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ABSTRACT

Traditional methods of cross-correlation of two time series do not apply to point time series. Here, a new
method, devised specifically for point series, utilizes a correlation measure that is based on the rms difference
(or, alternatively, the median absolute difference) between nearest neighbors in overlapped segments of the two
series. Error estimates for the observed locations of the points, as well as a systematic shift of one series with
respect to the other to accommodate a constant, but unknown, lead or lag, are easily incorporated into the
analysis using Monte Carlo techniques. A methodological restriction adopted here is that one series be treated
as a template series against which the other, called the target series, is cross-correlated. To estimate a signifi-
cance level for the correlation measure, the adopted alternative (null) hypothesis is that the target series arises
from a homogeneous Poisson process. The new method is applied to cross-correlating the times of the greatest
geomagnetic storms with the times of maximum in the undecennial solar activity cycle.

Subject headings: methods: numerical — methods: statistical — solar-terrestrial relations

1. INTRODUCTION

Cross-correlation of two ordinary time series (or any two
one-dimensional series of measurements) proceeds by making
a comparison of the serial data at common positions within
overlapped segments of the two series. Suppose, however, that
the two series are point series, consisting only of the recorded
times (or positions) of point events. (For convenience, each
event can be assigned a unit weight.) If the times are accepted
as being infinitely precise and the two series are not identical,
there can be no common matchups of points, and the corre-
lation coefficient will necessarily be zero. This result is unreal-
istic, however, because timing errors and variable lags and
leads between the two series always exist in nature. Although
devices like uniform-sized time bins can be used to group the
events and thereby to introduce some artificial smearing into
the series, potential information may be lost because of the
coarsened resolution, and some false matchups may occur. In
practice, the data themselves ordinarily impose a minimum
spacing—for example, one year for annually summed, aver-
aged, or sampled data. Going beyond this natural limit,
however, involves a usually arbitrary choice of bin size. Too
large a bin may cover up a possible lag or lead of one series
with respect to the other, and may even induce an apparent
regularity in both series that is not inherently present. This
could create a spuriously high serial correlation (Quenouille
1952).

It would be useful, therefore, to have available a method of
cross-correlation of two point series that completely avoids the
arbitrariness and uncertainties of binning. This paper presents
a new method that does not compute a traditional correlation
coefficient, but computes instead an rms. difference between
time points that are the nearest counterparts of each other. The
method is very simple, but seems not to have been suggested
before. When the points possess measurement errors or when
the statistical significance of the correlation is to be estimated,
Monte Carlo techniques can be easily adapted to the problem.
A necessary restriction is that one of the two series be treated
as a fixed, template series against which the other series is
cross-correlated. In many applications, however, this is not a
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drawback, and can even be the most natural way of approach-
ing the problem. The present idea is: Given one series, is the
other series possibly causally related to it? A reasonable null
hypothesis might be that the purportedly dependent series
arises from a random, unrelated process.

2. METHOD OF ANALYSIS
2.1. Point Series

Point series of events arise in many physical contexts, and
several methods of statistically analyzing the structure of a
single series of point events have been developed (e.g., Cox &
Lewis 1966). Much less studied are double point series and
multiple point series of events; however, two important prob-
lems connected with double and multiple series have been
looked at. If the events arising from two or more periodic
sources form a pooled output, various ways of disentangling
the individual outputs have been devised (Cox & Lewis 1966).
This problem is of some interest in astrophysics (e.g., a multiple
time series of pulsed events from several spatially unresolved
pulsing objects), but it will not be discussed here. The second
problem concerns the quantitative assessment of near coin-
cidences of events of two or more different types. The basic
reference on this subject is Cox (1955), who used observed
numbers of coincidences in specified time intervals and simple
parametric tests for significance. Since more than this can be
done with modern computer power, the following nonpara-
metric method has been developed for specifically the case of
two point series of events, subject to the restriction mentioned
in§ 1.

