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ABSTRACT

Primordial cosmic turbulence has been suggested in the past as a mechanism for the formation of large-
scale structure in the universe, since it is more efficient than the growth of density perturbations. However,
difficulties arose when it was pointed out that (1) the amplitude of the turbulence required to explain the
large-scale structure would be in conflict with the observed high degree of isotropy of the microwave back-
ground radiation. (2) In addition, following recombination, the turbulence would have become supersonic and
produced too large density contrasts on scales of galaxies and clusters of galaxies. (3) Finally, a difficulty of
fundamental rather than observational nature: the lack of a specific physical process that could have gener-
ated the turbulence in the first place.

In this paper, we argue that inflation naturally provides mechanisms for the direct generation of turbulence
on the same scales on which density perturbations are formed, thus solving problem 3 above. This calls for a
reexamination of the issue of cosmic turbulence since the observational constraints on turbulence (problems 1
and 2, above) could translate into constraints on inflation itself. We find that by the end of inflation, the
amplitude of the generated turbulent velocity has been suppressed by a factor 2 10'°° (this result also applies
to any turbulence assumed to be part of the initial conditions). Thus, inflation guarantees the absence of turb-
ulence on scales of galaxies and clusters of galaxies and avoids difficulties 1 and 2 above. Alternatively, they
constitute an additional support for inflationary cosmology.

We show that the density fluctuations generated by inflation can excite longitudinal turbulence after they
reenter the Hubble radius at later cosmic epochs (at z 2 27z,,). The scales on which this happens are much
smaller than those of galaxies. The largest scale corresponds to a present-epoch size of <6.3 kpc and contains
a mass of 3.6 x 10* M. The smallness of these scales renders the turbulence immune from the observa-
tional difficulties 1 and 2 above. Since the generation of this “secondary” and “smali-scale” turbulence seems
unavoidable, it should be regarded as yet another ingredient of cosmology.

In spite of its small scale, this turbulence can have an important impact on the formation of structure on
scales of galaxies and clusters of galaxies. This is so because any part of the turbulence that survived dissi-
pation by the radiative viscosity will become supersonic following the decoupling time. Shocks collisions
would lead to large density contrasts on the above small scales. Such an early population of objects of mass
<3.6 x 10* M can serve as a seed that could help the growth of density on the scales of galaxies and clus-

ters of galaxies.
Subject headings: cosmology: theory — turbulence

1. INTRODUCTION

Cosmic turbulence has long been suggested as a mechanism
for the formation of large-scale structure in the universe (von
Weizsiacker 1951; Gamow 1952; Nariai 1956a, b; Ozernoi &
Chernin 1968a, b). This idea was further developed by Tomita
et al. (1970), by Kurshov & Ozernoi (1974a, b, 1975, 1976), by
Tanabe et al. (1975) and by Nariai & Tanabe (1978). The hope
was that velocity fluctuations could excite density fluctuations
at a level sufficient for gravitational growth of galaxies to over-
come the cosmic expansion. Moreover, Ozernoi & Chibisov
(1971a, b) suggested that the angular momentum of galaxies
originated from the vortical eddies from which they formed.
Harrison (1970a, 1973) showed that cosmic turbulence in the
radiation-dominated era could have generated a magnetic field
which could serve as a seed for galactic magnetic fields (for a
review of this and other mechanisms for generating cosmic
magnetic fields, see Rees 1987a). This extensive work on cosmic
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turbulence came, to a halt however, because of difficulties of an
observational and fundamental nature.

Perhaps the most serious observational difficulty follows
from the high degree of isotropy of the 3 K radiation observed
on angular scales larger than few arcminutes. This severely
constrains the assumed turbulent spectrum (Anile et al. 1976;
Kurskov & Ozernoi 1978), implying that turbulence could not
have been strong enough to generate density fluctuations at the
levels required for the formation of galaxies and clusters of
galaxies. Another difficulty stems from the fact that, after
decoupling, the turbulence would have become supersonic
forming shocks whose collisions would have produced too
large density contrasts on scales of galaxies and clusters of
galaxies (Peebles 1980).

There were also difficulties of a more fundamental nature
related to the fact that no specific physical mechanism for the
generation of turbulence, or a cosmic epoch at which it was
generated, was suggested. Thus, it was assumed that turbulence
originated at some cosmic time earlier than ¢t,,, which is the
time when the energy densities of radiation and matter were
equal. In the context of big bang cosmology this brings in a
causality problem. Scales that contain a mass equal to or larger
than that of a galaxy and that were at the late epochs (f > t,,)
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within the Hubble radius, I; = cH ™%, must have had a size
larger than the Hubble radius at some early enough cosmic
time. If a spectrum of turbulence is assumed to be part of the
imitial conditions of the big bang cosmology, then no gener-
ation mechanism is needed and all scales are in principle pos-
sible. However, one may wish to avoid such an ad hoc
assumption and instead regard turbulence as having been gen-
erated by some physical mechanism in the early universe. In
this case, only scales smaller than the Hubble radius at the
generation time are possible. This is so because no causal
physical mechanism can operate on scales exceeding the
Hubble radius (Bardeen, Steinhardt, & Turner 1983). At later
times, these scales will have sizes so small as to be irrelevant for
the formation of galaxies.

