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Fig. 12.2. Two alternative sampling strategies for adequate diurnal sampling.

variations, because it produces the strictest requirements. Proper diurnal sampling insures proper
sampling of larger synoptic and planetary wave motions as well,

Global coverage and diurnal sampling cannot be satisfied by observations from one satellite
{cf., Salby, 1982). A satellite in a polar orbit can view the whole Earth because of Earth’s rotation,
but the sampling lrequency is only twice per day for orbital altitudes between 400-1000 km. The
view from a satellite in an equatorial orbit js limited to low latitudes, but the sampling frequency can
be more than 10 times per day. Geostationary orbits are special cases, where the view is restricted
in both longitude and latitude, but the sampling frequency is limited only by instrument capability.

Figure 12.2 illustrates the sampling from two sets of orbits that provide global observations
which adequately resclve diurnal variations. The simplest, direct method requires three sun-
synchronous polar orbiting satellites with over{light times about four hours apart (Fig. 2, left panel)},
each providing two daily samples separated by 12 hours local time (Salby, 1982, 1588b, 1989), The
major drawback of this approach for Climsat is that such polar orbits do not provide lower latitude
coverage for the SAGE observations, SAGE, unlike most other instruments, must view the sun or
moon at Earth’s limb (see Section 8); this viewing geometry constrains observations to high latitudes
from a polar orbit.

The observing scheme proposed for Climsat {Fig. 12.2, right panel) has only two satellites;
one in an inclined orbit which precesses relative to the sun and one in a sun-synchronous polar orbit.
The precessing orbit, inclined 50-60° 10 the equator, provides daily observations at two local times,
separated by 12 hours, that vary slowly during the month (slanting lines). Cbservations from this
orbit provide a statistical sample of diurnal variability at all latitudes where it is significant
(McConnell and North, 1987, Shin and North, 1988; Bell er al., 1990). The sun-synchronous orbit -
provides (wo daily observations over the whole globe at fixed diurnal phases, which allows {or separa-
tion of diurnal variations from other oscillations with periods near one-half month (Harrison et af.,
1983). A similar sampling scheme was successfully used in the ERBE mission {Brooks er al., 1986).

When observations are made in the nadir direction [rom this pair of orbits over one day, they
cover the globe with an effective spacing of about 500-~1000 km; Fig. 12.3 shows the orbits projected
onto Earth’s surface, called the ground tracks. The polar orbiter completes about 14 orbits per day
with ground tracks that can be precisely repeated or their longitude can oscillate slightly over several
days. The inclined orbiter also completes about 14 orbits per day, but the ground track precesses 5-6°
of longitude per day so as to sample diurnal variations. This arrangement of orbits also permils solar
occultations at all latitudes for SAGE (Fig. 12.4 shows the distribution of observations). Lunar
occultations by SAGE III will increase the density of observations by about 50% over that shown in
Fig. 12.4.
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Tests of Climsat Sampling

To test the Climsat observing strategy, real global observations and GCM calculations of
several quantities are sampled using actual time records of the satellite ground tracks illustrated above.
Samples are collected into global maps and averaged over time and space. Sampling errors are
estimated from the differences between the monthly, regional mean values obtained from the sampled
and original (taken to be "truth") datasets. The sampling test using real observations directly
determines the accuracy of Climsat measurements of monthly, regional averages in the presence of
realistic variations in time and space (cf., Section II). The sampling test using a GCM simulation of
transient climate change allows a direct test of climate change detection, where the key problem is
measuring the change in the presence of large natural variability (e.g., Oort, 1978 and Hansen and
Lebedeff, 1987, used GCM simulations to test sampling, cf., Section 1).

Ground tracks are from NOAA-9 (polar orbiter}and ERBS (inclined orbiter), giving positions
every f[ive seconds (about 30 km) over one month. The global observations are high resolution (30
km) measurements of cloud and surface properties every three hours for two Januarys and two Julys,
obtained by the International Sateliite Cloud Climatology Project (ISCCP) from weather satellite data
{Rossow and Schiffer, 1991). Another dataset contains daily satellite measurements of humidity
profiles at about 250 km spacing over the globe.

The climate change simulation is performed with the GISS GCM (Hansen et af_, 19813), which
has 8" x 10° horizontal resolution and nine levels in the troposphere. The experiment simulates the
transient climate changes produced by a linear increase of greenhouse gases (Scenario B, Hansen et
al., 1988); the ¢limate change between 1958 and 2005 is used to test the Climsat sampling, since the
global mean temperature change of 0.8°C is similar to the projected change from 1995 to 2015.
Samples are collected from three hourly distributions of surface air temperature and vertical profiles
of atmospheric temperature and specific humidity in the summers of 1958 and 2005. Sub-grid
variations are represented by a bi-linear interpolation among the nearest model grid values to each
sample point. In addition, random noise is added to each sample to represent both smaller scale
variations and measurement errors: a Gaussian distribution i1s used, truncated at four standard
deviations from the peak, with one standard deviation equal to 2°C for temperatures and equal to 30%
of the local mean value for specific humidities at individual locations and altitudes.