2.2. Cross-Correlation of Two Point Series

Consider two point series of events. In the segments of
overlap between series A and B, designate the event times as
tar Star < < tay and tg; <tg, <+ < tgy. (In general,
M will not be equal to N.) For definiteness, series A and B will
be called here the template and target series, respectively. If the
target series B is being cross-correlated with the template (or
comparison) series A, the overlapped segment of the target
series must start at tg, > t,, and must end at tgy < ay,.
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The new method consists of finding in the template series the
nearest event time t,; to each event time tg; of the target series,
and of forming the residual difference d; = tp; — t,;. The
lumped variance of the observed times (Broadbent 1955) is

then
N
¢ =<z d,.z)/N.
i=1

The estimate of the standard deviation, s, follows from this and
serves as a formal measure of correlation. It quantifies the
extent to which the observed times in the two series coincide;
for a perfect match of all the target series points with template
series points, s = 0. If the target chain is fairly short and the
overlapped segment of the template series lacks one or more
expected events, it may happen that s yields a very biased
estimate of the standard deviation, owing to the presence of
one or more highly deviant values of d;. In that case, it would
be preferable to work with the median value of the absolute
residuals | d; |.

It is obvious that, if the roles of the two series are reversed,
the d? remain invariant because of symmetry. For N # M,
however, the number of d? that contribute to s? is different in
the two cases, being N in one case and M in the other. Accord-
ingly, the value of s? in the reversed case is not necessarily (or
even usually) the same as that in the original case. When
looking for a correlation between point series where series role
matters, the target and template series should be clearly
labeled. In cases of physical interest, information is often avail-
able to decide, on the basis of either known or probable physi-
cal cause and effect, which series should be designated which.

An illustrative example that underscores the importance of
series role consists of the observed times of maximum sunspot
numbers during the sunspot cycle and the observed times of
the greatest geomagnetic storms, over a selected observation
period. Since it is not true in general that only one large storm
occurs per sunspot cycle (none may occur and sometimes more
than one occurs), N and M are not necessarily equal. How such
an inequality affects s> can be seen as follows. Suppose that
three storms occur close together during a particular sunspot
cycle represented by an interval of time T. Then, if the template
series is taken to be the series of times of solar maximum, three
events contribute to s? in the interval T. On the other hand, if
the series roles are inverted, only one event contributes,
namely, the time of the solar maximum, and it is correlated
with the time of the nearest one of the three storms; the two
other storms are not counted. In this example, the physically
plausible choice of series roles is the first one, because logic
suggests that solar activity might cause geomagnetic storms,
and not vice versa. If an attempt were made to cross-correlate
every point in both series, an absurd situation would arise for
any sunspot cycle during which no great storm occurred: the
method would proceed to match that cycle’s time of maximum
with the time of the nearest storm in some neighboring cycle,
possibly even a preceding cycle. The spuriously large value of
s? that results might then falsely suggest a poor series corre-
lation.

In some potential applications where series role is irrelevant
(e.g., a comparison of radio and optical observations of pulse
times from a noisy, pulsing object), it is reasonable to correlate
every point in each series with its nearest neighbor in the other
series. The total number of d? that can contribute to s> then
lies between N or M (whichever is larger)and N + M — 1. It is
worth emphasizing, however, that if series role is important
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this kind of two-way bookkeeping makes no sense, because
some type A events may not lead to type B events, and some
type B events may not be associated with type A events. In fact,
in certain applications where the template series is known to be
seriously incomplete, it may even be desirable to reverse the
series roles.

2.3. Time Lag

If, as is the case in many applications, an unknown lag or
lead is suspected to exist between the target series and the
template series, the preceding analysis should be modified by
choosing an arbitrary total lag range and applying a small lag
step to the target series, holding the template series fixed.
Although both N and M may change with the stepping up of
the lag, this change is unimportant in practice if N and M are
much greater than unity. Out of the complete set of correlation
measures generated by stepping up the lag, the smallest corre-
lation measure indicates the best estimate of the lag, in the
same manner as the largest correlation coefficient indicates the
lag for a traditional cross-correlogram. If the two series are
identical, the analog of an ordinary auto-correlogram is
obtained.

2.4. Significance Testing

An estimate of the statistical significance of the derived serial
correlation measure, if one is wanted, must finally be made in
some way. Here the observed series that is selected as the
template series is simply accepted as given; no assumption is
made about the process giving rise to it. The template series is
therefore “assigned.” Consequently, any estimated significance
of the correlation between it and the observed target series will
refer here only to the assumed null hypothesis of a homoge-
neous Poisson process (i.e., a rectangular distribution of
points) for the target series. Properly calibrated, this choice of
hypothesis test for a point series is known to be valid
(Broadbent 1955; Stigler & Wagner 1987). Although no signifi-
cance test can ever be “best ” in a nonparametric situation, the
present test possesses the virtue of applying generally to the
cause-and-effect type of paired time series that often occur in
physical problems. Ideally, all possible null hypotheses should
be tested, but, as this is impossible, the hypothesis that is prob-
ably most used in time series analysis has been adopted. In
special cases, another hypothesis could be substituted.

