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Abstract—Since large, homogeneous dielectric particles have positive asymmetry parameters
even when they are densely packed, it has been hypothesized that negative asymmetry
parameters retrieved with Hapke’s phenomenological model of bidirectional reflectance result
from a complicated internal structure of planetary regolith particles. This paper tests that
hypothesis by theoretically computing asymmetry parameters for isolated and densely packed
composite spherical particles with size typical of regolith grains. It is assumed that the
wavelength of the scattered light is much smaller than the particle size, and that particles are
filled with large numbers of small inclusions. The computations show that it is essentially
impossible to make asymmetry parameters of planetary regolith particles even slightly negative
by filling the particles with large numbers of internal inclusions in the form of voids and/or
grains with a refractive index substantially different from that of the host medium. Asymmetry
parameters are positive even for densely packed composite particles with no internal
absorption and extreme values of the internal scattering coefficient. Furthermore, they are
sharply increased by even modest absorption inside composite particles, by reducing the
refractive index contrast between the inclusions and the host particles, and/or by decreasing
the packing density. Thus, the negative asymmetry parameters retrieved with Hapke’s model
need another explanation rather than assuming that they are real and are the result of a
complicated internal structure of regolith particles. Besides the opposition-effect term, Hapke’s
model is nothing more than an approximate solution of the radiative transfer equation which
inherently violates the energy conservation law. Therefore, the negative asymmetry parameters
are likely to be numerical artefacts resulting from the approximations made in the model. ©
1997 Elsevier Science Ltd

1. INTRODUCTION

By definition, a particle is called backscattering if the asymmetry parameter of the particle phase
function is negative. Analogously, the particle is called forward-scattering if its asymmetry
parameter is positive and is a neutral scatterer if the asymmetry parameter is equal to zero. The
asymmetry parameter g is defined as'

g= %f d(cos ®) cos Op(O), )

where @ is the scattering angle (i.e., the angle between the incident and the scattered beams) and
p(O®) is the single-scattering phase function normalized according to the condition

%f d(cos O)p(®) =1. 2)

Theoretically, g can vary from — 1 to + 1. The extreme values correspond to backward and
forward delta-function-like phase functions, respectively. The asymmetry parameter is an
important scattering characteristic because, along with the single-scattering albedo, it controls the

767



768 M. 1. Mishchenko and A. Macke

radiative budget of an atmosphere or a scattering/absorbing layer and causes the presence or the
absence of the atmospheric and solid-state greenhouse effects.””’

In a recent paper (hereafter called Paper 1), Mishchenko® examined the effect of packing density
on the asymmetry parameter of the single-scattering phase function for simple homogeneous
particles.t In that analysis, he has used a theory which is based on solving Maxwell’s equations
to compute light scattering and on statistical mechanics to compute the statistics of mutual
positions of densely packed particles.*!' Theoretical computations have shown that, even though
the effect of packing density reduces the magnitude of the forward-scattering diffraction component
of the phase function, it does not suppress it entirely (contrary to what is claimed in Ref. 12),
especially for particles larger than a wavelength, and in most cases results in a minor reduction
of the asymmetry parameter of the phase function. Most importantly, it has been demonstrated
that the effect of packing density cannot make the asymmetry parameter negative if the ratio of
the particle radius to the wavelength of light is larger than about 0.4. It should be emphasized that
the theory used has a solid physical background and is in good quantitative agreement with results
of controlled laboratory experiments.'*'* Why controlled laboratory experiments, in contrast to
what can be called laboratory observations, are so important in verifying the physical relevance
of light scattering theories is discussed in the last section of Paper 1 (see also Refs. 17-19).

What is usually called the Hapke model of bidirectional reflectance'*? is an approximate solution
of the radiative transfer equation which is claimed to describe the scattering of light by particulate
media with accuracy good enough for practical applications (whether or not the latter is true will
be discussed in Sec. 4). It is well known that the model, when applied to the interpretation of
bidirectional reflectance measurements of laboratory samples and terrestrial and planetary surfaces,
systematically produces negative asymmetry parameters of the single-scattering phase function
(e.g., Refs. 21-23 and references therein), thus contradicting the results of dense-medium
asymmetry parameter calculations of Paper 1. Accurate radiative transfer computations reported
in Paper 1 have demonstrated that those negative asymmetry parameters are unlikely to be real
scattering characteristics of natural particles and are more probably a theoretical artefact resulting
from an improper treatment of single- and multiple-scattering processes. In a recent publication®
(hereafter called Paper 2), Hapke continues to claim that particles covering planetary surfaces are
backscattering and suggests that they are backscattering because (1) their phase functions
completely lack the diffraction component and (2) they contain cracks and voids and occur in the
form of fragments of rocks and minerals welded together in optical contact. Therefore, the particles
can be considered composite scatterers filled with multiple internal inclusions and, as a result, have
negative asymmetry parameters.

Unfortunately, the conclusions of Paper 2 are based on qualitative speculations and, in part, on
indirect laboratory observations rather than on accurate theoretical computations and true
controlled laboratory experiments. Therefore, it is the primary goal of this paper to address the
problem of the sign of the asymmetry parameter for composite particles with multiple internal
inclusions by using state-of-the-art theoretical techniques. In Sec. 2, we use accurate Monte Carlo
solutions of the radiative transfer equation subject to the Fresnel boundary condition to compute
asymmetry parameters for large isolated particles with increasing numbers of internal inclusions.
Both non-absorbing and absorbing cases are examined. In Sec. 3 we couple these isolated-particle
calculations with the static structure factor theory®!! to compute asymmetry parameters for densely
packed large particles with multiple internal inclusions. In Sec. 4, the implications of our results
to remote sensing of planetary surfaces are discussed and the reliability and usefulness of the Hapke
model are considered. Section 5 summarizes the main conclusions of this paper.

2. ISOLATED LARGE PARTICLES WITH INTERNAL INCLUSIONS

The asymmetry parameter can be quite easily computed for isolated homogeneous particles by
using Mie theory for spheres,' the T-matrix approach® % for rotationally symmetric non-spherical

tWe would like to draw the reader’s attention to two typographical errors in Paper 1. Specifically, the first word of the
fifth line of the second paragraph on p. 103 should read “larger”, and the second line below Fig. 14 on p. 108 should
read “...transfer equation had an asymmetry parameter g = + 0.82, the retrieved model asymmetry...” Also, the second
sentence on p. 97 should read as follows: “In general, this quantity depends on scattering angle and particle size
distribution and shape.”
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Plate 1. Ray-tracing phase function versus scattering angle for a 50 pm diameter composite particie with
my = 1.55, type 1 inclusions, and scattering optical thickness varying from 0 to 25. The internal
single-scattering albedo, wr, is equal to 1 (no absorption). The solid black curve shows the smoothed
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Plate 2. As in Plate 1, but for type 2 inclusions.
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Plate 3. Ray-tracing phase function versus scattering angle for a 50 um diameter composite particle with
ny = 1.55, type | inclusions, scattering optical thickness © = 25, and internal single-scattering albedo wyr
varying from 1 to 0.6.
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Plate 4. As in Plate 3, but for type 2 inclusions.
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Plate 5. As in Plate 3, but for type 3 inclusions.
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Plate 6. As in Plate 1, but for my = 1.31 and type 4 inclusions.
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particles with equivalent-sphere size parameters less than about 130, and the geometric optics
approximation”? for non-spherical particles with larger size parameters.?>* (The size parameter
x of a spherical particle is defined as the ratio of the particle circumference to the wavelength of
the incident light.) The calculation of the asymmetry parameter for an isolated particie with
multiple internal inclusions is a more complicated problem. For composite particles with sizes
smaller than or comparable to the wavelength, one can use the exact superposition T-matrix
method®* or the discrete dipole approximation (DDA).* However, regolith particles often
have sizes much larger than the wavelength of the visible light, in which case the superposition
T-matrix and DDA computations become excessively time consuming. Fortunately, in this case
the use of the geometric optics approximation can be expected to provide a quite sufficient
accuracy.’”®

In our calculations, we assume that the composite particle is spherical with a diameter of
D = 50 um, thus corresponding to the average size of lunar soil grains, “ and the wavelength of
the incident light is 4 = 0.55 pm. The medium inside the particle is characterized by the host
refractive index and by the refractive index, size distribution, and average number density of the
inclusions. The host medium itself is assumed to be non-absorbing, whereas the inclusions can
be either purely absorbing or purely scattering. The purely absorbing inclusions are
submicrometre-sized grains of metallic iron, whereas the purely scattering inclusions are either
voids (vacuum bubbles) or particles with a refractive index different from that of the host medium.
We assume that the inclusions are wavelength-sized and, from the geometric optics standpoint,
act as point-like objects with Mie phase functions. The refractive index of the host medium
governs the processes of reflection and refraction of light beams by the particle surface via the
Snell law and Fresnel’s equations. The spatial distribution of the inclusions inside the composite
particle is assumed to be totally random. Therefore, the interior of the particle as a whole is
spherically symmetric, and multiple scattering of light inside the particle is described by the
radiative transfer equation subject to the reflection/refraction boundary condition at the host
particle surface.