Inflationary cosmology (for reviews, see Blau & Guth 1987;
Narlikar & Padmanabhan 1991) calls for a reexamination of
the issue since it naturally solves the causality problem and
provides mechanisms for turbulence generation—the GUT
phase transition that initiated inflation, and the quantum fluc-
tuations that generated the density fluctuations. This raises the
question of whether the observational constraints on turbu-
lence imply constraints on inflation itself. In the present work
we find that these turbulent velocities (or relic from the prein-
flation era) were suppressed by a factor = 101°° by the end of
the inflationary phase. Therefore, while inflation can provide a
mechanism for the generation of cosmic turbulence and also
solve the causality problem, it also implies that by the end of
inflation turbulence would have been reduced to an unob-
servable amplitude, thus avoiding the above observational con-
flicts. This is an additional confirmation of the consistency of
inflationary cosmology with observations.

Inflation naturally generates density fluctuations (Blau &
Guth 1987; Narlikar & Padmanabhan 1991). The scale invari-
ant spectrum (Harrison 1970b; Zeldovich 1972) is consistent
with the fluctuations in the temperature of the microwave
background radiation detected recently by COBE (Silk 1992).
This opens an interesting possibility since density fluctuations
can excite turbulence, as shown recently by Batchelor, Canuto,
& Chasnov (1992). Even though the cosmological case is differ-
ent than that considered by Batchelor et al. (1992), the latter
work points to the possibility that density fluctuations could
excite turbulence after they reenter the Hubble radius at later
cosmic times. To investigate this possibility, we extend the
formalism for incompressible cosmic turbulence and derive
coupled equations for density and velocity fluctuations evolv-
ing on a cosmic background. Density fluctuations can excite
longitudinal velocity fluctuations, which in turn, through the
nonlinear velocity interactions, can generate a longitudinal
turbulence.

We study analytically the feasibility of longitudinal turbu-
lence generation by the density fluctuations on the basis of the
time scales of the competing physical processes. We obtain the
necessary conditions which translate into constraints on the
generation epoch and on the maximal possible scale. We find
that the process could have occured at two different epochs. In
the earlier one, defined by z 2 27z, turbulence is generated
on scales that correspond to a present-epoch size smaller than
~6.3 kpc, and contain a mass of <3.6 x 10* M. The ampli-
tude of the generated turbulent velocity is ~0.01c and it is
subsonic at the time of generation. The second epoch is the
postdecoupling era, and the generated scales are smaller: 0.2
kpc, containing a mass of ~1 M. The turbulent velocity is
~2 x 107 % ¢, and it is subsonic.
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The small size of these scales renders the turbulence immune
to the observational constraints imposed by the isotropy of the
background radiation, and by the absence of overdense struc-
tures on scales of galaxies and clusters of galaxies. In spite of its
small scale, this turbulence can have interesting implications
regarding the formation of structure on the larger scales. After
matter and radiation decouple, there is a sharp decrease in the
sound velocity. As a result, if part of the turbulence that was
generated in the earlier epoch survived viscous dissipation, it
will become supersonic. The resulting shock collisions would
generate large density enhancements which could serve as
seeds helping the growth of density on the larger scales of
galaxies and clusters of galaxies.

2. INCOMPRESSIBLE COSMIC TURBULENCE

We briefly review the formalism for incompressible, nonrela-
tivistic cosmic turbulence by Tomita et al. (1970) and Kurshov
& Ozernoi (1974a) based on the work by Nariai (1956a, b). The
energy-momentum densities associated with turbulence are
negligible compared to those of the unperturbed cosmic fluid,
implying a cosmic evolution unaffected by turbulence. The
situation is that of a “passive” turbulence evolving in an
expanding cosmic background. In the radiation-dominated
era, the sound velocity is 37 '/%c > v, the turbulent velocity, so
that the assumptions of quasi-incompressibility and a purely
vortical turbulent velocity are justified. As a result of the sharp
drop in the sound speed after decoupling time, compressibility
can become important.

