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ABSTRACT

Non-steady state timescales are complicated and their application to specific geophysical
systems requires a common theoretical foundation. We first extend reservoir theory by quantify-
ing the difference between turnover time and transit time (or residence time) for time-dependent
systems under any mixing conditions. We explicitly demonstrate the errors which result from
assuming these timescales are equal, which is only true at steady state. We also derive a new
response function which allows the calculation of age distributions and timescales for well-mixed
reservoirs away from steady state, and differentiate between timescales based on gross and net
fluxes. These theoretical results are particularly important to tracer-calibrated “box models”
currently used to study the carbon cycle, which usually approximate reservoirs as well-mixed.
We then apply the results to the important case of anthropogenic CO, in the atmosphere, since
timescales describing its behavior are commonly used but ambiguously defined. All relevant
timescales, including lifetime, transit time, and adjustment time, are precisely defined and
calculated from data and models. Apparent discrepancies between the current, empirically deter-
mined turnover time of 30-60 years and longer model-derived estimates of expected lifetime and
adjustment time are explained within this theoretical framework. We also discuss the results in
light of policy issues related to global warming, in particular since any comparisons of the
“lifetimes” of different greenhouse gases (CO,, CH,, N,O, CFC’s etc.) must use a consistent

definition to be meaningful.

1. Introduction

A number of timescales are being used in both
scientific and policy contexts to describe the
behavior of greenhouse gases in the atmosphere.
However, precise definitions of timescales such as
lifetime, age, and residence time are not being
used, leading to confusion over how to calculate
these numbers, what they mean, and how they
relate to each other. For example, the report of the
Intergovernmental Panel on Climate Change
(IPCC, Houghton et al., 1990) defines lifetime for
CO, as the time required for the atmosphere to
adjust to a future equilibrium state if emissions
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change abruptly. However, since models indicate
this adjustment does not take place with a single
e-folding time, some studies conclude that CO,
has several different lifetimes (Edmonds et al.,
1992), while others have used different methods to
derive “best estimates” (Rodhe, 1990; Lashof and
Ahuja, 1990), generally on the order of centuries.
In addition it has been pointed out (Victor,
1990; Moore and Braswell, 1994) that these
“lifetimes”, which are on the order of a century, are
not consistent with data on emissions and
atmospheric concentrations. The current removal
timescale of CO, must be on the order of a few
decades to achieve a mass balance based on such
data; this seeming contradiction has not been ade-
quately explained in the carbon cycle literature.
In order to clarify such issues, we turn to age
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distribution theory, which offers the framework
for deriving and understanding all reservoir
timescales. Early research (Eriksson, 1961, 1971;
Bolin and Rodhe, 1973; Nir and Lewis, 1975) laid
the theoretical foundation by concentrating on
steady state systems. However, since greenhouse
gas levels are rising, non-steady state concepts are
required. Although some important initial work
(Lewis and Nir, 1978; Schwartz, 1979; Jacquez,
1985; Zuber, 1986) outlined essential features of
non-steady state theory, much remains to be done
in order to apply these concepts to particular
geophysical systems.

In this paper we extend the previous limits of
reservoir theory by deriving a new equation for the
response of well-mixed reservoirs under time-
dependent conditions which makes possible the
calculation of age distributions and timescales
for such systems. We also derive an equation
expressing the relationship between fundamental
timescales for any system in or out of steady state
under any type of mixing conditions. This treat-
ment offers new insight into non-steady state reser-
voir theory; e.g., we show the turnover time does
not generally equal the transit time, a fact noted by
Schwartz (1979), but explicitly quantified here.
In addition, we differentiate between timescales
applicable to reservoirs through which material
passes only once and reservoirs which, as part of a
cycle, continuously exchange material with other
parts of the system.

These results are applicable to any well-mixed
reservoir which is part of a non-steady state system
model, making them potentially useful in the
analysis of many geophysical systems. We apply
them here to the specific case of anthropogenic
CO, in the atmosphere, precisely defining all com-
monly used timescales and showing how they are
related. We then calculate the turnover time
directly from historical emissions and concentra-
tion data. We estimate the transit time, mean age,
lifetime and adjustment time from data and model
results.