The single-scattering properties of a small-volume element of the large-particle interior are
specified by the internal single-scattering albedo, wnr, and the internal single-scattering phase
function, pnr(®). Assuming for simplicity that the internal inclusions are spheres, the latter two
quantities can be easily computed given the size distributions and number densities of the
inclusions. Besides the Fresnel boundary condition, the only three parameters needed to solve the
radiative transfer equation are the internal phase function and single-scattering albedo and the
scattering optical thickness of the host particle; i.e., the product of the host particle diameter and
the internal volume scattering coefficient. The latter quantity is equal to the product of the average
scattering cross-section per inclusion and the average number density of the purely scattering
inclusions.

The radiative transfer equation is solved using the Monte Carlo technique’*® by tracing
the history of 10° independent rays. We have found that this number of rays is quite sufficient
to provide a high statistical accuracy of Monte Carlo computations even for non-absorbing
particles. That this is indeed true is demonstrated by the weak statistical noise in the computed
phase functions (see Plates 1-6). The output result of the Monte Carlo calculations is
the ray-tracing single-scattering albedo, w®’, and the ray-tracing phase function, P*"(®), of
the large composite particle. Since the ray-tracing extinction cross-section of the host particle
is equal to its geometric cross-section S, CRX! =S =nD?4, the ray-tracing scattering
cross-section is equal to CRT = w®'S and the ray-tracing absorption cross-section is given by

= (1 — o®S. A more detailed description of the Monte Carlo ray-tracing method can be
found in Ref. 37.

For a large isolated composite particle, the ray-tracing computations must be supplemented
by the calculation of diffraction. The diffraction extinction cross-section is always equal to
the diffraction scattering cross-section, C2 = C2, so that the diffraction single-scattering
albedo is always equal to one: w® = 1. Furthermore, for isolated particles the diffraction
extinction cross-section is equal to the particle geometric cross-section, C2, = S. For particles
much larger than a wavelength, the diffraction phase function is given by the well-known
formula*
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where J,(y) is the Bessel function of the first kind and x = nD/A. Thus, the total optical
cross-sections, single-scattering albedo, phase function, and asymmetry parameter for the large,
isolated, composite particle are given by the following formulas:

Cexl = Cg(-tr + Cgﬂ =28 s (4)
Coa= CH 4 C2 = (1 + 05, )
Csca _ wRT + 1
“=CaT z > ©
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RT ,RT D ,D RT_,RT D
- S - et ®
Note that for a sphere with D = 50 pm and a wavelength of A = 0.55 um, the diffraction asymmetry
parameter g® is equal to 0.99766..., i.e., its deviation from 1 is negligibly small.

The four types of internal inclusion used in this paper are summarized in Table 1 (note that all
refractive indices are given relative to vacuum). Most of our calculations pertain to the refractive
index of the host particle equal to m,, = 1.55. This value is adopted as typical of silicate materials.
For the purely scattering inclusions, two refractive indices are used. The first one, m, =1,
corresponds to voids inside the host particles (hereafter called type 1 inclusions), while the second
one, m, = 2, corresponds to highly refractive grains (hereafter called type 2 inclusions). The
inclusions are assumed to be distributed over radii r according to the standard gamma distribution’

n(r) = const p ~3% exp( - —a% > , %)

where n(r) dr is the fraction of inclusions with radii from r to r + dr, a is the effective radius equal
to 0.5 um, b is the effective variance equal to 0.1, and the constant ensures the normalization

dern(r) =1. (10)

0

The single-scattering properties of the inclusions have been calculated by using the standard Mie
theory. The scattering phase functions for both types of inclusion are shown in Fig. 1. Since both
type 1 and type 2 inclusions are assumed to be non-absorbing, their single-scattering albedos are
equal to 1. We do not explicitly model the absorbing inclusions in the form of submicrometre-sized
grains of metal iron. Since these grains are assumed to be totally absorbing, they do not contribute
to the volume scattering coefficient and scattering phase function of the large-particle interior. Their
only effect is to reduce the internal single-scattering albedo, wr. Therefore, we model the effect
of increasing absorption inside the large composite particle by varying wpyr from 1 to 0.

Plates 1 and 2 show the ray-tracing phase functions computed for 50 pm diameter host particles
with type 1 and type 2 scattering inclusions, no absorbing inclusions, and scattering optical

Table 1. Four types of internal inclusion.

Refractive index of the host medium Refractive index of the inclusions
Type 1 1.55 1
Type 2 1.55 2
Type 3 1.55 1.65
Type 4 1.31 1
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Fig. 1. Phase function versus scattering angle for four types  inclusions. The internal single-scattering aibedo, wr, is
of internal inclusion. equal to 1 (no absorption).

thickness t varying from 0 (no scattering inclusions) to 25. For comparison, the black curve shows
the diffraction phase function smoothed by averaging over 1°-wide angular bins. It is seen that the
ray-tracing phase function for the clear host particle (no inclusions) exhibits remarkable geometric
optics features typical of large spherical particles and discussed in detail in Ref. 1. With increasing
7, these features rapidly vanish, and the ray-tracing phase functions become more and more
isotropic, in qualitative agreement with laboratory measurements of Ref. 42. We did not perform
computations for 7 > 25 since the scattering optical thickness 7 = 25 already seems to be an
unrealistic extreme case. Indeed, the internal scattering coefficient for particles with D = 50 pm and
7 = 25is so large that as short a path length inside the composite particle as 2 pm already attenuates
a beam by a factor of e ~ 2.72 solely due to scattering. (Of course, internal absorption causes even
further attenuation.) The internal scattering coefficient for the composite particle with ¢ = 25 and
D = 50 pm is as much as 23 times greater than that for the 1.26 cm diameter resin sphere measured
in 2 and having what McGuire and Hapke call “a high density of internal scatterers”, in contrast
to two other measured resin spheres with a “low” and a “medium internal scattering density”.
Moreover, comparison of Plates 1 and 2 with phase functions measured for large, highly
heterogeneous meteoritic particles® shows that the scattering optical thickness t = 25 already
overstates the effect of internal structure on the scattering phase function. Note that for t = 25,
the numbers of type 1 and type 2 inclusions inside a 50 pm diameter composite particle are 29,469
and 18,967 (!), respectively.

Equation (8) with g° = 0.99766... unequivocally suggests that the total asymmetry parameter
for a large, isolated, composite particle cannot be negative. Furthermore, the only way to obtain
the total asymmetry parameter equal to zero is to have only non-absorbing inclusions and a
backward delta-function-like ray-tracing phase function so that @*" =1 and g*" = — 1. Figure 2
shows that with increasing scattering optical thickness t, the ray-tracing asymmetry parameter g~"
for the 50 um diameter composite particle with no absorption decreases systematically. However,
in none of the cases examined does it approach — 1 or even become noticeably smaller then 0.
In fact, the smallest g*" value is equal to — 0.012 and corresponds to type 1 inclusions and the
extreme scattering optical thickness t = 25. As a consequence, the total asymmetry parameter
values are always positive and never drop below 0.492.