These authors used a Robertson-Walker metric describing a
spatially flat, homogeneous isotropic universe:

ds? = c?dt® — R¥(t)(dx'* + dx** + dx®?) . )

Indeed, for z 2 z, the spatial curvature term in the dynamical
equation for R(t) is small compared to the matter term. Using
the energy-momentum tensor appropriate to a viscous fluid,
Tomita et al. (1970) obtained a general relativistic gener-
alization of the Navier-Stokes equations

o .o ap

- J = 2 R -2 -1 ____1

IR > A R

dln[(p + p)R®] , _, 0%
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where p, p are the energy density and pressure, respectively, of
the unperturbed cosmic fluid and are functions of time only,
while p, denotes the fluctuating pressure. The unperturbed
fluid four-velocity is U* = §*°. The turbulent four-velocity ' is
related to the physical velocity v/, measured by an observer at
rest in the coordinate system, by v = R(t)u’. Because of incom-
pressibility, the turbulence is vortical

@

WMy, )

The kinematic viscosity v is the radiative viscosity to be dis-
cussed in § 5. In terms of the physical velocity, ¢, equation (2)
takes the form

o' o' dp
L Ry — _¢2R! -1z
T ™ I R i
%' dln[(p + p)R*] i
Oxiox’ ot )
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Using the standard method of correlation functions and
spatial Fourier transforms, it is easy to obtain the equations
describing the time evolution of the turbulent kinetic energy
spectrum E(k) (taken to be isotropic and homogeneous, in
accordance with the homegeneity and isotropy of the
background)

~ OE(K)

i A 2,12
= T(k)+2{R vk? +

dIn[(p + pR*]
T}E(k) )

o

70%(K) = j E(k)dk' (6)

where k is a wavenumber defined with respect to the comoving
coordinates x’, v(k) is the turbulent velocity corresponding to k,
and T(k) is the transfer term representing the nonlinear inter-
actions among eddies of different wavenumbers.

As pointed out by Nariai & Tanabe (1978), the transfer term
is defined in terms of the physical wavenumber k = k/R(t). The
spectral function E(k) and the transfer T(k) in terms of £ are
related to those in terms of k by the relations

E(k) = R@)E(k) , M
T(k) = ROT(K) . 8)

One may use equation (5) provided that T(k) is determined
from equation (8) where the physical transfer is T(k). As dis-
cussed by Tanabe (1981), for the specific form of the transfer
term suggested by Heisenberg (Batchelor 1973), namely
T(k) = [E(k)k]>?, it turns out that

T(ky = T(k) ®
so that equation (8) yields
T(k)y= R 'T(k). (10)

We note that equation (9) is satisfied for a class of transfer
functions defined as functionals of the spectral function and the
wavenumber and satisfying (for any A)

TQE, A~k =T(E, k) . (11)

Therefore, equation (10) will hold also for this class of transfer
terms.

In order for any physical process to operate in an expanding
universe, its characteristic time scale must be shorter than
H~(t). In the case of turbulence, the relevant time scale is that
of the nonlinear interaction among eddies [/v(l), where
I = R(f)n/k is the physical size corresponding to the wavenum-
ber k, and u(l) is given by equation (6), so that the above condi-
tion becomes

o) SH . (12)

For spectra E(k) where I/v(l) is an increasing function of [ (a
condition satisfied by most spectra), equation (12) defines the
largest scale for which the eddy interaction is effective. Scales
exceeding the above limit will be frozen, that is, the velocity
and scale will change only due to the cosmic expansion. In
particular, since () < ¢, this implies that all scales larger than
the Hubbile radius are frozen.

3. TURBULENCE IN THE INFLATIONARY ERA

Let us turn now to the inflationary era (Blau & Guth 1987;
Narlikar & Padmanabhan 1991). The preinflation (classic,
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post-Planckian) universe is radiation dominated with the radi-
ation energy density contributed by all particles that are rela-
tivistic. Inflation started at some initial time ¢; in a region
where the temperature fell below a critical value T, ~ Tgyp ~
10'* GeV. Subsequently, the universe underwent an exponen-
tial expansion

R(t) = Ry 10 | (13)
where 7~ (kT ™! ~3 x 1073% 5. In the course of the
expansion, the temperature decreased exponentially until ¢ =
t, when a phase transition caused a sudden reheating to a
temperature Ty ~ T; ~ 10'* GeV. From this time on, the uni-
verse continued to evolve as a radiation-dominated Friedmann
universe. During the inflationary phase, every scale expanded
by a factor Z given by

Z = elrm1r (14)
where Z ~ 10?5 is the minimal value required for the entire
presently observed universe to be within the Hubble radius at
t=t.

Inflation provides a natural mechanism for the generation of
turbulence. Possible sources are the thermal fluctuations fol-
lowing the GUT phase transition that started inflation, and the
quantum fluctuations in the scalar field that generated the
density fluctuations. When generated, any scale in the turbu-
lence spectrum is within the Hubble radius and thus causally
connected. As the universe expands exponentially, the above
scale crosses the Hubble radius and goes out of causal contact.
These same scales will reenter the Hubble radius and resume
causal contact at some late epoch in the Friedmann phase.
This solves the causality problem.