These calculations are useful in policy contexts
related to global warming. We discuss their
application to the question of responsibility for
past emissions and to the interpretation of Global
Warming Potentials. Furthermore, comparisons
of the lifetimes of different greenhouse gases (CH,,
N,O0, CFCs, CO,, etc.) must use consistent,
rigorous definitions to avoid erroneous con-
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clusions. These results also aid in interpreting
timescales derived from model investigations of the
carbon cycle.

Symbols and definitions

t chronological time
T age (time since entry into a reservoir)
T transit time (time between entry into

and exit from a reservoir)

M(t) total mass in a reservoir

F(t) total flux exiting a reservoir

I(t) total flux entering a reservoir

Y(1,t) age distribution of mass in a reservoir
(particles/time)

®(T,t) transit time distribution of flux exiting a
reservoir (particles/time?)

O(T,t) transit time distribution of flux entering
a reservoir (particles/time?)

74(1) turnover time

7,(2) mean age

7.(2) mean transit time of flux exiting a reser-
voir

Tep(t)  expected lifetime (mean transit time) of
flux entering a reservoir

T,q(?)  adjustment time; average time necessary
for reservoir to reach equilibrium after
emissions are shut off following some
emissions scenario

H(z,t) impulse response function

G(7) Green function (impulse response func-

tion for a linear system)

2. Reservoir timescales

To derive the timescales of interest, we first
define three related variables which aid in describ-
ing the passage of material through a reservoir: “¢”
refers to chronological time; “z” to age, or time
elapsed since entry into a reservoir; and “T” to
transit time, or total time between entry into and
exit from a reservoir. Using these variables, three
fundamental distributions can be defined for any
population: (1) the distribution with respect to age
of all particles within the reservoir, denoted
¥(1, t); (2) the distribution with respect to transit
time of particles leaving the reservoir, denoted
®(T, t); and (3) the distribution with respect to
transit time of particles entering the reservoir,
denoted (T, ). Since the O(T, ) distribution
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indicates the number of particles entering a reser-
voir at time ¢ with transit time 7, it requires
knowledge of the future response of the system to
the input flux. Note also that since the age of a
particle at exit is by definition equal to its transit
time, the transit time distribution of flux out of a
reservoir, (7, t), may also be written as the age
distribution of flux out, ®(z, t).

As an example, for the human population
¥ (30, 1993) is the total number of 30 year olds
alive in 1993, ®(30, 1993) is the total number of
30 year olds that die in 1993, and ®(30, 1993) is
the total number of people born in 1993 who will
die when they are 30 years old. From these dis-
tributions the total mass of a reservoir M(t), total
outgoing flux F(¢), and total input flux I(z) are:

Aﬂﬂ:ﬁnTthm
nn=£”mnadz
nn:menndr

Four basic reservoir timescales can now be
defined:

turnover time

_ M@
TR0 TR (1e)
mean age
[ _¥(wn,)
fgg_L b (1b)
mean transit time
e (T, 1)
mn_L T 4T (1c)
expected lifetime
o,
o) =[ T (,(t)')dT. (1d)

The turnover time as defined here is best inter-
preted as the inverse of the fraction of material
removed from the reservoir per unit time, k,(¢). It
may therefore be thought of as the instantaneous
removal timescale. The mean age is calculated by
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averaging 7 over the normalized age distribution,
Y¥(t, t)/M(t). The mean transit time (sometimes
referred to as “residence time”) is defined here as
the average transit time of the outgoing flux and is
calculated by averaging T over the normalized dis-
tribution ®(7, ¢)/F(¢). In terms of the human pop-
ulation, these timescales correspond to the average
age of all people alive today and the average age of
all people dying today, respectively. The expected
lifetime indicates the average time necessary for
removal of a single pulse of input into a reservoir
at time 7, and is analogous in population dynamics
to the average expected lifetime of a group of
people born at the same time (Kamerud, 1989).
Note that both mean transit time and expected
lifetime are average transit times; the first measures
the average transit time of the outgoing flux, while
the second is averaged over the incoming flux
(Lewis and Nir, 1978).

The four timescales defined in eq. (1) are com-
pletely general. Their relations to one another,
however, depend on whether the system is in a
steady or non-steady state. For example, Eriksson
(1961, 1971) and Bolin and Rodhe (1973) showed
that 7, =t for stationary states, i.e.,

Yz, 1)=®(z, )= M(t)=0.