Paper 2 suggests that the ray-tracing asymmetry parameter can be reduced significantly by
increasing absorption inside the composite particle because in this case it is only the light scattered
to the sides and rear by the inclusions near the back-facing surface of the composite particle that
readily escapes. However, this mechanism of reducing the ray-tracing asymmetry parameter
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Fig. 3. Ray-tracing single-scattering albedo, w®", versus
internal single-scattering albedo, wny, for a 50 pm diameter

Fig. 4. As in Fig. 3, but for the ray-tracing asymmetry
parameter, gt'.

host sphere with my = 1.55, © = 25, and type 1, type 2, and
type 3 inclusions.

contradicts the results of Hapke’s own laboratory measurements.” Indeed, Figs. 12-14 of Ref. 42
(phase function measurements for resin spheres with multiple internal inclusions and resin
agglutinates)

clearly show that the ray-tracing asymmetry parameter for large composite particles can only be
expected to increase with increasing absorption because absorption suppresses the backscattering
component of the ray-tracing phase function. This conclusion is fully corroborated by our
calculations shown in Plates 3 and 4 and Figs. 3 - 6. Figures 3 and 4 along with Eq. (8) demonstrate
that the effect of increasing absorption on the total asymmetry parameter is twofold: absorption
not only increases the ray-tracing asymmetry parameter g*', but also reduces the ray-tracing
single-scattering albedo @®" and, thus, the ray-tracing contribution to the total asymmetry
parameter. As Fig. 1 shows, the discrete internal inclusions are strong forward scatterers and
relatively weak back scatterers. Therefore, photons refracted into a composite particle need many
scattering events to change the direction of propagation and finally exit in the direction opposite
to the direction of initial incidence. However, owing to a longer path inside the host medium
such photons have a greater probability to be absorbed. Furthermore, in the case of very strong
internal absorption the ray-tracing asymmetry parameter is dominated by the positive contribution
of rays externally reflected by the particle surface. Therefore, the only way to considerably
decrease the ray-tracing asymmetry parameter is to increase the amount of multiple scattering
inside the composite particle. This can only be achieved by decreasing rather than by increasing
absorption.
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Fig. 5. As in Fig. 3, but for the total single-scattering
albedo, .

Fig. 6. As in Fig. 3, but for the total asymmetry parameter,
g
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Since the refractive index m, = 2 of type 2 inclusions can be unrealistically high in many cases,
we also examined the case of type 3 inclusions with the same effective radius a = 0.5 um but a
smaller refractive index, m; = 1.65. Figures 3 — 6 and Plate 5 display calculations for the scattering
optical thickness of the composite particle T =25 and the internal single-scattering albedo,
W, varying from 1 to 0. These calculations clearly show that the reduced refractive index
contrast between the inclusions and the host medium causes significantly increased ray-tracing
and total asymmetry parameters, especially for wr equal or close to 1. This is an expected
result since the phase function for type 3 inclusions has a stronger forward-scattering and a
weaker backscattering components than the phase functions for type 1 and type 2 inclusions
(Fig. 1).

All calculations discussed so far pertain to the host refractive index my = 1.55 corresponding
to silicates. Another abundant material covering the surfaces of many solar system bodies is water
ice, with a refractive index of 1.31 in the visible. Figure 1 shows the phase function for type 4
inclusions (vacuum bubbles with @ = 0.5 pm and my = 1.31), while Plate 6 and Fig. 2 show the
results of ray-tracing calculations for a 50 um diameter ice particle with type 4 inclusions, no
internal absorption, and scattering optical thicknesses from 0 to 25. Again, the ray-tracing phase
function for t = 0 (no inclusions) exhibits the well-known geometric optics features which rapidly
disappear with increasing 7. Figure 2 shows, however, that the ray-tracing asymmetry parameter
for the composite ice particle is systematically larger than that for the silicate particle with type
1 inclusions, and the minimum g®" value for the ice particle with t = 25 (corresponding to 29,506
internal vacuum bubbles) is close to + 0.124, in contrast to the minimum value g*" = — 0.012
for the optical-thickness-equivalent silicate particle. This result can be easily explained by the fact
that the phase function for vacuum bubbles in ice is less backscattering than that for vacuum
bubbles in the silicate host medium (Fig. 1) and that, generally, homogeneous particles with a lower
refractive index (ice) tend to be more forward-scattering than those with a larger refractive index
(silicate). It thus appears that it is more difficult to make an ice particle backscattering by filling
it with multiple voids than a silicate particle.

3. DENSELY PACKED LARGE COMPOSITE PARTICLES

We have shown in the preceding section that multiple internal inclusions cannot make the total
asymmetry parameter for a large isolated particle negative. As discussed in Paper 1, another
scattering mechanism that can reduce the asymmetry parameter is high packing density. Although
it is doubtful that large heterogeneous particles can be considered as elementary, single scatterers
when they are densely packed (see Sec. 4.2), in this section we adopt this assumption of Paper 2
and compute the asymmetry parameter for densely packed particles with inclusions by using the
static structure factor theory as summarized in Paper 1.

It should be emphasized here that according to the qualitative discussion of Refs. 12 and 20, the
extinction and scattering cross-sections and the phase function of regolith particles covering
planetary surfaces completely lack a diffraction component whatever the value of the filling factor,
f (i.e., the fraction of volume occupied by the particles). In other words, it is claimed that for any
f # 0 the extinction and scattering cross-sections, the phase function, and the asymmetry parameter
for closely spaced scatterers are identical to their respective geometric optics components. It is clear,
however, that the diffraction contribution to the extinction cross-section is a function of fand varies
from 50% at f= 0 to 0% at f= 1, and that there is no critical filling factor value before which
the diffraction contribution is equal to 50% and after which it suddenly drops to 0%. The
same is true of the scattering cross-section, the phase function, and the asymmetry parameter.
Unlike the qualitative discussion of Refs. 12 and 20, the theory based on the introduction of the
static structure factor allows one to quantify the effect of packing density on the diffraction
contribution and to verify whether the only non-zero components of the scattering characteristics
of regolith particles are the geometric optics ones. The quantitative analysis of the dependence of
the light scattering characteristics on packing density is very important since, for natural surfaces,
the filling factor can vary from a few per cent (e.g., for snow and frost surfaces) to several tens
of per cent.
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scattering albedo for densely packed 50 um diameter
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composite particles varies from f=0 to 0.6. For
comparison, the ray-tracing asymmetry parameter, gt", for
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By using formulas of Paper 1, it is easy to show that the asymmetry parameter for densely packed
particles is expressed in terms of the phase function of a single isolated particle p(®) as follows:

f d(cos ©)S(®)p(®) cos @
g= ) s (1 1)
J d(cos ®)S(O)p(O)

where S(®) is the static structure factor which depends not only on the scattering angle ©, but
also on the particle size parameter x = nD/A and filling factor f. The static structure factor can
be computed by using Egs. (7)—(15) of Paper 1. The isolated-particle phase function for a large
composite scatterer is given by Eq. (7) and is computed as described in Sec. 2. The integrals in
Eq. (11) are evaluated numerically by using a Gaussian quadrature formula with a large number
of division points.

Figures 79 show the results of calculations for densely packed, 50 um diameter composite
particles with the host refractive index my = 1.55, scattering optical thickness 7 = 25, internal
single-scattering albedo wyr varying from 0 to 1, and type 1, type 2, and type 3 inclusions. The
wavelength is 0.55 um and the fraction of volume occupied by the large composite particles
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Fig. 9. As in Fig. 7, but for type 3 inclusions.
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increases from 0 (widely separated particles) to 60% (extremely high packing density). It is seen
that increasing filling factor indeed results in a decrease of the asymmetry parameter. However,
in all the cases examined the asymmetry parameter remains positive despite the extremely high
values of the filling factor and the internal scattering coefficient of the composite particles. The
smallest g values for particles with type 1, type 2, and type 3 inclusions and f = 0.6 are equal to
0.118, 0.137, and 0.337, respectively, and are reached in the limit of zero absorption (wr = 1).
The respective smallest g value for non-absorbing 50 um diameter ice particles with f= 0.6, type
4 inclusions (micrometre-sized vacuum bubbles), and t = 25 is equal to 0.236. Furthermore,
Figs. 79 show that even modest absorption sharply increases the asymmetry parameters and
makes the large, densely packed composite particles moderately and even strongly
forward-scattering. For comparison, Figs. 7—-9 also show the respective ray-tracing asymmetry
parameters computed for isolated composite particles. Not surprisingly, our computations (not
shown here) indicate that the effect of packing density on the nearly isotropic or moderately
anisotropic ray-tracing component of the phase function is negligible. Therefore, Figs. 7-9
demonstrate that, contrary to Ref. 12, even high packing density does not completely suppress the
diffraction component of the phase function and does not reduce the total asymmetry parameter
to the ray-tracing one. In fact, packing density barely affects the diffraction asymmetry parameter
[see the middle column of Table 2 which shows the result of applying Eq. (11) to the diffraction
phase function of Eq. (3)] and influences the diffraction contribution to the total asymmetry
parameter only by reducing the diffraction cross-section (see below).