Thus, inflation naturally solves the two long-standing obsta-
cles faced by cosmic turbulence. However, in what follows we
show that any turbulence generated at that epoch will be sup-
pressed by a factor 2 10'°° when inflation is over, at ¢ = ¢ .

At any given cosmic time t, the generated largest scale of
turbulence cannot exceed the Hubble radius /4(z) at that time.
From equation (13) follows

1y(6) = xg(OR(t) = ct , (15)

where x denotes the corresponding comoving scale. Therefore,
only comoving scales satisfying x < x4(t) can be generated at
the time t. Equations (13) and (15) imply that x,(t) decreases
exponentially, so that at some later time, a given x that was
originally smaller than xg(t), exceeds it and is no longer in
causal contact. In contrast, in a Friedmann cosmology, xy
increases monotonically with time so that any x contained
within it at a given time, will never cross it.

Let t, be the time when some scale crosses the Hubble
radius. For t > t, the above scale is frozen out and cannot
interact with other scales or be dissipated by viscosity. Thus,
equations (4) and (5) imply that it evolves according to

0
= [(p+PR%] =0, (16)
so that
(p + PXOR*t)o(t) = B, a7
with B constant. In the inflationary era
p+p=p,+p,+3p, (18)
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where p, and p, are the vacuum energy density and pressure
responsible for inflation, and p, is the energy density of radi-
ation, respectively. During the inflationary era p, > p,, except
at the beginning and at the end. Moreover, during inflation p,
and p, effectively stay constant and effectively p, = —p,.
Therefore, p, + p, equals the sum of the deviations of p, and p,
from their constant parts. For scalar inflation these deviations
are equal to each other (Narlikar & Padmanabhan 1991).
Thus, the covariant conservation equation for the vacuum
energy-momentum tensor implies that the deviation of p, + p,
from zero satisfies

(19)

so it is decreasing with R faster than does p, occ R™*. Since at
the beginning of inflation, at ¢;, p, ~ p, » (p, + p,) then at ¢,
one has p, > (p, + p,). With this result, evaluating equation
(17) at t, and using p, oc R™*yields

B = 3t Rt ult,) = 3ot)R*@e)ult,) - (20)

After reheating, the universe enters a radiation-dominated
Friedmann phase. Equation (17) still holds with the same value
of B since the velocity field is frozen. Thus,

B= %pr(tf)R4(tf)v(tf) s (21

but T, ~ T;, implying that p(t,) ~ (¢} so that equations {20)
and (21) yield

o(t) = ot JIR(t)/R(z,)]*
= o(t,)Z * < v(t,)107 100,

po+p,cR™®

(22)

where we used equations (13) and (14).

Therefore, any turbulence generated during the inflationary
era will be essentially erased. This conclusion will also apply to
preinflation turbulence, either postulated as part of the initial
conditions or generated in the preinflation era. The supression
is due to the fact that while the temperature and energy den-
sities are roughly the same at the beginning and the end of the
inflationary phase, the scale factor expanded by at least 25
orders of magnitude.

Turbulence generated at the reheating time will not be
erased, but at this time xj corresponds to a scale which at the
present epoch has a size of ~10° cm. Such a scale was a tiny
~10717 fraction of the Hubble radius at the time when the
temperature was 10*° K as to have been completely dissipated
by neutrino viscosity (Weinberg 1971, 1972).

4. COUPLED EQUATIONS FOR TURBULENCE
AND DENSITY FLUCTUATIONS

The universe emerges from the inflationary era with no turb-
ulence but with a density-fluctuation spectrum of the form
suggested by Harrison (1970b) and Zeldovich (1972; see also
Blau & Guth 1987; Narlikar & Padmanabhan 1991). Such a
spectrum is consistent with the fluctuations in the temperature
of the microwave background radiation recently detected by
COBE (Silk 1992).

In the following, we consider the possibility that these
density fluctuations can generate turbulence which in turn can
affect the evolution of the density fluctuations. Turbulence can
also be important in the determination of the transport proper-
ties of the cosmic fluid as well as to excite magnetic fields that
could serve as a seed for galactic magnetic fields. To explore
these topics, one must consider the coupled equations describ-
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ing density and velocity fluctuations. Given the small value of
the density fluctuations they are treated in the linear approx-
imation. As for the velocity fluctuations, we include the nonlin-
ear velocity interaction terms, thus allowing for turbulence.
These terms are important, regardless of the amplitude of the
velocity fluctuations, as long as the eddy interaction time scale
is shorter than the time scales of viscous dissipation and of
cosmic expansion. Qualitatively, density fluctuations can gen-
erate longitudinal velocity fluctuations which in turn, through
the nonlinear terms, can generate longitudinal turbulence.