However, for non-steady state systems a more
general expression relating 7, 7,, and 7, is
required. We derive such an expression by con-
sidering the mass continuity equation, fundamen-
tal to population dynamics (Rubinow, 1975):

0¥(r, 1) _6‘1—'(1, t)
a ot

—®(z, 1) (2)

The left-hand-side of (2) is the time rate of
change of the population of any age group z. This
must equal the divergence of the population “flow”
at that age minus the death rate of that age group.
(Note that integrating (2) over all ages 7 from 0 to
co yields the familiar continuity equation for the
total reservoir: M(t) = I(t) — F(z).) Multiplying
the continuity equation by 7 and integrating over
all ages gives an expression that relates turnover
time, mean age and mean transit time for non-
equilibrium as well as equilibrium systems. We
find

M(1) 74(1) + 7.(1) M(1)

(1) = (1) = 0

3)
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For stationary systems, the mean transit time of
the outgoing flux and the turnover time are
rigorously equal, as expected. However for non-
stationary systems (ie., M and/or 7,#0), they
are not equal, a fact which can have important
geophysical consequences (Gaffin and O’Neil,
1994). Although this inequality has been pointed
out by Schwartz (1979), eq. (3) is, to our knowl-
edge, the first equation explicitly quantifying the
relationship between timescales away from steady
state.

3. Distributions for well-mixed reservoirs
without return fluxes

In order to calculate the timescales defined in
eq. (1) for a particular reservoir, one must be able
to calculate the ¥, @, and @ distributions. These
distributions require convolving an emissions
history with a response function describing the fate
of material in the reservoir (Niemi, 1977; Lewis
and Nir, 1978; Schwartz, 1979; Zuber, 1986). We
therefore seek a general form for such a function,
which we denote H(z, 1), defined as the fraction of
an emission at time ¢ remaining in a reservoir as a
function of age. Since we intend to investigate the
behavior of CO, in the atmosphere, which may be
considered well-mixed (Ekdahl and Keeling,
1973), we can use the definition of a well-mixed
reservoir to derive H(z, t).

For the sake of clarity, we will begin by ignoring
the possibility that a gas molecule may return to
the atmosphere after exiting it, as is the case for
CO,. The existence of a return flux complicates the
concept of the age of a molecule, and we will con-
sider first only irreversible removal. These resuits
will be of interest in themselves and will also
provide the basis for defining timescales for a reser-
voir with return fluxes, discussed in Section 4.

A key point related to well-mixed reservoirs is
that removal processes cannot distinguish between
particles, ie., all particles, regardless of age, have
an equal probability of being removed per unit
time (Bolin and Rodhe, 1973). This probability per
unit time is given by &£ ,(¢), the inverse of the turn-
over time, which is the fraction of the mass in the
entire reservoir removed per unit time. Therefore
the removal of any particular emission into a well-
mixed reservoir without return fluxes is dictated by
the turnover time, a quantity which may be
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estimated from mass and flux measurements
(eq. (1a)). The fractional removal of an emission
can be written in terms of H as — H'(z, t)/H(, t),
where the prime indicates a derivative with respect
to age. The numerator is the fraction of an emis-
sion which exits the reservoir as a function of age,
while the denominator is the fraction which
remains. Thus the ratio gives the probability of
removal of a particular emission; since the reser-
voir is well-mixed this ratio must equal the
removal probability of the whole reservoir:

—H'(z, 1)
m—-ko(t'F 7).

(4)
Note that eq.(4) does not necessarily imply a
linear system; the form of k(¢ + 7) may be such
that it incorporates nonlinearities. Solving (4) for
H(z, t),
t+t
Hiz, t)=exp[—J ko(t’)dt']. (5)
t

Eq. (5) is the generalized response function for
well-mixed reservoirs without return fluxes, and
indicates that the fraction of an emission at time ¢
which will remain 7 years later is dictated by the
turnover time operating on the reservoir over the
time period ¢ to ¢+ 7. The turnover time is there-
fore a critical parameter which expresses the action
of the system on both the bulk mass and on any
particular emission. Note for a constant turnover
time, eq. (5) reduces to H(z,t)=exp[ —kt], as
would be expected for a simple, single-process
decay. Importantly, since the turnover time is
indirectly measurable (through mass and flux
measurements), the response function and all
distributions and timescales describing past and
present behavior may be calculated for well-mixed
reservoirs even when direct age measurements
cannot be made.