Assuming that the absorption cross-section is not modified by the effect of packing density,"
it is straightforward to show that the single-scattering albedo for densely packed composite
particles is expressed in terms of their ray-tracing single-scattering albedo as follows:

- (1 + ©™)B(f)
C()(f) - (1 + CURT)B(f) _ wRT+ 1° (12)

where

_ G _ 1T
B(f)= Clf=0) ~ 2 J_ ld(COS ®)p(©)S(0) (13)
is the ratio of the scattering cross-section of densely packed particles to that of isolated particles.
Figures 10 — 12 show that increasing packing density decreases the single-scattering albedo. This
is an expected result because packing density affects the diffraction component of the scattered light
more strongly than the less anisotropic ray-tracing component and makes the diffraction scattering
cross-section significantly smaller than the particle geometric cross-section [see Table 2 which
tabulates the result of applying Eq. (13) to the phase function of Eq. (3)]. However, Figs. 10— 12
clearly demonstrate that it is wrong to assume'>2*# that the single-scattering albedo of large densely
packed particles is equal to their ray-tracing single-scattering albedo.

Paper 2 calls computations of Paper 1 based on the structure factor theory an important
contribution since they allow one to quantify the effect of packing density on the diffraction
component of the differential scattering cross-section. The calculations show that increasing
packing density results in significant changes in the optical cross-sections, single scattering albedo,
and asymmetry parameter. However, contrary to the postulate of Refs. 12 and 20, the effect of
packing density is never equivalent to just subtracting the diffraction component completely and
retaining only the ray-tracing component. Furthermore, even if that postulate were true, the
ray-tracing computations of Sec. 2 show that one needs a combination of an unrealistically large

Table 2. Diffraction asymmetry parameter g° and ratio B® of the diffraction scattering cross-section to the geometric
cross-section versus filling factor f for densely packed 50 pm diameter spheres. The wavelength is 0.55 pm.

f g° 8°

0 0.998 1

0.2 0.996 0.584
0.4 0.993 0.314

0.6 0.985 0.150
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Fig. 10. Total single-scattering albedo versus internal Fig. 11. As in Fig. 10, but for type 2 inclusions.

single-scattering albedo for densely packed 50 um diameter

composite particles with my = 1.55, t =25, and type 1

inclusions. The fraction of volume occupied by the

composite particles varies from f=0 to 0.6. For

comparison, the ray-tracing single-scattering albedo, w*",
for an isolated composite particle is also shown.

scattering optical thickness, a very large refractive index contrast between the inclusions and the
host medium, and no internal absorption in order to make the ray-tracing asymmetry parameter
for a composite regolith particle even slightly negative. The results of Refs. 43 and 44 suggest that
this combination is unlikely to be encountered in nature.

4. DISCUSSION

The results of theoretical computations reported in Secs. 2 and 3 clearly show that it is essentially
impossible to make regolith particles backscattering by filling them with large numbers of internal
inclusions in the form of voids and/or grains with a refractive index different from that of the host
medium. The computed asymmetry parameters remain positive even for densely packed composite
particles with no internal absorption and extreme values of the filling factor and internal scattering
coefficient. Furthermore, they are sharply increased by even modest absorption inside the
composite particle and/or by reducing the refractive index contrast between the internal inclusions
and the host medium. Also, comparison of Figs. 12-14 of Ref. 42 demonstrates that the model
of composite particles with a large number of small discrete inclusions overstates the effect of
internal structure on the asymmetry parameter of agglutinate particles. The same conclusion
follows from laboratory phase function measurements for large, highly heterogeneous terrestrial
and meteoritic particles. The phase functions measured in Ref. 43 exhibit a shallow minimum at

Fig. 12. As in Fig. 10, but for type 3 inclusions.
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Fig. 13. Plane albedo versus cosine of solar zenith angle computed with the Hapke BRF for the
Henyey—Greenstein phase function with the asymmetry parameter varying from — 0.9 to 0.9 and the
single-scattering albedo equal to 1. Note that for g = 0, Ap(1) = 1.

side-scattering angles, a broad backscattering maximum with an enhancement by a factor of 1.5-2
over the minimum, and a narrower and (much) stronger forward-scattering peak. The minimal
scattering angle in those measurements is 20° so that the even stronger forward-scattering
diffraction peak does not show up and the measurements demonstrate only the ray-tracing part
of the phase function. However, even the ray-tracing part of the phase function is strongly
forward-scattering and definitely has a positive asymmetry parameter. Quite similar, strongly
forward-scattering phase functions have been retrieved by Lamy and Perrin* for interplanetary
dust particles. Altogether, this body of evidence suggests that the negative asymmetry parameters
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Fig. 14. Spherical albedo versus asymmetry parameter computed with the Hapke BRF for the
Henyey-Greenstein phase function and the single-scattering albedo equal to 1.
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obtained with the Hapke bidirectional reflection function (BRF) for regolith grains are physically
unrealistic. In view of our results, the evidence for the smallest asymmetry parameter reported in
Ref. 23 (g = — 0.6) is especially weak since it was retrieved for strongly absorbing particles with
o = 0.204. Also, the computations shown in Figs. 10 — 12 suggest that a single-scattering albedo
as low as 0.037 (and accompanied by an asymmetry parameter as small as — 0.47)” may be another
artefact of applying the model BRF to planetary observations. Thus, we have to conclude that the
negative asymmetry parameters retrieved with the model for regolith grains need another
explanation rather than assuming that they are real and result from the complete disappearance
of diffraction and a complicated internal structure of the particles.

4.1. The Hapke model

As mentioned above, the concept of backscattering particles has been invoked to justify the
negative asymmetry parameters retrieved with the Hapke model. However, as has been shown in
Paper 1, these negative asymmetry parameters may be just an artefact of using an approximate
phenomenological approach in trying to solve an ill-conditioned inverse scattering problem. That
the problem of retrieving the asymmetry parameter of the phase function from remotely sensed
bidirectional reflectance measurements is indeed ill-posed is illustrated by the following example.
It is well known that, for particles with sizes much larger than the wavelength of light, there is
a sharp forward-scattering diffraction peak in the single-scattering phase function.! This peak
necessitates a large number of terms in the Fourier decomposition of the phase function and a large
number of angular quadrature points in computing multiple light scattering by using, e.g., the
adding/doubling method. However, as was demonstrated by Hansen* and Hansen and Pollack*
on the basis of exact radiative transfer computations, the photons scattered into the forward peak
can be approximated as being unscattered by truncating the diffraction peak from the phase
function and appropriately reducing the single-scattering albedo and optical thickness. Obviously,
no renormalization of the optical thickness is required for a semi-infinite medium. It has been found
that this approximation produces errors in the computed reflection function not exceeding several
per cent for many scattering geometries (except forward-scattering geometries with nearly grazing
incidence and reflection). Thus, a strongly forward-scattering phase function and a nearly isotropic
phase function produce similar reflectivities of a semi-infinite medium provided that the
single-scattering albedo for the latter phase function is reduced and extreme forward-scattering
geometries are avoided. Therefore, we must conclude that the reflectance of an optically thick
medium can be almost insensitive to the presence of the forward-scattering phase function peak.

This example demonstrates that large changes in the phase function, when compensated for by
reducing the single-scattering albedo, can result in negligibly small changes in the reflectance. As
a consequence, measurement errors and/or approximations made in computations of radiative
transfer can result in big errors in the retrieved single-scattering phase function unless additional
information is used to reject unphysical solutions.

The use of the truncated phase function in multiple-scattering computations is justified if one
realizes that the real phase function is forward-scattering and the truncation approximation is
employed only to speed up computer calculations. However, if someone interprets the results of
such computations as evidence that the real phase function is nearly isotropic and derives further
conclusions from this interpretation, it becomes a crude distortion of the real physical situation.

Besides the opposition-effect term, the Hapke model of bidirectional reflectance is nothing more
than an approximate solution of the radiative transfer equation. The approximation, which is
always made in the model regardless of the actual single-scattering phase function, is replacing the
rigorous multiple-scattering term by that for isotropic scatterers. The simplification which is
employed almost always is approximating the first-order-scattering contribution by a single-term
Henyey—Greenstein phase function or a few-terms expansion in Legendre polynomials. Although
the second approximation can, in principle, be relaxed, it is this approximation that has always
been made in retrieving the negative asymmetry parameters of the phase function from real
measurement data (see Refs. 12, 22, 23, 47, 48 and references therein). Thus, the Hapke model, as
it stands now, does not provide a self-consistent means to compute theoretically the reflectivity of
a particulate surface starting with physically correct single-scattering calculations for particles of
a given size, shape, refractive index, internal structure, and compaction state and finishing by
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accurate computations of multiple scattering. Instead, the model declares the asymmetry parameter
of the phase function and the single-scattering albedo free model parameters, and their values are
determined only by fitting reflectance data. As a consequence, the quality of the fit rather than a
physical constraint is the only measure of the ability of the model to describe the reality. This
approach to analyzing data can at best be called phenomenological.