Following Weinberg (1972), we consider small perturbations
in the metric, the energy density, the pressure, and the four-
velocity. The dissipative terms proportional to the heat con-
duction and to bulk viscosity are neglected and only terms
proportional to the shear viscosity are retained. The unper-
turbed energy density and pressure are denoted by p and p,
respectively. The corresponding perturbations are p; and p,,
respectively. The metric is given as

23

where g9, is the unperturbed metric of equation (1) and h,, is
the metric perturbation. The perturbation in the velocity is
denoted by i, as in § 2. It can be shown (Weinberg 1972) that it
is possible to apply coordinate transformations that do not
change the unperturbed quantities but yield hy, = 0. In the
perturbation equations we retain only linear terms except for
the velocity equation in which we retain, as explained above,
the nonlinear term in the velocities that can give rise to turbu-
lence. The resulting equations are

G =Gy + hyy 5

dp, R o [ h* ow
- — = — — == — 24

o2 R oh* R\ R G
R BY Bl g 2 3p)R?,
a2 *Ra T 2[(1{) RJ m 2 (ot 3p)
(25)
ou' .o _ _ . 8py [@ln(p +p)R*] .
i j < — _¢2R72 Lt S ik VLI A
o TV T TER TR TGS ot “

G .
— 16n = v(p + pyu' + vR™?

% 4 9 h*
X [6xj6xj + YT <2R2)] > (29
where h* = R2h.

Equation (26) differs from equation (2) by terms containing
the divergence of u', by the appearance of the metric pertur-
bation in the viscosity term, and by the appearance of the term
proportional to the viscosity which multiplies the velocity. The
latter did not appear in equation (2), taken from Tomita et al.
(1970), since these authors did not consider perturbations
to the metric in the covariant derivatives of the energy-
momentum tensor of the cosmic fluid. The additional viscosity
term is scale independent. Its magnitude relative to the ordi-
nary viscosity term which depends on the second spatial deriv-
atives of the velocity, for a scale of physical size I, is of the order

of
1672 (o + P2 = 6(1 + B)<L>2 = (6—8)<i> » (27
4 p/\lg In

1 o*ul
3 ox'ox’
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' was used (with the curvature term neglected—which is justified
for times earlier than the decoupling time). The coefficients
6 and 8 correspond to matter-dominated and radiation-
dominated epochs, respectively. In the next section we shall
find that for turbulence generated from density perturbations,
the maximal [ is two orders of magnitude smaller than the
Hubble radius; thus, the new term is not important.
For adiabatic perturbations we have

Py = (”—) Py (29)
[

with the sound velocity v, given by

2

vP==%=c%, (30)

.

where a dot stands for a time derivative.
Applying the conservation equation for the unperturbed
energy-momentum tensor

. R
p=—3§(p+p), (31)

and using equations (29), (30), (31) in equation (24) yields

06 o [ h* ou’
a—t——a(z—ﬁ)—@’ (32)
with
P1
=T 33
p+p ( )

Equation (32) can be used to substitute for #* in equations (25)
and (26), resulting in coupled equations for the density and
velocity perturbations.

26 _Ra G 2 2\ ow
—+2——=4n—(p+p)<1+3z—;>5—<a+2R> -

" “Rot c? ot “RJ)oxi’
(34)

out o _, , 06 dln[(p + p)R*] ,

hoedl iz 2,290 UV TPIR 1o

o TV TR s ot u

G .
—16m — v(p + pp’ + vR 2
c

N o w4 9% (35)
oxiox!  ox'ox! 3 atoxt)”
In terms of the physical velocity v' = R(t}«, but using the same

comoving spatial coordinates, equations (34) and (35) take the
form

ot? Rt~

G
4n 5 (p + p)

v2 o R\ ov
1432} _r (L)
><< +3c2>5 R <6t+R>0xf (36)
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ot Lo _, , 8 dln[(p + p)R*] .
It R 1.5 - = _R 1,.2 — =T C
a Tt Vo U ox o v

G .
— 167 e v(p + pp' + vR™?

&% 0 4 %5
v _ v _%p .
X [6x’6x’ a3 RO 6t6x‘] @7

In the general case, the nonlinear term in the velocities couples
and mixes longitudinal and vortical velocities. However, in the
present case, the density fluctuations excite purely longitudinal
velocity fluctuations. For longitudinal velocity fluctuations,
the nonlinear term in equation (37) that generates the turbu-
lence can be shown to have a zero curl. Thus, also the gener-
ated turbulence will be purely longitudinal. Only if some seed
of vortical velocity fluctuations is present could it be amplified
by the nonlinear interactions with the longitudinal turbulence,
so that a component of vortical turbulence could be generated
also. In what follows, the term turbulence will be meant to
denote the above longitudinal turbulence.

