 2p6) [ 4p6 p11(3p9] 3p10 ] 2p4] 2p6) ,

d6\ 4p42 p6 p7(4] 3p7)[ 4p4 p9(2p4] 3p11) [ 8p4 p6(p10 ] p11) [ 12p10 p11(p4] p6) ,

d7\ [4p4 p10(2p4] 3p11) ,

d8\ p1m2 (2p9] 2p11] p6) [ p2m2 (6p9] 6p11] p6) [ 2p6 p8(p1m [ 3p2m) ,

d9 \ p1m2 (2p11] 2p10] p4) [ p2m2 (6p11 ] 6p10] p4) [ 2p3 p4(p1m [ 3p2m) ,

d10 \ 8p62] 4p6(3p9] 7p11) ] 24p9 p11 ,

d11 \ [8p4 p6 p7(4] 3p7)] 4p4(4p6] 7p9] 3p11) ] 4p6(3p10 ] 7p11) ] 24p11(p9] p10) ,

d12 \ 4p10(7p4] 6p11) ] 4p4(2p4] 3p11) , d13 \ 6p2m2 [ 2p1m2 ,

d14\ [24p9[ 24p11[ 28p6 , d15\ [24p11[ 24p10[ 28p4 . (C3)
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