Nadir observations are sampled at a spacing of about 30 km along the ground tracks. To
simulate the same statistical weight obtained [rom multiple fields-of-view {FOV), an additional 6-9
samples around the nadir point are collected from the ISCCP dataset, but not from the GCM. Cross-
track scanning is also tested on the GCM data by collecting about 200 points equally spaced on a line
perpendicular to the satellite track at each nadir point. Since both the ISCCP and GCM datasets are
composed of global maps at three-hour intervals, about 2200 nadir point samples are¢ collected from
each map.

In the tests using the ISCCP data, samples are taken directly from the population of individual
satellite image pixels in the ISCCP dataset, so there is no "measurement error’. Essentialiy, the
sampling procedure isolates a subset of the ISCCP pixels {themselves, a sample of the original satellite
measurements in FOVs about 5 km is size) that are concentrated at the locations and times defined
by the orbit ground track time record, Monthly mean values obtained {rom the subset are compared
to averages over the whole ISCCP population.

Sampling tests were conducted {or surface temperature and reflectance, column abundances
of ozone and water vapor, vertical profiles of temperature and specific humidity in the troposphere
and stratosphere, and cloud properties. For brevity, only the resuits for cloud amount, surface air
temperature and tropospheric humidity are shown. Cloud amount is highlighted because its very large
natural variability in both space and time makes it one of the mast difficult quantities to monitor
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accurately. Surface temperature is tested because it has been the primary variable monitored lor
change and has the best understood sources of error. Water vapor is included both because it is highly
variable (though not as variable as cloud cover) and difficult to measure, especially in the upper
troposphere, so a large rms measurement error of 30% is included for each sample. The resulis show
that the Climsat sampling is more than adequate to monitor likely changes in these quantities,

Sampling Clouds. Cloud amount is determined by counting the (raction of satellite FOVs
(pixels) in a map grid cell that are inferred to contain clouds. In other words, the cloud amaunt for
a single pixel is either ¢ or 100%, For ISCCP the original FOVs of about 5 km size have been sampled
to a spacing of 30 km; however, this sampling preserves the statistics of the original radiance
variations (Séze and Rossow, 1991a.b). Cloud amount is determined for a map grid with a resolution
ol about 230 km and has been shown to be accurate to within 5-10%, even for the most difficult cases
(Wielicki and Parker, 1992; Rossow and Garder, 1993).

The frequency distribution of cloud amount, as determined from the ISCCP three-hourly dala,
is bimodal {(Rossow and Schiffer, 1991). The bimodal shape (Fig. 12.5, left panel) is nearly constant
for data resolutions of 30-280 km, where only about 5-25% of the cases represent cloud cover
variations at scales <« 280 km {(Rossow and Garder, 1993),

‘The bimodal distribution of cloud amounts means that the natural variability of cloud cover
is very large and that sampling error can be very large, since the distribution can be thought of as a
probability distribution for a single sample (Warren e: al., 1986, 1988). The standard deviation of the
distribution in Fig. 12.5 is about 30-35% (Warren et al., 1986, 1988 give values of about 40%), so that
more than 1000 samples are required to reduce the sampling uncertainty below 1% (cf. Warren e al.,
1986, 1988). Thus, a test of the Climsat sampling on cloud amount 1s a very strict test,

The accuracy of the monthly mean cloud amouni determined from a nadir-viewing, non-
scanning instrument in the Climsat orbits is shown on the right side of Fig. 12.5 as the frequency
distribution of the sampling errors in individual map grid cells. Reducing the map grid resolution
from 2.5° to 10° narrows the range of errors (e.g., the standard deviation of the errors for January
1987 decreases from 7.8% to 3.3%) as does increasing the averaging time period from one month to
one season (standard deviations for three month averages decrease to 4.7% {or 2.5° map grid and to
2.1% for a 10° map grid). The sampling error for global, seasonal mean cloud amounts from the
Climsat orbits is less than 0.5%.
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Sampling Surface Temperature and Atmospheric Humidities. A direct test of climate change
detection is provided by using the orbital ground tracks to sample the GISS GCM simulations of
changes in the summer climate between 1958 and 2005 forced by a linear increase of CO, (Hansen et
al., 1988). The model global mean temperature increases by 0.8°C, the vertically integrated specific
humidity increases by 7% and the upper tropospheric specific humidity increases by 17% over this
time interval {Table 12.1). Three-hourly output is sampled using the same orbit ground tracks, the
monthly or seasonal mean values are computed, and the difference between 2005 and 1958 are
formed. These sampled climate changes are compared to those obtained using the full model outputs.