5. GENERATION OF TURBULENCE IN THE
PREDECOUPLING EPOCH

We wish to use the above coupled equations to explore the
possibility that the density fluctuations, after reentry through
the Hubble radius, can generate turbulence. Specifically, it is of
interest to find the epoch at which generation occurs, the size
of the generated scales, the amplitude of the generated turbu-
lent velocity, and the evolution in time of the two coupled
spectra. In order to obtain a detailed and quantitative answer,
the equations should be solved numerically. However, one can
gain quite a considerable insight from an analytic study based
on the time scales of the competing physical processes which
will yield the necessary conditions for the generation of turbu-
lence. These conditions provide the answer to the first three
questions above.

Before deriving these constraints, it is useful to prepare some
expressions and state the assumptions made. The decoupling
of photons from baryons occurs at a temperature of ~3000 K,
corresponding to a redshift z, ~ 10°. The time ¢, when the
energy densities of matter and radiation were equal, corre-
sponds to a redshift

1+ 7, = 43 x 10*Qh3(1 + 0.227N)" ", (38)

where Q is the present density in units of the closure density, 4
is the present value of the Hubble constant in units of 100 km
s~' Mpc~?Y, and N, is the number of neutrino families with
masses $0.3 eV. The numbers are normalized to a tem-
perature of 2.7 K for the microwave background radiation. In
what follows we adopt N, = 2 to allow for the existence of a
tau-neutrino more massive than the above limit. This yields

14 2, = 295 x 10°Qh? . (39)

Inflation implies Q = 1, a value that requires the existence of
dark matter (DM). Standard nucleosynthesis requires
(Narlikar & Padmanabhan 1991)

Q,h? <0026, (40)

where Q, is the present epoch baryon density in units of the
closure density. Since h 2 3, it follows that Q, < 0.1, so that
most of the DM on cosmological scales must be nonbaryonic.
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One should note that nonstandard nucleosynthesis may allow
for values of Q, up to ~ 1, alleviating the need for nonbaryonic
DM (Rees 1987b). In what follows we assume that any non-
baryonic DM present consists of particles that are non-
relativistic at the epoch relevant for turbulence generation. In
this case, one deals with cold DM (CDM) which is decoupled,
except gravitationally, from the baryons and photons. The
cosmic fluid considered for the generation of turbulence,
consists of all particles that are coupled and in thermal
equilibrium. The uncoupled components obey separate conser-
vation equations, and although decoupled, their energy density
contributes to the cosmological expansion. For redshifts
10'° > z > z,, the fluid consists of photons and baryonic
matter while for z < z,, it consists of baryonic matter only.
Neutrinos that were part of the coupled fluid in the early
universe, decoupled at z < 101°.

The time scale of the cosmological expansion is H ™ (z), with
H(z) the Hubble parameter at redshift z. From equation (28) it
follows that

H(z) = H,Q'3(1 + z)*?
14z 1 Lo -—Q 1 )2
x|{1+ 1+ +—— .
1+2z, 1+ 2z, Q 14z

(41)
Inflation requires Q = 1 so that the last term in the parenth-
eses, which stems from the curvature term in equation (28),
vanishes. Even if Q > 0.1, the above term is smaller than 1072
for z > z,. Therefore,

14z \1?2
H(z) ~ H, Q1 + z)3’2<1 + ) . (42)
1+ 2z

Four time scales must be considered. The first is 7, the time
scale for buildup of longitudinal velocity from the density fluc-
tuation. From equation (37) it follows that

100 02

~1 _ 22" Y

BT T ) “43)

where [ is the physical size of the scale generated and o(l) is
the amplitude of the generated velocity; both values are
considered at the time of generation corresponding to the
redshift z.

The second time scale is the one characterizing the buildup
of longitudinal turbulence, namely the time scale of the non-
linear eddy interaction l/v(l). The other two time scales are that
of cosmic expansion H ™!, and 1, that of viscous dissipation on

the scale [:
2
1 _ [
7, —v(l> .

In order for density fluctuations on a scale I to generate a
longitudinal velocity fluctuation it is necessary that

(44)

i >H, 45)
which, upon using equation (43), yields
() <vZoH™*'. (46)

For the generated velocity to excite turbulence, the time scale
of the nonlinear eddy interaction must be shorter than the
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cosmic expansion time scale. Thus,
@ >H 47

which, when combined with equation (46), results in an upper
limit on the scale I for which turbulence can be excited at a
given redshift z, namely,
L g,
ly ¢

(48)

An additional necessary condition follows from the require-
ment that the turbulence generated at a scale ! not be dissi-
pated by viscosity. This requires an eddy interaction time scale
shorter than the viscous time scale 7,

2
%> Aot = AvG) .

where A > 1 is a dimensionless number. In the following, we
normalize A to 10 so that 4 = 104,,. Combining equations
(46) and (49), yields

(49)

vi? < 0.1A;dv26H™, (50)

which is scale independent. This is the necessary condition for
the generation of turbulence.