To perform the test, a random target series, lying inside the
actual (or potential) range of the observed target series and
containing, like the observed series, N points, is generated from
a uniform distribution of independent random variables, and
cross-correlated with the template series. This process is
repeated a large number of times. The frequency with which
the correlation measure in the simulations equals or falls below
the correlation measure derived for the two original series
yields an estimate of the probability that the original series are
not correlated, in the sense that the null hypothesis as formu-
lated above is not rejected. Expressed as a percentage, this
quantity represents the estimated significance level. It indicates
how often a random series outperforms the observed target
series in matching the observed template series.

The adopted Monte Carlo simulations are capable of hand-
ling, in principle, any values of N and M in the derivation of
estimates of the significance level. Even if N and M are very
small, consistent results should be obtained because the signifi-
cance tests are conducted by performing random simulations
in exactly the same manner as for the observed series. And even
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if M in the template series is relatively large so that each of the
N points in the observed target series has a high probability of
accidentally being a close neighbor of some point in the tem-
plate series, this probability applies also, to the same extent, for
the N points in the random target series. In practice, the
number of simulations needed for sufficient accuracy can be
found empirically by using an increasingly large number of
simulations until the estimated significance level becomes effec-
tively constant.

For applications where series role is not relevant, pairs of
random series consisting of N and M points can be generated
and cross-correlated.

2.5. Measurement Errors

Observed times (in both series) that contain quantifiable
uncertainty need not be used at their face value. They can be
partially randomized in various ways. Cross-correlation of a
large number of such pseudo-randomized time series yields an
average correlation measure that will not, in general, be equal
to the correlation measure of the two original series. This is
true even if the estimated errors of the observed times are
symmetrically distributed around the time peaks. Since it is
possible, whenever estimated errors are large, for randomly
perturbed times to stray out of order, the reordering of times in
some of the perturbed series may occasionally be necessary, if
the numerical algorithm that is adopted requires ordered
times.

To test the average correlation measure for statistical signifi-
cance, Monte Carlo simulations should be performed by cross-
correlating each fully random target series with all of the
pseudo-randomized template series. In the case of N, template
series and Ny target series computed per template series, the
total number of serial correlations that are needed for the sig-
nificance test, N, N, can be very large. If, however, the esti-
mated errors in the observed times are not very big, it may be
sufficient to adopt N, < Ng.

3. APPLICATION USING SOLAR AND GEOMAGNETIC
TIME SERIES

As a trial application, a statistical correlation is sought
between the times of the 14 greatest geometric storms recorded
at Greenwich during the period 1855-1955 (Chapman 1957)
and the observed times of solar cycle maximum and minimum,
as defined by the reported relative numbers of sunspots
(Waldmeier 1961). Since sunspot extrema in the undecennial
solar cycle are not sharply defined if one examines day-to-day
or even month-to-month data, a decision was made to use only
the years of maximum and minimum. (Observed intervals
between successive maxima, or successive minima, are not
regular, but range from 9 to 13 years.) For consistency, only the
years in which the greatest geomagnetic storms occurred are
actually employed as the target series; 4 years therefore appear
twice in the series. The data used are listed in Table 1.

The derived cross-correlogram is shown in Figure 1. Notice
that the smallest correlation measure occurs at, or very close
to, the time of solar maximum. Drops in the correlation
measure also occur at match positions of 10-11 years before
and after solar maximum, which is not surprising because solar
activity is quasi-periodic with a mean period of 10-11 years.
The statistical significance level of the correlation at a time lag
of zero is found to be 1%. If the lag is not considered known a
priori and significance tests are performed by progressively
shifting the random target series backward by S5 years and
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TABLE 1
SOLAR AND GEOMAGNETIC TIME SERIES

Geomagnetic Storms Sunspot Maxima Sunspot Minima

1859 1848 1843
1872 1860 1856
1882 1870 1867
1882 1883 1878
1903 1893 1889
1909 1905 1901
1921 1917 1913
1938 1928 1923
1938 1937 1933
1940 1947 1944
1941 1957 1954
1941

1946

1946

forward by 5 years in steps of 1 year, the significance level of
the correlation becomes about 7%.