An estimate of the magnitude of variations at scales smaller than the GCM grid is provided
by observed correlation distances and the scatter of surface temperatures and lower troposphere
humidities (Fig. 12.7). The rawinsonde data are from the lower 48 contiguous US states and include
all monthly means from January 1978 through December 1982 (D. Gaffen, Ph.D. thesis - see Gaffen,
1992: Gaffen er al., 1991, 1992}, Correlations of monthly anomalies of 850 mb temperature and
dewpoint (a good predictor of surface to 500 mb precipitable water - ¢f., Galfen er al., 1991; Liu &
al., 1991) as a function of the separarion distance indicate that significant variations of these
quantities {dashed lines indicate the 95% significance levels) occur at scales > 300 km. Thus, the
dominant variations of these variables are associated with synoptic scale motions which are almost
resolved by the GCM grid. Smaller scale variation has been represented by bi-linear interpolations
to each sample point between the GCM values at the grid box centers with added random noise. This
approach overestimates the amptlitude of smaller scale variations but also underestimates the
correlations.

Figure 12.8 shows the effects of sampling on estimation of changes in June mean surface air
temperature, Figure 12.8a shows the model predicted changes between 1958 and 2005 and Fig. [2.8b
shows differences measured with Climsat sampling. Figure 12.8c shows the differences between Figs.
12.82 and 12.8b (sampling error), while Fig. 12.8d shows the sampling errors with cross-track
scanning. Table 12.] shows that the sampling errors for a non-scanning instrument are about 0.4°C
rms, which produces an error in the global mean temperature of only 0.02°C. Both of these are
several times smaller than the predicted changes. Figure 12.9 shows the geographic distribution of
predicted June humidity changes and sampling errors for the upper troposphere. These results (Table
12.1) show that the Climsat sampling errors for non-scanning instruments are about 12% rms and only
-1% for the global mean, significantly smaller than the predicted changes.

Figure 12.102 shows the GCM-predicted changes in summer zonal mean specific humidities
as a function of latitude and pressure and Fig. 12.10b shows the changes estimated with Climsat
sampling. Figures 12.10c and 12.10d show the absolute sampling errors and the relative sampling

Fig. 12.7. Scatter diagrams
of time record correlation
coefficients for temperature
and moistura against weather
station separation distances.
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TABLE 12.1. Changes between summer 1958 and 2005 in globally averaged surface air temperatura, vertically
integrated and upper tropospharic specific humidities as predicted by the GISS GCM compared with sampling
errors using a nadir-viewing instrument in Climsat orbits with and wilhout cross-track scanning.

Global Mean Values Root Mean Square
Climate Change (%) {%)
Surface Air Temperature (°C) 0.80 — 2.06 -
Vertically Integrated Specilic 0.15 719 0.25 9.47
Humidity (g/kg)
Upper Troposphere Specific — 17.23 - 47.18
Hurnidity {g/ka)
Sampling Error {No Scanning)
Surdace Air Temperature (°C) 0.02 - 0.43 —
Vertically Integrated Specific 0.003 0.001 0.03 1.33
Hurnidity (g/kg)
Upper Troposphere Specific — £96 - 11.74
Humidity {g/kg}
Sampling Error (With Scanning)
Surface Air Temperature (°C) 0.02 - 0.36 -
Upper Troposphere Specific — -0.05 — 11.33

Humidity (g/kg)

errors expressed as a percentage of the "true" ¢limate change in Fig. 12.10a. The model predicted
changes are largest in the upper troposphere and lower stratosphere and are about an order of
magnitude larger than the sampling errors {(¢f., Table 12.1).

The counter-intuitive result that sampling with scanning instruments does not produce
significantly smaller errors than with non-scanning instruments (Figs. 12.8 and 12.9, Table 12.1)
focuses attention on the difficulty of detecting climate changes. The main problem is that the natural
variability of climate parameters, even on interannual time scales, may be larger than the climate
changes predicted to occur over a few decades (Hansen et 4/., 1988; Manabe er al., 1990; Lorenz,
1990; Karl et al., 1991). Some of the interannual variability in datasets is, in [act, residuval error
caused by sampling of synoptic variations of the atmosphere and surface. Thus, the limit on
measuring climate changes accurately is determined by the magnitude of these natural variations,
which can be considered the intrinsic "noise”. That this is the case with the sampling errors shown
in Figs. 12.8 and 12.9 and Table 12.1 is revealed by three lacts.