Let us consider first turbulence generation in the predecoup-
ling era. The dominant viscosity for z > z,, is the radiative
viscosity resulting from scattering of photons by electrons,
given by (Weinberg 1972)

4 [4
=—lic—L—; 1
TE5 T b+ 4730, 1)
where I is the Thomson mean free path
Iy = (opn) ! (52)

and o7 = 6.65 x 107 2% cm? is the Thomson electron scattering
cross section. The electron number density n, is taken to be

n, =

Po_(X +05Y) ~ 088 22 (53)
mpc mpc

where X and Y denote the cosmological abundances of hydro-
gen and helium, respectively, m, is the mass of the proton, and
p, is the energy density of baryonic matter. In equation (53} it is
assumed that matter is fully ionized which is valid for cosmic
times earlier than the decoupling time ¢,. From equations (42),

(52), and (53), it follows that
1+2z\2 12 @
TV —]. (54
1+ zeq> (@) Q, (54)

Let us turn now to the necessary condition equation (50), and
consider first the predecoupling era z > z,. The sound velocity
in this epoch is given by

(v_) _Ll e
c 3p,+ 0
Using equations (51) and (55), one finds from equation (50)

3/4
b 7% 10706, azg P 0
lH py+pb

b 640+ z)-3/2<1 +

Iy

(3

= (1L3-1.7) x 1078, A7,

(56)
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where d, = 10* §. Using equation (54) in equation (56) results
in

Ao Q\? 1+2z )\
1423246 x 104<L) th)-1/3<1+—) . (57
0,6, ( 1+z,

€

This relation sets a lower limit on the redshift at which the
process of turbulence generation can take place. In terms of the
parameter

1+z
= . 58
¢ 1+z, 58

Z QAIO 23 2n-4/3
—_—
(1 C)1/3 A~ 1.38( b64) (Qh ) .

Note that in equations (57) and (59) §, is the value at the time
of generation- of the turbulence. Inflation produces a scale-
invariant density spectrum suggested by Harrison (1970b) and
Zeldovich (1972} in which the amplitude of § is the same for
any scale when this scale reenters the Hubble radius. A scale
that enters the Hubble radius before ¢, grows by a factor
§ = 0(10) up to t,, (Narlikar & Padmanabhan 1991). After this
time, it grows linearly with the cosmic scale factor R(t). Thus
one has

we have

(59)

) =882, (>1, (60)

54@:%53, (<1,

where 83 is the value at reentry through the Hubble radius. The
fluctuations in the microwave background radiation detected
by COBE, are consistent with a value of 8 ~ 0.3.

Applying equations (60) and (61) to equation (59) yields
lower limits on the redshift (expressed by () at which turbu-
lence generation can take place,

(61)

2/3
¢ >o.34( Q4,0 >/(Qh2)“"3, {>1 (62

a+9in~ Q09540

¢ ( Q4,, )2 _
—=—239x 107 —=2-}(QhH) 4, (<1. (63
T+ ¢ X 0,525, Qnr%) { (63)

Using the constraint on Q,, equation (40), derived from nucleo-
synthesis and normalizing 8% to 0.3, equations (62) and (63)
become

¢ >8.8<52S1°>~2/3(Qh2)'2’3, (>1 (64

1+~ 7\034,,
L% gao 22510 _Z(th)‘z (<1 (65)
1+¢7 0.34,, ’ ’

If the dimensionless quantities in the various parantheses are
taken equal to unity, equation (65) has no solution. If one
considers nonstandard nucleosynthesis then Q, ~ 1 for h ~ 0.5
(Rees 1987b). In this case equation (63) yields

{ 89S0\ ?
&> q10[ 2210 1
T+~ 0(0.3A,0 > £<

which, again, has no solution for { < 1. Therefore, we conclude
that { > 1 in which case equation (64) implies that { 2 274,,.

(66)
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For the case of nonstandard nucleosynthesis, equation (62)
yields { 2 114,,. In what follows we use { = 274,,.