A superposed epoch plot, presented in Figure 2, illustrates
the spread of the residuals. Notice that although a remarkable
gap occurs at exactly zero lag the data generally cluster, more
or less equally, around both sides of the gap. Such a quasi-
symmetrical clustering produces an average effect that causes,
in a reasonable way, the maximum correlation to show up at
zero lag. The strength of the maximum correlation, however, is
somewhat weakened by the presence of the gap, as the stan-
dard deviation of the fit amounts to 2 years (Fig. 1). An earlier
display of very similar data in tabular form (Newton & Milsom
1954) exhibits the same double-peak behavior seen in Figure 2.
This feature appears to correspond to the bimodal maximum
shown by the most outstanding active phenomena at the Sun’s
surface (Das Gupta & Basu 1965; Gnevyshev 1967; Goswami
et al. 1988). The cause of the bimodality is not known.

STANDARD DEVIATION (YR)

MEDIAN (YR)

-0 -8 -6 -4 -2 O +2 +4 +6 +8 +IO
TIME LAG (YR)

FiG. 1.—Cross-correlation of the years of the 14 greatest geomagnetic
storms recorded at Greenwich during 1855-1955 with the years of sunspot
maximum (solid line) or sunspot minimum (dashed line). The lag step is one
year. The correlation measure shown is the standard deviation and the median,
in the upper panel and lower panel, respectively.
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GREATEST GEOMAGNETIC STORMS
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TIME (YR)
F1G. 2—Superposed epoch diagram, showing the years of the 14 greatest
geomagnetic storms recorded at Greenwich during 1855-1955, plotted with

respect to the years of the nearest sunspot maximum (solid line) or the nearest
sunspot minimum (dashed line).

Further applications of the present method, especially to
time series in which the observed times have appreciable error
(§ 2.5), have been published elsewhere (Stothers 1993a, b).

4. CONCLUSION

Two point series of events may be cross-correlated by
matching nearest neighbors in overlapped segments of the two
series and then computing an rms difference or, alternatively, a
median absolute difference between all the corresponding
points. Either correlation measure is easy to compute and
interpret. Measurement errors in the locations of the points are
easily handled by partially randomizing the two series and
computing an average correlation measure. A uniform dis-
placement between the two series can be detected by construc-
ting an analog of the traditional cross-correlogram. An
estimated significance level for the correlation measure is,
finally, obtainable by cross-correlating many random point
series with the prespecified one of the two observed series that
is designated as the template series, bearing in mind that the
size of the correlation measure may depend on which of the
two observed series is treated as the template series and which
as the target series. The null hypothesis adopted here is a
homogeneous Poisson process for the target series. As is usual
in statistics, it is necessary to analyze small number statistics
by doing large number statistics.

Application of the present method of cross-correlation to a
time series consisting of the dates of the greatest geomagnetic
storms between 1855 and 1955 shows that these storms signifi-
cantly correlate with the maxima in the undecennial solar
activity cycle at the 1% level.

This work was supported by the NASA Climate Research
Program. I am grateful to the late S. Lebedeff for preliminary
discussions that led up to the present study, and to the referee
for suggestions for clarifying various points.

REFERENCES

Broadbent, S. R. 1955, Biometrika, 42, 45

Chapman, S. 1957, Nature, 179, 7

Cox, D. R. 1955, J. Roy. Stat. Soc., B17, 129

Cox, D. R, & Lewis, P. A. W. 1966, The Statistical Analysis of Series of Events
(London: Methuen)

Das Gupta, M. K., & Basu, D. 1965, J. Atm. Terr. Phys., 27, 1029

Gnevyshev, M. N. 1967, Sol. Phys., 1, 107

Goswami, J. N,, McGuire, R. E, Reedy, R. C, Lal, D., & Jha, R. 1988, J.
Geophys. Res., 93, 7195

Newton, H. W., & Milsom, A. S. 1954, J. Geophys. Res., 59, 203

Quenouille, M. H. 1952, Associated Measurements (London: Butterworths)

Stigler, S. M., & Wagner, M. J. 1987, Science, 238, 940

Stothers, R. B. 1993a, Geophys. Res. Lett., 20, 887

. 1993b, Geophys. Res. Lett., 20, 1399

Waldmeier, M. 1961, The Sunspot-Activity in the Years 1610—1960 (Zurich:
Schulthess)

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1994ApJ...429..415S