This finding makes it possible to use H(z, ¢) in
conjunction with any emissions history I(¢) to
define the reservoir distributions and calculate the
timescales presented in Section 1. The age distribu-
tion of mass in a reservoir is

Y(r,t)=It—1) H(t,t—1)

=I(t—1)exp |: —J” k(1) dt':l.

Eq. (6) indicates that the number of particles in the

(6)
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reservoir with age 7 is just the number of particles
emitted 7 years ago which remain today. The
transit time (or age) distribution of mass leaving a
reservoir can be derived from eq. (6) and the con-
tinuity equation (eq. (2)):

O(T, t)= —I(t— T) H'(T, t— T)
=I(t—T)ko(t)exp[—J' ko(t’)dt’]. (7)
t—T

Eq. (7) indicates that the number of particles exit-
ing the reservoir at time ¢ with transit time (or age)
T is just the number of particles which entered T
years ago with expected transit time 7. Also, the
O(T, t) distribution differs from the ¥(t, 7) dis-
tribution only by a factor of k (¢). The normalized
distributions, ®(7, t)/F(¢t) and ¥(z, t)/M(2), are
therefore equal, since F(t) =k,(t) M(t). Thus, as is
seen from eqs. (1b) and (1c), for well-mixed reser-
voirs without return fluxes 7,(¢) =7,(¢) (Schwartz,
1979). This reflects the fact that the removal pro-
cesses acting on a well-mixed reservoir cannot
discriminate between particles of different ages and
so the gross flux out must have the same average
age as that of the bulk mass.

The transit time distribution of the input flux is:

O(T,t)=—-KIt)H' (T, t)
t+ 7T
— I(1) k(1 + T) exp [ —J k(1) dt’]. (8)

This equation is similar to eq. (7), but relates to the
present and future; it indicates the number of par-
ticles entering the reservoir at time ¢ with transit
time 7, and requires knowledge of the future
removal rate of the system.

The distributions defined in eqgs. (6), (7) and (8)
can be used to calculate the timescales defined in
eq. (1), as long as the turnover time of the system
as a function of time is known.

4. Distributions for well-mixed reservoirs with
return fluxes

The equations defining distributions presented
in Section 3 apply to reservoirs through which
material passes once and does not return after exit-
ing. Carbon reservoirs, on the other hand, are part
of a cycle and continuously exchange their con-
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tents. Carbon added to the atmosphere does not
therefore simply exit never to return, but
redistributes among all the reservoirs, during
which time it may pass through the atmosphere
many times.

Because of this behavior, the addition of an
amount of CO, to the atmosphere presents a
choice in timescales. Egs. (4)-(8) may be applied
directly and return fluxes ignored, yielding time-
scales describing the behavior of extra CO,
molecules passing irreversibly through the atmo-
sphere. Or, the impulse response function H(z, t)
may be redefined to allow for return fluxes. In this
case, the resulting distributions and timescales
describe the transition of the atmospheric CO,
mass from its perturbed to its equilibrium level as
the extra molecules distribute throughout the
system.

If return fluxes are ignored and the first method
chosen, the turnover time used in egs. (4) and (5)
to derive the mass response function H(z,t) is
calculated from the total CO, mass (M(¢)) and the
gross flux out of the atmosphere (F(z)) as
described in Section 3. As pointed out in the IPCC
report (Watson et al., 1990), this turnover time for
atmospheric CO, is about 4 years. The expected
lifetime (reflecting an average turnover time) is
therefore also about four years and answers the
question: how long, on average, does it take for
CO, molecules to pass once through the atmo-
sphere before being taken up by the oceans or
terrestrial biosphere?

However, the more interesting question is: how
long does it take an amount of CO, added to the
atmosphere to distribute throughout all the reser-
voirs in the system? Answering this question
requires considering the net flux of CO, out of the
atmosphere, thereby accounting for CO, which
may have previously left the atmosphere but is
now returning. The impulse response function
H(z, t) must be redefined as the fraction of a pulse
of CO, mass added to the atmosphere remaining
as a function of age, regardless of how many times
individual molecules making up that extra mass
have passed through the atmospheric reservoir
since they were emitted.