It should be emphasized again that Paper 1 criticizes the Hapke model not only for using the
isotropic multiple-scattering term, but also for using simplified and unrealistic phase functions in
analyzing real experimental data. The latter means that instead of computing the phase function
based on the morphology and composition of the scattering medium and using a relevant physical
theory, a phase function of a particular kind is postulated and its formal parameters are determined
by fitting the data. However, the ultimate proof of the relevance of a bidirectional reflectance theory
is the comparison of model computations with results of controlled laboratory experiments. In the
case of the Hapke model this comparison is impossible because the size distribution, shape,
refractive index, internal structure, and compaction state of regolith particles are not explicit model
parameters.

The deficiency of the phenomenological approach is vividly demonstrated by the application of
the model to Venus observations.””-* Figures 3 and 4 of “ and Fig. 9 of ¥ show an almost perfect
fit of model computations to relative brightness profiles of the Venus atmosphere obtained with
an asymmetry parameter equal to zero. This result indicates the absence of clouds in the Venus
atmosphere (the asymmetry parameter zero corresponds to a purely gaseous atmosphere), whereas
it is well known that the whole planet is covered with an optically thick cloud layer composed of
strongly forward-scattering particles with a large positive asymmetry parameter of about 0.7-0.8
in the visible.® Paper 2 asserts that this example is irrelevant since “all it demonstrates is the
obvious: that a particle phase function cannot be retrieved from data taken at a single phase angle”.
However, despite the obviousness, the excellent fit of the model computations to the observational
data and the disability of the model to reject unphysical solutions caused Hapke to erroneously
claim that the Venus atmosphere has an additional component which is isotropically scattering and
weakly polarizing.® Furthermore, Fig. 9 of Ref. 47 has been reproduced in a recent book® as an
example of the ability of the model to describe bidirectional reflectance of real scattering media.

Another example of the inability of the phenomenological approach to adequately retrieve the
asymmetry parameter is the application of the model to analyzing reflectance measurements of a
cobalt glass powder (Fig. 3 of Ref. 47). As the last row of Table 1 of Ref. 47 shows, the model
makes the phase function for almost non-absorbing, transparent glass particles backscattering
(model asymmetry parameter g = — b/3 = — 0.24). This is physically meaningless even if one
assumes that the glass particle phase function lacks the diffraction component completely, which
is never the case. The explanation of this model artefact is simple. The isotropic multiple-scattering
term adopted in the model can significantly underestimate the real contribution of multiple
scattering in the backward direction. To compensate for this underestimation, the model artificially
enhances the backward component of the single-scattering phase function, thus reducing the
asymmetry parameter and even making it negative.

Our example with truncating the forward-scattering component of the phase function and
renormalizing the single-scattering albedo suggests that this may be exactly what the Hapke BRF
is forced to do when its isotropic multiple-scattering term fails to reproduce the actual
multiple-scattering component of the reflection function. To match the measured reflectance, the
approximate BRF artificially truncates the forward-scattering component of the phase function and
decreases the single-scattering albedo, thus considerably reducing the amount of multiple
scattering. This, in turn, necessitates an increased backscattering component of the model phase
function. As a result, the model asymmetry parameter becomes substantially smaller than the actual
value and even negative. Therefore, it comes as no surprise that when Helfenstein et al’' used a
more accurate technique for computing multiple scattering and allowed more complex phase
functions than a single-term Henyey—Greenstein phase function, they were able to fit lunar
photometric data with a forward-scattering phase function and a larger single-scattering albedo
than that retrieved with the standard Hapke BRF.

Unfortunately, since its formulation, the approximate BRF has not been thoroughly tested
against rigorous computations of radiative transfer. Our comparisons with accurate radiative
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transfer calculations show that it can produce unacceptably large errors exceeding 100% at
forward-scattering geometries. Paper 2 (p. 838) asserts that the model BRF is still useful, even
though it is inexact, because of the large observational errors inherent in planetary reflectance
measurements. In this regard, Paper 2 claims that it is difficult to carry out absolute planetary
photometry to much better than + 10%. This is not true. For example, the absolute radiometric
accuracy of the Galileo Photopolarimeter/Radiometer instrument is + 3% with precision better
than 1%.” Similarly high is the photometric accuracy of the French Polarization and Directionality
of the Earth’s Reflectances instrument® as well as of NASA Earth Observing System instruments
such as the Moderate Resolution Imaging Spectrometer,* Multi-Angle Imaging Spectro-Radiome-
ter,” and the Earth Observing Scanning Polarimeter.® It is quite clear that this accuracy is
unattainable with the approximate model BRF, which makes it essentially useless for remote
sensing purposes. Moreover, the application of the model to natural snow surfaces® and to Venus
observations® shows that even the best-fit curves deviate from experimental data by more than 50
and 40%, respectively. In both cases the largest errors are found at small scattering angles and
are undoubtedly the result of using the isotropic multiple-scattering term.

Since it is clear that the model BRF is prone to significant errors, it is important to at least make
sure that these errors do not lead to a serious violation of fundamental physical laws. Two such
fundamental laws which must be obeyed by any bidirectional reflection function are the reciprocity
principle and the energy conservation law. The reciprocity principle requires that any bidirectional
reflection function R be symmetric with respect to the directions of light incidence and reflection:*®

R(u,9;10,00) = R(o, o0, 0) (14)

where the cosine of the zenith angle u and the azimuthal angle ¢ specify the direction of light
reflection and the same quantities with the subscript 0 specify the direction of the incident beam.
The energy conservation law requires that for a semi-infinite medium composed of arbitrary
non-absorbing scatterers, the plane albedo 4p(1,) and the spherical albedo A be identically equal
to unity. The plane and the spherical albedos are defined by the following formulas:®

1 2 1
Ap(phy) = ;j d(ﬂj dupR(1,9;340,90) (15)
0 0

1
As = 2J‘ dptottoAp(tho) - (16)
0

It is well known that exact solutions of the radiative transfer equation (e.g., the adding/doubling
solution) satisfy both conditions.” Hapke’s BRF is constructed such that it obeys the reciprocity
principle. However, this BRF inherently violates the energy conservation law. Figures 13 and 14
show the plane and the spherical albedos computed for the Henyey-Greenstein phase function,

2

Pul®) = T3 o 5 T a7
with the asymmetry parameter g varying from — 0.9 to 0.9. Note that we have computed the
isotropic multiple-scattering term accurately rather than by using Hapke’s'? approximation for
Chandrasekhar’s H-functions. It is seen that the model BRF “emits” extra energy for
backscattering phase functions and “absorbs” extra energy for forward-scattering phase functions,
the amount of the “‘extra” energy being as large as + 25% forg = — 0.9 and — 26% for g = 0.9
(Fig. 13). These “phantom” energy excess and energy deficit are absolutely unphysical and result
from using the isotropic multiple-scattering term in the model BRF regardless of the actual phase
function. One can expect that the albedo differences between the model BRF and the exact solution
of the radiative transfer equation decrease with decreasing single-scattering albedo. However, for
non-absorbing or weakly absorbing scattering media, the model produces physically meaningless
results. For example, the model yields the asymmetry parameter + 0.79 for a surface frost sample
analyzed in Ref. 48. This means that the model predicts that this high-albedo sample absorbs as
much as 20% more energy than it really does (Fig. 13). The same is true for the Venus cloud layer
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if its radiation balance is calculated with the Hapke model and the true cloud particle phase
function (cf. Ref. 57). Needless to say, reflecting 15-20% less solar energy would have made the
Venus atmosphere much different from what it is now. Note that the plane and the spherical
albedos are integral scattering characteristics, and the model errors in 4y and 45 shown in Figs. 13
and 14 are angular integrals over the errors at particular scattering geometries. Therefore, the errors
for individual scattering geometries are expected to be even (much) larger.