First, the spatial patterns of the climate changes, shown in Figs. 12.8a and 12.9a, are similar
in character to the pattern of differences between any two Junes in the GCM control run (no climate
change forcing). In a typical case, the rms regional differences in surface air temperature are about
3.2°C and in upper tropospheric humidity are about 37%, very similar to the rms regional dilferences
in the climate change experiment (Table 12,1}, The global mean differences are, however, much
smaller in the control run comparison (e.g., 0.2°C for surface air temperature and 1-2% for upper
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tropospheric humidity) than in the ¢climate change comparison. Thus, the regional variability shown
in Figs. 12.8a and 12.9a i5 predominately the consequence of different realizations of synoptic
variations in any two months, rather than climate change. Moreover, changes in this regional
variability between two months appear as differences in the global, monthly mean values of any
parameter; in other words, this regional "noise” does nor completely cancel in the global mean.
Consequently, the global mean surface air temperature and upper tropospheric humidity changes are
uncertain by at least 0.2°C and 1-2%, respectively, just because of natural variability.

Second, the sampling errors, shown in Figs. 12.8b and 12.9b, are proportional to the changes
in Figs. 12.8a and 12.9a. This results from the fact that a one month time record of synoptic
variabilily at one location actually represents only about 10~15 independent samples because the
synoplic changes are correlated on time scales of a few days. Thus, for example, a single large storm
event in a particular moenth will both increase the difference between menthly mean values and be
more likely to increase the error in a sampled dataset because the storm 15 a "singular” event with low
probabihity. This effect also explains why the natural variability in surface air temperature is a larger
fraction of the climate change (about 25% of the global mean) than for upper tropospheric humidity
{about 5% of the global mean), since the larger surface temperature variations occur at midlatitudes
with longer correlation times {fewer samples) than the humidity variations which occur in the tropics
with shorter correlation 1imes (more samples).
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TABLE 12.2, Summaery of all sampling tests. Regional averages are from a 10° map grid.

Global Glcbat Regional
Monthly Seasonal Monthly
Averaqge Average Averags (rms})
Surface temperalura (°C} < 0.2 < 01 < 05
Specific hurnidity errors (%}
{vertical integrated) < 0.1 < 0.1 < 20
{upper tropcsphera) < 2.0 < 1.0 < 120
Ozone column abundance (%) < 0.03 < 0.02 < 20
Cloud top temperature (°C) < 0.5 < 0.3 < 1.5
Cloud amount (%) < 0.7 < 0.4 < 30

Third, the space-time distribution of the sampling from scanning instruments is different
from that of non-scanning instruments, particularly at higher latitudes. The different distributions
of the two sampling patterns interact with synoptic variations to produce about the same rms sampling
errors but also cause differences in the measured global, monthly mean values of surface air
temperature and upper tropospheric humidity that are as large as the differences between two months
in the control run. In other words, these two sampling patterns can be considered as two different
realizations of the natural variability, producing similar uncertainties in measured quantities. Thus,
the much larger number of measurements made with the scanning instrument does not significantly
reduce the sampling error which is already dominated by natural variability for the smaller non-
scanning dataset,

These sampling studies confirm that the largest source of uncertainty in measuring climate
change is limited sampling of natural (synoptic) variability, as long as the observing system provides
complete and vniform global coverage and unbiased time sampling. (Even though the GCM tests
assumed very large random measurement errors, the sample population for one month of data, even
for non-scanning instruments, is so farge as to nearly eliminate this source of uncertainty.) Since
synoptic variations are correlated on time scales of a lfew days, the number of independent samples
of these variations that can be obtained in one month (during which the forcing can be considered
constant) is so small that the uncertainty in mean values remains much larger than predicted climate
changes. Likewise, uncertainties in global mean values are not reduced by increasing the spatial
resolution of observations because the synoptic varialions are also correlated on large spatial scales
(cf., Fig. 12.7), which places an intrinsic limit on the number of independent samples that can be
obtained. These correlations explain why the non-scanning sampling from the Climsat orbits is as
good as the scanning sampling. Moreover, even if an observing system provides uniform space-time
sampliing, ordinary problems in operating instruments and compuler systems cause data losses that
produce gaps in spatial and temporal coverage that exaggerate the contribution of the intrinsic noise.
Thus, the only way to reduce this source of sampling error enough 1o measure the predicied decadal
climate changes is to make comparisons between observations averaged over at least 3-5 years in each
of two decades.

Table 12.2 summarizes the results of the sampling studies using both data and GCM
simulations by reporting the largest differences as upper limits on sampling errors. Comparison of
these sampling errors with the accuracy requirements in Section 3 shows that Climsat will generally
be able to monitor plausible decadal changes of the forcings and feedbacks which it addresses (see also
Section 7 and Table 7.4).