This function cannot be derived using egs. (4)
and (5) as can the removal function for reservoirs
without return fluxes since the turnover time of the
reservoir reflects only gross removal. Instead,
H(z, t) must be estimated from model experiments
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(Maier-Reimer and Hasselmann, 1987; Sarmiento
and Orr, 1992; Caldeira and Kasting, 1993). In
general, H(z,t) is a function of time, since the
carbon cycle is nonlinear. However, if a linear
approximation is made, it is constant in time and
is termed the Green’s function of the system. With
the response function the distributions in egs.
(6)—(8) and the relevant timescales may be
calculated.

Interpreting H(z, t) for the redistribution of
CO, in terms of a transit time distribution of
specific molecules requires examining the pro-
cesses governing transfer between reservoirs. Con-
sider, for example, the addition of a pulse of CO,
to the atmosphere. Assume the molecules making
up this pulse are all labeled so that their individual
fates may be tracked (e.g., they may be radioactive
“CO, molecules if fractionation effects during
transfers between reservoirs are ignored). If the
carbon cycle were linear, with all fluxes propor-
tional to the reservoir masses, the decay of the
labeled molecules as they redistributed throughout
the system would be exactly the same as the
decay of the excess CO, mass in the atmosphere
(Jacquez, 1985). This is a consequence of the
linearity (and proportionality ) of the fluxes, which
allows one to consider the unlabeled (equilibrium)
molecules separately from the labeled (excess)
molecules. The net change in the number of
unlabeled molecules in the atmosphere will always
be zero; thus the decay of the excess mass is
entirely attributable to the decay of the labeled
molecules.

However the carbon cycle is nonlinear, in par-
ticular through the oceanic buffer factor. Even if
the approximation of a constant buffer factor is
made, the flux from the ocean to the atmosphere is
linear but not proportional to the total carbon
mass in the ocean (Rodhe and Bjorkstrém, 1979).
As a result, the equilibrium partitioning of carbon
among all reservoirs is a function of the total
carbon in the system in such a way that the addi-
tion of CO, to the system shifts proportionately
more carbon to the atmosphere. Therefore when a
labeled pulse of CO, is added to the atmosphere,
the number of unlabeled molecules increases as
carbon shifts from the oceans to the atmosphere.
At the same time, the number of labeled molecules
decreases as they distribute throughout the other
reservoirs. The result is that the decay of the excess
atmospheric mass will be slower than the decay of

Tellus 46B (1994), 5

383

labeled molecules since it will also include the
effect of molecules shifting from the oceans to the
atmosphere as result of the increase in total carbon
mass in the oceans. It is for this reason that the
removal of atmospheric '*CO, cannot be equated
with the decay of anthropogenic CO,.

Thus any impulse response function derived
from a carbon cycle model including the buffer
factor and/or any other nonlinearities must be
defined as the fraction of a particular emission
remaining in the atmosphere as a function of age,
where that fraction may be made up not only of
molecules which were part of the original emission
but also of molecules which have transferred to the
atmosphere as a result of that emission. The con-
cepts of “age” and “transit time” of molecules mak-
ing up this response function must take on a more
liberal definition. The age of a labeled molecule
remains straightforward: the time since emission
into the atmosphere, regardless of the number of
times it has passed through the atmospheric reser-
voir. The age of unlabeled excess CO, which has
shifted to the atmosphere as a result of an emission
is the time since that emission. In this way, the
transit time distribution of a pulse of CO, (eq. (8))
consists of the net number of molecules in the
atmosphere as a result of the pulse which are exit-
ing the atmosphere with age 7.

5. Timescales for atmospheric CO, from data
and models

The results of the preceding sections may be
applied to CO, by using historical emissions and
concentration data and impulse response functions
derived from carbon cycle models.

As pointed out in the previous section, the turn-
over time for the entire mass of atmospheric CO,
is about 4 years and corresponds to considering
only the gross flux out of the atmosphere.
However, in relation to global warming it is the
behavior of the excess CO, above the pre-
industrial value (M.,) of 280 + 10 ppm (Watson
et al., 1990) which is of more interest. Following
eq. (1a), we therefore define the turnover time of
excess CO, as AM(t)/AF(t), where AM(t)=
M(t)— M, is the excess CO, and AF(t)=
F(t) — R(t) is the net flux of CO, out of the atmo-
sphere (F(t) is the gross flux out and R(z) the
return flux from all other reservoirs). In practice,
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AF(t) can be computed from the mass conserva-
tion equation for anthropogenic CO,, AF(t)=
L(t) — AM(t), where I,(r) is the anthropogenic
emissions data.