A numerical example given in Paper 1 clearly shows that the phenomenological Hapke model
is capable of retrieving a negative asymmetry parameter for strongly forward-scattering particles.
Paper 2 questions the relevance of that example by giving another example based on calculations
for a linear anisotropic phase function,

p(@®)=1+acos® 18)

with a = + 1 and — 1. Unfortunately, this choice of the phase function can hardly be considered
realistic. First, it is highly unlikely that real phase functions can be represented by a two-term
Legendre expansion. Second, the non-negativeness of the phase function requires that the absolute
value of the asymmetry parameter g = a/3 be less than or equal to 1/3: |g| < 0.333... Thus, contrary
to what is claimed in Paper 2, one is dealing with weakly anisotropic scattering whatever is the
value of the parameter a. Third, Paper 2 considers only the case of conservative scattering (w = 1).
However, close inspection of chapter 46 of Ref. 60 shows that this choice of the single-scattering
albedo and phase function makes the reflection function for g =1 or y,=1 (perpendicular
incidence or perpendicular reflection, respectively) independent of a. In other words, this example
is based on a mathematical singularity which disappears when a more realistic phase function is
chosen (Paper 1) or non-conservative scattering is considered. However, even this peculiar example
demonstrates the need to avoid using an approximate BRF. Indeed, if we use the exact solution
of the radiative transfer equation with the phase function of Eq. (18) to analyze Fig. 5(A) of Paper
2, we have to conclude that the inverse problem has no unique solution since all a from the interval
[ — 1, 1] produce the same reflectivity. This means that we are warned about the ill-conditionality
of the inverse problem and should not make any conclusions about the actual value of a. In
contrast, the use of the model BRF suggests that the problem is well defined and produces a unique
solution, a = 0. Indeed, since the isotropic multiple-scattering term gives wrong values of the
multiple-scattering contribution to the reflection function for all @ but a = 0, the model can match
the curve in Fig. 5(A) of Paper 2 only with a = 0.

Paper 2 also mentions a work by Goguen® who measured the bidirectional reflectance of a layer
of glass microspheres with known size and refractive index and then tried to reproduce the
measurement results by using the adding/doubling solution of the radiative transfer equation and
Hapke’s BRF. It is true that neither the adding/doubling solution nor the model BRF provided
a perfect fit and that the model gave a better agreement in some cases. However, from the scientific
standpoint it would be more appropriate to discuss what factors were not taken into account in
Goguen’s radiative transfer computations rather than to claim that the approximate reflection
function is, inexplicably, a more accurate solution of the radiative transfer equation than the exact
adding/doubling solution. For example, it is likely that the standard assumption of a continuous
medium traditionally made in the radiative transfer theory is reasonably accurate deeply inside the
medium but is violated near the boundaries where the effect of random fluctuations of particle
positions on the reflected intensity is much stronger. Also, it is obvious that reflectance at oblique
incidence and reflection is strongly affected by the microscopic surface roughness on the scale of
a few or several particle diameters. Another factor can be the modification of the phase function
by the effect of packing density. These three factors might explain the residual differences between
measurements and adding/doubling calculations at larger phase angles (the phase angle is defined
as 180° minus the scattering angle). The influence of both factors should be minimal at phase angles
close to zero. And indeed, the results of Goguen (especially those not mentioned in Paper 2)
demonstrate much better agreement between laboratory data and adding/doubling computations
at small phase angles than between the data and the model BRF. The discrepancy between the
laboratory measurements and the model BRF at small phase angles is unambiguously explained
by the inability of the isotropic multiple-scattering term to reproduce the actual contribution of
multiply scattered light. Importantly, the results of Goguen® are in agreement with the results of
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Jones et al®2 who also compared controlled laboratory measurements of intensity exiting a densely
packed bed with standard radiative transfer calculations. Jones et al have concluded that radiative
transfer near the boundaries of the medium might not be adequately represented by a continuous
form of the radiative transfer equation, and that a non-continuous radiation model accounting for
spatial features in detail may be necessary to model radiation intensity near the medium boundaries.

Microscopic surface roughness on the scale of a few or several particle diameters is a factor the
importance of which is completely ignored in Paper 2. Paper 2 claims that the only way to explain
the phase dependence of the lunar reflectivity with a forward-scattering regolith particle phase
function is to assume that the lunar surface is macroscopically rough. Paper 2 further asserts that
explanations invoking macroscopic surface roughness are inadequate because in the laboratory,
where the surfaces of samples are macroscopically smooth, lunar soils are still found to be
backscattering. However, the reflectance data of Goguen,® obtained at exactly the same scattering
geometry as Fig. 1 of Paper 2 but for non-absorbing, clear glass spheres, show that microscopic
surface roughness suppresses the effect of the forward-scattering component of the phase function
on the reflectance at large phase angles and, thus, makes the strongly forward-scattering glass
particles look backscattering. Obviously, this effect of microscopic surface roughness is even
stronger for absorbing lunar soils.

As Paper 1 points out, the determination of the asymmetry parameter from reflectance
measurements is an ill-conditioned inverse problem. Therefore, experimental noise and
approximations made in theoretical computations can result in an excellent fit with a wrong value
of the asymmetry parameter. As a consequence, the approximations made in Hapke’s
phenomenological model and the intrinsic inability to reject unphysical solutions can make the
model BRF nothing more than an interpolation tool, and the model asymmetry parameter nothing
more than a free coefficient of the interpolation function rather than a physically meaningful
quantity. The model BRF might be useful as an interpolation function if it is utilized only to fit
the data, and no questions are asked as to the physical meaning of the retrieved formal model
parameters. However, the formal model parameters should not be associated with real physical
quantities if this fit is used to derive information about the structure of the scattering medium.

Paper 2 correctly points out that broadening the range of scattering angles covered by
measurements can improve the accuracy of retrieving the particle phase function and asymmetry
parameter. However, it is not clear why the range of phase angles should be extended to at least
120°, as Paper 2 suggests. Figure 3 of Paper 2 clearly shows that in order not to miss the
forward-scattering ray-tracing peak and, especially, the narrow forward-scattering diffraction peak
and, thus, not to declare forward-scattering particles backscattering, the range of phase angles
should be extended up to 180°. Furthermore, even if the range of scattering angles is broad, the
effect of the forward-scattering component of the phase function on the reflection function at large
phase angles is hard to separate from the effects of microscopic and macroscopic surface roughness,
and physical constraints may still be necessary to reject wrong solutions. Therefore, any
computations of radiative transfer must be based on physically correct single-scattering
computations. Such a self-consistent physical approach is described in standard textbooks on
remote sensing.*** Paper 2 claims that because phase functions of regolith particles at phase angles
beyond about 150° are hard to measure, it is rank speculation to insist that they are
forward-scattering. This is true unless a physically based constraint is used to select the correct
value of the asymmetry parameter. Therefore, the results of Paper 1 and this paper strongly suggest
that it is rather rank speculation to intuitively insist that the regolith particle asymmetry parameters
can indeed be negative. Moreover, spacecraft-remote-sensing measurements of the earth and
planets are often confined to a much narrower range of phase angles than [0°, 150°] and, in most
cases, pertain to nearly backscattering geometries. This factor even further enhances the importance
of the self-consistent physical approach to analyzing experimental data. As the results of ¢
show, measuring polarization as well as intensity of the reflected sunlight can provide an additional
physical constraint that helps to ameliorate the non-uniqueness problem in remote-sensing
retrievals.

After all, at present there is no reason to use an approximate solution of the radiative transfer
equation, especially if it is known to be capable of producing non-physical results. Today one has
access to advanced and extremely efficient methods for numerically solving the radiative transfer
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Fig. 15. Light scattering by widely separated particles. This figure demonstrates that the scattering angle
can be unambiguously defined as the angle between the incident beam and the line connecting particles
A and B.

equation (with and without account of polarization) with high accuracy," ™" and these methods
can be readily implemented on moderate workstations and PCs. In this regard, the statement that
computing Fig. 6 of Paper 2 takes 30 h of CPU time on a SUN SPARC workstation (p. 847 of
Paper 2) is misleading. Indeed, with the software that we have and which is based on exactly solving
the radiative transfer equation for an optically semi-infinite medium,”™” the computation of the
same scattering model on an IBM RISC model 37T workstation took less than 10 min of CPU
time when the full Stokes reflection matrix was calculated and well less than 1 min when only the
reflected intensity was computed. Needless to say, the Hapke model cannot even be claimed to be
able to adequately describe the multiple scattering of polarized light.