Fig. 1 shows the turnover time, (7, 4.1, plotted
as a dotted line over the period 1959-1989)
calculated from data on anthropogenic CO, emis-
sions from industrial activity (Keeling, 1991;
Marland and Boden, 1991) and land use change
(Houghton, 1991), and atmospheric levels (Keel-
ing and Whorf, 1991). It has been relatively con-

stant at about 30 years since at least 1960, with
superimposed interannual fluctuations corre-
sponding to El Nifio events (Quinn et al., 1987)
reflecting a decrease in net CO, uptake by oceanic
and terrestrial processes combined (Keeling et al.,
1989). This constancy mirrors the behavior of
the airborne fraction, a measure of excess CO,
removal closely related to the turnover time
(Ekdahl and Keeling, 1973). Using industrial
emissions alone yields a turnover time of about
60 years over the same period. This 30-60 year

200 :
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Fig. 1. Open circles connected by a dotted line show the turnover time of excess CO, in the atmosphere calculated
from concentration data and estimates of emissions from fossil fuel burning and land use change. Solid lines are reser-
voir timescales calculated by modeling CO, removal with the impulse-response function derived from the oceanic
GCM of Maier-Reimer and Hasselmann (1987) and using the same anthropogenic emissions data. 7y, 7,, and 7, are
the turnover time, mean age, and mean transit time, respectively. 7., is the expected lifetime of CO, entering the
atmosphere, while 7,4; is the average time necessary for the atmosphere to reach equilibrium after emissions are shut

off.
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value is a model-independent estimate of the
instantaneous net removal rate of excess CO,.
Although the turnover time of the excess is much
larger than the turnover time of the total CO,
mass, this does not imply that there are two dis-
tinct populations of CO, molecules with different
behaviors. The fraction of CO, molecules removed
from the atmosphere each year is always given
by the inverse of the turnover time of the whole
mass, regardless of whether the molecules are
anthropogenic or not. The turnover time of the
excess mass is larger because it is based on the net
removal; net removal is slower because it takes
into account the return flux from other reservoirs.
To calculate all other timescales, model-derived
impulse response functions are required in order to
define the relevant age or transit time distributions.
The calculation is, in general, complicated by the
nonlinearity of the system; i.e., each emission must
be convolved with a different response function
due to nonlinearities in ocean uptake (Caldeira
and Kasting, 1993) and the terrestrial biosphere
(Moore and Braswell, 1994). For simplicity, we
will take an impulse-response function derived
from the abiotic oceanic general circulation model
of Maier-Reimer and Hasselmann (1987) and
assume the carbon cycle is linear. While this
approximation clearly makes the numerical values
of derived timescales only approximate, it allows a
more transparent demonstration of timescale
calculations. The response function, which was
determined by a multiple-exponential fit to the
response of the model to a spike in emissions, may
be considered a Green’s function and is given by:

4
G(t)=a.+ Y ae™*", 9)

i=1

where a, , = (0.131, 0.201, 0.321, 0.249, 0.098) and
kos=1(0, 1/3629, 1/73.6, 1/17.3, 1/1.9). All dis-
tribution-based timescales may be calculated using
this function combined with estimates of past
CO, emissions in eqgs. (6)-(8) (assuming
H(z, t) = G(7)). In addition, G(7) may be used in a
convolution integral to calculate the atmospheric
CO, mass and flux out of the atmosphere (Wigley,
1991), and therefore the turnover time.

Results are shown in Fig. 1. It is apparent that
the model’s turnover time is too long compared to
the real atmosphere; ie., the model removes a
smaller fraction of the anthropogenic CO, mass

Tellus 46B (1994), 5

385

than does the real carbon cycle and therefore does
not reproduce well observed levels of atmospheric
CO,. This fact was discussed by Wigley (1991; see
also Wigley and Raper, 1992) and is likely due to
the model’s lack of biological processes.

The mean age of anthropogenic CO, is about 30
years, where age is defined as the average time
since the causative emission for all CO, in the
atmosphere which was either directly released by
human activity or is in the atmosphere as a result
of such releases (see Section 4). The mean transit
time is about 15 years, and indicates the average
age of the net flux of excess CO, out of the atmo-
sphere. The transit time is different from the mean
age even though the reservoir is well-mixed since
these timescales are based on net fluxes. The shor-
ter transit time reflects the form of G(7) as given in
eq. (9), which indicates that net removal of CO, is
fastest just after emission and slows with age; thus
the transit time distribution of outgoing flux is
biased toward “young” CO,. The age and transit
time are 25 and 13 years if emissions from fossil
fuel burning alone are used.

Fig. 1 indicates that all reservoir timescales have
become asymptotically constant. This behavior is
due to the exponential form of the emissions forc-
ing and removal function, which causes M(f) to
increase exponentially and the normalized age dis-
tribution (‘¥(z, t)/M(t)) to become asymptotically
stable. 7, reflects the average age of the
predominantly “young” anthropogenic CO, mass;
its value is a function of both the emissions and the
Green’s function. Likewise, the turnover time
becomes constant since the removal rate as a func-
tion of age is time-invariant and the age distribu-
tion becomes stable.

It is because of the asymptotically constant
behavior of the turnover time observed over the
past several decades that a single exponential
response function with a decay constant approxi-
mately equal to the asymptotic value of 7,(#) can
reproduce the atmospheric data well. Fig. 2 shows
the results of a model using such a single-exponen-
tial removal function for the years 1850-1989.
The model produces the atmospheric CO, level
(M(1)) from the equation AM(t) =I,(¢)-AM(t)/z,,
where AM(t) = M(t) — M, . I(t) is anthropogenic
CO, emissions, taken here as industrial emissions
and emissions from land use change. M.y, 7.,
and M(1850) are treated as free parameters and
allowed to assume values for which the best least-
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Fig. 2. Open circles are data on atmospheric CO, levels
from Mauna Loa (1959-1990) and from the Siple ice core
(Neftel et al, 1991). The solid line is the output of a
model which removes CO, from the atmosphere with a
single, constant removal rate equal to the inverse of the
turnover time. As noted in the text, the quality of the fit
does not necessarily imply that there is one constant
removal timescale acting on atmospheric CO,; rather, it
is more likely that the net action of several removal pro-
cesses has become constant as a result of the exponential
form of emissions (see Fig, 1).

squares fit of M(¢) to the data is achieved. This fit
does not imply that the Green’s function of the real
carbon cycle is a single exponential. Rather, as
indicated by Fig. 1, it means only that the turnover
time of the system has become constant, which is a
result of the exponential form of the emissions
history. Using industrial emissions alone produces
a best-fitting output with t,=425 years and
M., =295.3 ppm.

6. The atmospheric lifetime of CO,

The “lifetime” of CO, has been estimated by
various techniques and yielded values ranging
from decades to centuries. Each estimate also
defined “lifetime” in different ways.

In reservoir theory, the expected lifetime of a
particular emission has a precise definition given
by eq. (1d). It is the average transit time of flux
entering the reservoir, calculated using the impulse
response function as in eq.(8). The impulse
response function does not have to be a single
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exponential decay in order to calculate this
average; the single exponential form is merely con-
venient since the decay constant turns out to equal
the average transit time. The only requirement for
calculating a true average is that the integral
in eq.(1d) converge. Unfortunately, impulse-
response functions from carbon cycle models do
not generally converge over timescales of cen-
turies, as indicated by the a, term in eq. (9).

Several strategies have been used to circumvent
this problem. Lashof and Ahuja (1990) chose to
assign the a, term an arbitrary decay constant,
effectively discounting future CO, concentrations,
and then calculated a 230-year average transit time
implied by this new function. Moore and Braswell
(1994) and Rodhe (1990) ignored the long-term
response, focusing instead on short-term removal
and quoting a “single half-life” and an “e-folding
(1/e) time” of about 30 and about 120 years,
respectively. Edmonds et al. (1990) concluded that
because impulse response functions indicate that
CO, is removed more and more slowly with age,
the “lifetime” (which they define as the instan-
taneous net removal rate of a particular emission)
is a function of time and ranges from decades to
centuries. The IPCC report {Watson et al., 1990,
Shine et al., 1990) offers no rigorous definition of
lifetime; for the purpose of defining Global Warm-
ing Potentials, it instead presents integrations of
impulse-response functions over several finite time
intervals. Each of these estimates has its own
strengths and weaknesses. Taken together,
however, they create confusion over what
“lifetime” means, how to calculate it, and how it
relates to other timescales.