4.2. Elementary scatterers in a medium consisting of densely packed composite particles

One of the main assumptions made in Paper 2 is that the dominant optical characteristic of most
regolith particles is their strong heterogeneity. Paper 2 further claims that large composite particles
remain single, elementary scatterers even when they become densely packed, so that the retrieved
negative values of the single-scattering asymmetry parameter must be associated with the composite
particles rather than with their components. However, this is not the case, as is explained below.
In this explanation, we assume that particles are much larger than the wavelength so that the
geometric optics concept of light rays is applicable. The radiative transfer equation operates with
a quantity called the phase function which describes the angular distribution of the intensity of
light scattered by a particle. The phase function is a function of the scattering angle, i.e., the angle
between the incident and the scattered beams. For an individual particle viewed from a distance
much larger than the particle size, the scattering angle can be uniquely defined. Indeed, as shown
in Fig. 15, individual rays exiting different parts of particle A come to a remote observation point
(particle B) within a very small solid angle and almost overlap, and the scattering angles for the
individual rays essentially coincide. Therefore, the scattering angle can be unambiguously defined
as the angle between the incident beam and the line connecting any point inside particle A and
the observation point. However, when the same particle (particle A) is viewed from a distance
comparable to or smaller than its size [Fig. 16(a)], the rays exiting different parts of the particle
towards a nearby observation point come to this point within a very large solid angle, the scattering
angles for different rays are dramatically different (less than 90° for ray 1 and almost 180° for ray
2), and it is impossible to define a scattering angle for the particle as a single scatterer. Figures 16(a)
and 16(b) illustrate the geometry of light scattering in a medium composed of densely packed large
particles. It is clearly seen that the scattering angles are different for the individual rays exiting
different parts of particle A and illuminating the same part of particle B [Fig. 16(a)]. Moreover,
the scattering angles are also different for the individual rays exiting the same part of particle A
and illuminating different parts of particle B [Fig. 16(b)]. The difference between the sparse-medium
configuration of Fig. 15 and the dense-medium configuration of Fig. 16 is further emphasized by
the fact that all rays scattered by particle A towards particle B in Fig. 16 do not impinge on particle
B in Fig. 15.

Thus we have to conclude that whatever their morphology, sparsely distributed large composite
particles can be characterized by a scattering phase function which depends on an unambiguously
defined scattering angle, whereas the very concepts of the scattering angle and the phase function
for the same but closely spaced particles are meaningless.

From the geometric optics standpoint, a photon changes the direction of propagation (i.e., gets
scattered) only when it encounters an interface separating two media with different refractive
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Fig. 16. Light scattering by densely packed particles. This figure demonstrates that the scattering angle
cannot be uniquely defined when the distance between large scattering particles is smaller than or
comparable to their size.

indices or a small (wavelength-sized or subwavelength-sized) inclusion with refractive index
different from that of the host medium.t The exact scattering characteristics of an interface
separating medium 1 and medium 2 depend on the ratio of the refractive index of medium 1 to
the refractive index of medium 2. However, there is no qualitative difference between an interface
separating vacuum and a material medium and an interface separating two material media with
different refractive indices because both interfaces cause a beam of light to get scattered.
Furthermore, the scattering characteristics of an interface separating a particle and vacuum
between regolith particles are identical to those of an interface separating a particle and a vacuum
void inside the particle. When a sunlight beam impinges on a planetary surface, it encounters a
spatial distribution of interfaces and small inclusions. The interfaces and the small inclusions cause
an incident photon to undergo a random walk which ends when the photon finally exits the regolith
layer (i.e., gets reflected) or is absorbed inside the layer. This is schematically shown in Fig. 17,
in which the random photon trajectories inside the large regolith particles are caused by internal
inhomogeneities.

According to Paper 2 (pp. 840 and 841), Paper 1 states that the scattering properties of the three
media shown in Fig. 2 of Paper 2 should be identical. However, it is easy to verify by inspection
that Paper 1 does not contain such a statement. As was pointed out above, the scattering properties
of an interface or a small inclusion depend on the relative refractive index and, thus, depend on
the morphology of the medium. The morphologies of the three media shown in Fig. 2 of Paper
2 are different. Therefore, their scattering properties are also different. However, these differences
do not make densely packed large composite particles elementary, individual scatterers and provide
no way of uniquely defining a phase function for such particles. The elementary scatterers are still
small inclusions and interfaces separating any media with different refractive indices, no matter
whether or not one of the media is vacuum. Therefore, even if one assumes that the Hapke model
is capable of accurately retrieving the asymmetry parameter of the single-scattering phase function

tWe define an interface as a surface with extent and local radius of curvature (much) larger than the wavelength so that
the ray-tracing concepts of refractions and reflections apply. For example, an interface can separate vacuum and the
interior of a large particle or two large grains in optical contact. On the other hand, we assume that the surfaces of
small (wavelength-sized or subwavelength-sized) inclusions are not resolved by the incident light so that the concepts
of refractions and reflections do not apply. Therefore, from the ray-tracing standpoint, the small inclusions act like point
scatterers and their scattering properties are given by Mie theory.
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3 2 1

Fig. 17. Random walk of photons in a medium composed of densely packed, large, heterogeneous
particles. The broken photon trajectories inside the large particles are caused by internal inhomogeneities.
Photons 1 and 2 escape the medium, whereas photon 3 is absorbed inside the medium.

and that the primary optical characteristic of large regolith particles is their strong heterogeneity,
the model asymmetry parameter must be associated with the single, elementary scatterers in the
form of interfaces and small inclusions rather than with the large regolith particles. However, the
retrieved negative asymmetry parameters are still physically unrealistic since both the interfaces and
the small inclusions are strong forward-scatterers.

An obvious morphological characteristic of media composed of large, heterogeneous, densely
packed particles is that the spatial distribution of the elementary single scatterers (interfaces and
small inclusions) is highly inhomogeneous. Furthermore, there are several different scales of
inhomogeneity ranging from the internal particle heterogeneity to macroscopic surface roughness.
This makes doubtful the applicability of the standard radiative transfer theory to such media
because it assumes a locally homogeneous distribution of scatterers and simple flat boundary
conditions (cf. the results of Refs. 61 and 62) and makes an obvious case for using a discontinuous
stochastic radiative transfer theory (e.g., Refs. 75-80). Unfortunately, analytical methods of this
theory are very complicated and are difficult to utilize in practice. It thus appears that the only
practical tool for computing the bidirectional reflection function for densely packed heterogeneous
particles is the ray-tracing Monte Carlo method (Refs. 81-85 and references therein). The
advantage of this technique is its conceptual simplicity, obvious relevance to the kind of situation
depicted in Fig. 17, and the ability to treat essentially any internal structure and spatial distribution
of composite particles and to simultaneously take into account the effects of microscopic and
macroscopic surface roughness. The obvious disadvantage of the method is that it does not take
into account the effect of diffraction on the bidirectional reflection function.’®® Unfortunately, it
is unclear at this moment how to supplement the ray-tracing Monte Carlo method with an accurate
computation of diffraction. Apparently, the only theoretical approach suggested so far is that by
Keller.®

Paper 2 agrees that densely packed composite particles in the form of aggregates or chains
composed of smaller grains cannot be considered elementary scatterers and suggests two criteria
which are supposed to definitively determine whether a composite particle can be considered an
elementary, single scatterer even when this particle is part of a densely packed medium. These two
criteria are as follows. (1) A composite particle is an elementary scatterer if a light wave can
propagate from any point inside the particle to any other internal point by a variety of paths of
finite cross-sectional area without going through vacuum. (2) A composite particle is an elementary
scatterer if the refractive indices of its constituent sub-particles relative to their immediate
surroundings alter when the particle is broken up into the sub-particles. The irrelevance of the first
criterion is demonstrated by the following example. Consider a large host particle with refractive
index m, # 1 containing a large inclusion with refractive index m, # m,, as schematically shown
in Fig. 18(a). According to the first criterion, this composite particle is an elementary scatterer if
m, # 1. However, if the large inclusion is a vacuum void (m, = 1), the composite particle ceases
to be an elementary scatterer because now it is impossible to travel from point 1 to point 2 inside
the composite particle without going through vacuum. Thus, criterion 1 suggests that composite
particles with inclusions in the form of vacuum voids cannot be considered elementary scatterers.
It is obvious, however, that the composite particle with m, # 1 is no more an elementary scatterer
than the same particle but with m, = 1.
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To demonstrate the irrelevance of the second criterion, let us consider a composite particle shown
in Fig. 18(b) and consisting of four nested parts with refractive indices m,, m,, m,;, and m,,
respectively. If none of the refractive indices is equal to 1, then the second criterion suggests that
this particle is an elementary scatterer. Indeed, breaking this particle into two parts as shown in
Fig. 18(c) changes the refractive indices of the parts relative to their immediate surroundings: the
refractive index of the interior of the left component changes from m; to 1, and the refractive index
of the exterior of the right component changes from m, to 1. However, the composite particle ceases
to be an elementary scatterer if m, = m, = 1. Indeed, in this case the partitioning of the composed
particle as shown in Fig. 18(c) does not change the refractive indices of the components relative
to their immediate surroundings. Again, it is clear that the composite particle with m, # 1 and
m; # 1 is no more an elementary scatterer than the same particle but with m, = m, = 1.