Eq. (1d) suggests an alternative definition which
is consistent with the traditional concept of lifetime
as an average transit time. The distribution of
transit times used in its calculation given by eq. (8)
automatically excludes that fraction of material
which never leaves the reservoir. Thus, the expected
lifetime of CO, may be calculated as the average
transit time of all CO, which eventually leaves the
atmosphere. For the function G(z) given by eq. (9),
this average is 116 years. We may therefore say
that according to eq. (9), for any emission of CO,
to the atmosphere, a fraction equal to a, will effec-
tively remain indefinitely and the rest will stay in
the atmosphere an average of 116 years.

It is important to note that this expected lifetime
calculated from the Green’s function of a carbon

Tellus 46B (1994), 5
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cycle model is not equal to the time required for
the excess atmospheric CO, mass to adjust to a
new equilibrium after emissions are shut off. This
“adjustment time” may be defined similarly to the
expected lifetime: it is the average transit time of
excess CO, already in the atmosphere when emis-
sions cease, measured from the moment emissions
are shut off, and excluding that fraction which
remains indefinitely. The IPCC report describes
lifetime as equivalent to the adjustment time
(Watson et al.,, 1990); however, it can be shown
(Tubiello et al., submitted) that even if the carbon
cycle is assumed linear, its adjustment time may be
50-90% greater than the expected lifetime of a
single emission added at equilibrium. Fig. 1 shows
the evolution of the adjustment time of the model
represented by eq. (9) as a function of the emis-
sions history. Since it is an average transit time,
this timescale is based on egs. (1d) and (8), except
that the response function must be the response of
the entire excess CO, mass to the emissions
shut-off, not an impulse response function. For
a detailed discussion of adjustment time, see
Tubiello et al. (submitted). Fig. 1 indicates that
according to eq. (9), if emissions ceased in 1990 it
would take an average of 175 years (not 116 years)
to adjust to the new equilibrium level.

7. Discussion and conclusions

A growing array of timescales are being
extracted from carbon cycle models and data and
their relationships have not been clear. In par-
ticular, model atmospheres forced with historical
emissions data require a 30-60 year turnover time
to match data on atmospheric levels, while much
longer timescales are being extracted from multiple
exponential impulse-response functions derived
from carbon cycle models. This discrepancy has
not been adequately explained and is causing con-
fusion in literature concerned with the atmospheric
“lifetime” of anthropogenic CO, (Victor, 1990;
Edmonds etal, 1992). Considering the policy
implications of such numbers, it is important that
their meanings and relationships be fully clarified.
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We suggest that the only basis for such a
clarification is age-distribution theory for reservoir
timescales away from steady state. This formalism
can unify seemingly diverse timescales and clearly
distinguishes between timescales calculated from
gross and net fluxes. We have also used reservoir
theory to derive a more general result which quan-
tifies the difference between turnover time and
transit time away from steady state for any mixing
process. Many geophysical studies implicitly
equate the two numbers and use the turnover time
when they actually need the transit time. Our
eq. (3) will be useful in assessing the error intro-
duced by such an assumption.

Clearly defined timescales should also be useful
in addressing policy issues related to global warm-
ing. For example, it has been suggested that
cumulative surviving emissions disaggregated by
region be used to proportion responsibility for the
present accumulations of greenhouse gases (Smith,
1991; Parikh, 1992). The IPCC “lifetime” has been
used to choose the necessary period of integration.
However, the most appropriate period for deter-
mining surviving emissions is given by the average
age. For CO,, regional emissions data over the
past 30 years may suffice.

In addition, a major program determining the
atmospheric “lifetimes” of halocarbons (Prinn
et al, 1983; WMO, 1992) has long been underway.
Reservoir timescale theory applies equally well to
halocarbons, nitrous oxide (Watson et al., 1990)
and methane (Prather, 1994; Osborn and Wigley,
1994), and any comparison of the atmospheric
lifetimes of different greenhouse gases must use a
consistent definition to be meaningful. Also, care-
ful consideration will need to be given to the choice
and use of a particular timescale for the purpose of
developing “Global Warming Potential” indices.
The model-independent turnover time (z,,), as amea-
sure of the short-term removal rate of CO,, may
prove useful as part of an alternative measure of
warming potentials. Additionally, timescale dynam-
ics in response to changes in emission patterns and
nonlinear climate effects must be understood to
ensure their proper use in any economic index.
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