The aim of the two criteria of Paper 2 is obvious: to artificially oppose an interface separating
vacuum and a material medium to an interface separating two material media. Thus, instead of
analyzing what makes different a large isolated particle from the same particle as part of a densely
packed medium (Figs. 15 and 16), Paper 2 claims that an interface separating vacuum and a
material medium is qualitatively different from an interface separating two different material media.
However, there is no qualitative difference between these two types of interfaces since both of them
result in light scattering. Even quantitatively, an interface separating vacuum and a medium with
refractive index m is identical to an interface between two media with refractive indices m, and
m, = mm,, respectively. As our discussion above and Fig. 15 show, widely separated large
composite particles are elementary scatterers whatever their morphology is and regardless of
whether or not their morphology obeys the two artificial criteria of Paper 2. However, the same
particles cease to be elementary scatterers when they become densely packed.

Paper 2 describes an experiment which is supposed to provide an ultimate proof of Hapke’s
assumptions. Figure 4 of Paper 2 shows experimentally measured bidirectional reflectances of two
different particulate media. The first one was composed of elementary mineral grains with sizes
74 to 105 pm, while the second one was composed of coarse basalt particles consisting of the
elementary grains welded together and having sizes 1000 to 1325 um. Paper 2 claims that

e 1
“ED )
(b)
m3
my
m
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Fig. 18. Demonstration of the irrelevance of the definition of elementary composite scatterers from Paper
2 (see text).
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(a)

{b}

Fig. 19. On the explanation of bidirectional reflectance differences between coarse and fine particle
surfaces (see text).

bidirectional reflectance differences between the two samples provide an unequivocal proof of the
following two hypotheses: (1) the single, elementary scatterers in a medium consisting of large,
composite, densely packed particles are the composite particles themselves, and (2) natural
composite particles are backscattering. Paper 2 is correct in that laboratory experiments are an
important contributor to the development of science. However, an experiment is often meaningless
if it is not a true controlled laboratory measurementt and is not accompanied by physically based
theoretical computations. What is shown in Fig. 4 of Paper 2 is an indirect laboratory observation
rather than a true controlled laboratory measurement. First of all, the individual particle phase
functions have not been measured directly. Second, no complete physical specification of the
samples has been provided, which makes impossible a comparison of the measurements with
physically based theoretical computations in order to retrieve the phase functions indirectly.
Therefore, Fig. 4 of Paper 2 provides anything but the unequivocal proof of the two hypotheses.
The most obvious difference between the two measured samples is that the coarse powder is darker.
However, this comes at no surprise, as Fig. 19 illustrates. Indeed, a photon entering a 10 times
bigger absorbing particle has to travel a much longer path before it exits the particle and, therefore,
has a much greater probability to be absorbed [compare photon 1 in Fig. 19(a) and photon 1 in
Fig. 19(b)]. Furthermore, the morphology of the boundary layer is dramatically different for a
sample composed of 74—105 pm particles from that for a sample composed of particles that are
10 times larger. In particular, a photon incident on the coarse particle sample has a larger
probability to penetrate very deeply into the medium without scattering [photon 2 in Fig. 19(b)].
To exit the medium, this photon has to travel a long path inside large absorbing particles and has
a greater probability to be absorbed [compare photon 2 in Fig. 19(a) and photon 2 in Fig. 19(b)].
This boundary effect is expected to be especially pronounced at larger phase angles, and this is
exactly what Fig. 4 of Paper 2 demonstrates. Thus, Fig. 4 of Paper 2 can be qualitatively explained
without assuming that the densely packed large particles are elementary scatterers and/or are
backscattering. Another factor that can contribute to the reflectance differences between the two
samples is surface roughness on the scale of several particle diameters. Again, this effect is expected
to show up at larger phase angles and can explain the measured drop of intensities at phase angles

tThe term “controlled laboratory measurement” means that a precise laboratory measurement is accompanied by a
complete specification of the measured sample. In our case, this means an accurate specification of particle size and
shape distributions, refractive indices, internal structure, compaction state, statistics of particle positions, and
microscopic and macroscopic surface roughness.
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larger than 120°. It is interesting to note in this regard that the original version of Paper 2 contained
a figure that showed quite different reflectances than those in Fig. 4 of Paper 2 even though they
were measured for exactly the same samples and at exactly the same scattering geometry. The
differences were especially noticeable at large phase angles where the original reflectivities exhibited
a pronounced increase rather than a decrease. An obvious explanation of these differences is that
the measurements shown in Fig. 4 of Paper 2 pertain to the same samples but with rougher surfaces
than those originally measured. This also demonstrates that it is quite easy to conclude that the
particle phase function lacks a forward-scattering component if one ignores the fact that this
component can be masked by microscopic surface roughness.

5. SUMMARY AND CONCLUSIONS

Paper 1 has pointed out that when the phenomenological Hapke model of bidirectional
reflectance by particulate media is used to analyze experimental data for laboratory samples and
terrestrial and planetary surfaces, it often yields negative values of the asymmetry parameter of
the single-scattering phase function. Since homogeneous dielectric particles with sizes larger than
the wavelength have positive asymmetry parameters even when they are densely packed (Paper 1),
Paper 2 hypothesizes that the negative asymmetry parameters retrieved with the model are caused
by a complicated internal structure of planetary regolith particles. In this paper, we have tested
this hypothesis by using state-of-the-art theoretical techniques to compute asymmetry parameters
for large isolated and densely packed particles with multiple internal inclusions and size typical
of planetary regolith grains. Our computations show that it is essentially impossible to make
asymmetry parameters of regolith particles negative by filling the particles with large numbers of
internal inclusions. Furthermore, the hypothesis that the negative asymmetry parameters retrieved
with the phenomenological model are real and are caused by a complicated internal structure of
regolith particles contradicts the results of laboratory phase function measurements for large
heterogeneous particles of terrestrial and interplanetary origin* and remote-sensing phase function
retrievals for interplanetary dust particles.* Moreover, the model has retrieved negative asymmetry
parameters even for transparent glass particles with no internal scatterers,*” which is physically
meaningless.

The results of Paper 1 strongly suggest that in many cases the retrieved negative asymmetry
parameters are likely to be numerical artefacts resulting from the approximations made in the
phenomenological approach and its intrinsic inability to reject unphysical solutions. Retrieving the
asymmetry parameter from measurements of bidirectional reflectance is an ill-posed inverse
problem. Since the range of scattering angles covered by measurements is often strongly restricted,
and because the effect of the forward-scattering component of the phase function on reflectance
at large phase angles can be neutralized by microscopic surface roughness, physically based
constraints are necessary to reject wrong solutions. Unfortunately, the Hapke model does not
provide such constraints and, because of its phenomenological nature, cannot even be tested against
results of controlled laboratory experiments. As a consequence, applications of the model to
laboratory measurements and terrestrial and planetary observations have already led to physically
meaningless or suspicious conclusions. Furthermore, we have shown that the model inherently
violates the energy conservation law and can grossly disagree with exact solutions of the radiative
transfer equation.

The process of multiple light scattering by surfaces consisting of densely packed particles is
physically much more complicated than the process of multiple light scattering by sparsely
distributed cloud particles. Yet calculations of cloud bidirectional reflectance are always based on
numerically accurate solutions of the radiative transfer equation rather than on oversimplified
approximations like the Hapke model. It is hard to imagine that the extremely complicated
bidirectional reflectance of heterogeneous surfaces can be physically correctly described by a
simplistic phenomenological model, the only dubious advantage of which is that it can be
implemented on a hand calculator rather than on a workstation or a PC. Instead, advanced
modeling of the bidirectional reflectance should at least be based on physically correct
single-scattering calculations and numerically accurate solutions of the radiative transfer equation.
The next step in the order of increasing model complexity and adequacy is to take into account
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the effects of microscopic and macroscopic surface roughness and, ultimately, the discontinuous
and stochastic nature of light scattering by planetary surfaces.
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