Having found that turbulence generation is possible for red-
shifts z 2 274, z,,, let us find the size of the generated scales.
The maximal scale that can be generated is given by equation
(48). Note that v, in equation (55) depends on the photon
energy density p, and the baryon energy density p,. For N, =
2 these are given by

p, =0.69p, , (67)
Q,
Po="3 Pm> (68)

with p, and p,, denoting the total radiation and matter energy
densities, respectively. Use of equations (67) and (68) in equa-
tion (55) yields
CANNED SN S
c) 3+ 145Q,/9)°

The maximal scale is then obtained from equations (48) and
(69), that is,

(69)

1 _a] O4 { 12
EI <10 [? m] . (70)
Since { 2 274,
(] 1/2
l—l;s 10_2(% Slo) : . (71)
The corresponding present-epoch size I(z = 0),
z=0)=1I(1 +2), (72)

is obtained from equations (42) and (71),
0

Iz =0)<$634;4 kpc (é“—

0.3
The mass corresponding to this scale is ~3.6 x 10*4;¢ M,
which is seven orders of magnitude smaller than a typical
galactic mass. Note that the above scale is the maximal
comoving scale that can be generated. Smaller comoving scales
started to be generated at earlier times (larger { values) and
continued to be generated up to the time when the maximal
scale was generated. For each such scale, part of the turbulent
energy is cascaded to smaller scales and part is dissipated by
viscosity. As already stated, numerical solutions are required
to find the detailed evolution of the turbulence spectrum. In
particular, since the radiative viscosity is oc(1 + z)73, it is not
clear whether part of turbulence can survive the dissipation up
to the decoupling time.

We can also estimate the amplitude of the generated turbu-
lent velocity. At any given cosmic time, equation (48) defines
the largest scale for which turbulence can be generated. From
equations (46) and (48) the amplitude of the turbulent velocity
at the largest scale is given by

b~ p,5Y2 . (74)

For this velocity amplitude, the time scale for buildup of veloc-
ity, 1, equation (43), coincides with the eddy interaction time
scale I/v(I). This is to be expected since the largest scales gener-
ated at a given time do not receive energy cascaded from even
larger scales. As the buildup of the longitudinal velocity con-
tinues, 7, increases while the eddy time scale decreases. The

S 10)1/2(9112)‘ (T3
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buildup saturates when the two time scales become equal.
Note that from equations (33) and (74) it follows that the
kinetic energy density associated with the turbulence is
roughly in equipartition with the thermal energy density
associated with the density perturbations.

From equation (74) it follows that at generation, the turbu-
lent velocity is subsonic since < 1. For generation epochs at
redshift z 2 274,42, {{ 2 274,,), equations (69) and (74)

imply that
D oo g )}
10 (0.3 S“’) '

Despite this large amplitude, the turbulent velocity on these
scales does not pose any problems concerning the isotropy of
the background radiation. The scales that can be generated are
more than three orders of magnitude smaller than those on
which the isotropy was observed. Therefore, the problem
facing the original treatments of cosmic turbulence (Anile et al.
1976; Kurskov & Ozernoi 1978) does not exist in the present
case.

(75)

6. TURBULENCE IN THE POSTDECOUPLING EPOCH

Could turbulence be generated at times later than t,? At this

time the relevant fluid consists of baryonic matter only and the”

sound velocity is given by

5 kT, \*?
B (2T g kpoms 12 (76)
c Im,c 14z
where
1+2)\2
T, ~ 77
; <1+Zd> T a7

is the baryon temperature at redshift z < z,, T(z,) ~ 3000 K is
the temperature of the photons and baryons just before
decoupling, and m, is the mass of the proton.

For t > t,, the baryonic matter is neutral to a high degree
and the universe is transparent to radiation because I; > Iy.
The viscosity at this epoch is due to scattering of neutral
atoms, that is

1
v= 5 Ug lb s (78)
with I, the mean free path given by
1
L= . (79
n, oy

where g, ~ 10715 ¢cm? is the relevant cross section (Allen 1973)
and n, is the number density of atoms

Do

ny = =2 (X +025Y) ~ 0.82 L2 (80)
mpc mpc
Therefore,
I, 142\ 3 0
36 x 10713 Q) (=2 8t

As will be seen below, the generated scales are so small that
they reentered the Hubble radius prior to ¢,,. Thus, the density
perturbation J, increased from the first time it entered through
the Hubble radius until the time corresponding to the redshift
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z < z4 80 that
83 {+z 83 14z,
=3ty ~Tla_gglig gpp T
04 =353 810 =8 g3 S = (8D

From equation (82) it foliows that the assumption of small
density perturbations is valid only if z is sufficiently large.
Thus, demanding that § < 0.1 implies that z 2 90.

We wish to apply the necessary condition for turbulence
generation, equation (50), to find whether turbulence gener-
ation is possible in the postdecoupling era. Use of equations
(76), (78), (81), and (82) in equation (50) results in

1+z 8980\ % Q\3
= 1.6 x 1073 2-Le Oh?) Y —
142,707 (0.3A10 @) \g,) - ®

which, for Q, given by equation (40), yields

{423 19( 2510 —2/3(0;12)-1/3
~\034,, ‘

(84

For nonstandard nucleosynthesis, Q, = 1 and h = , one finds
z 2 6.4. Both this and the limit given in equation (84) are
smaller than z = 90; thus they pose no additional constraint
on turbulence generation in the postdecoupling era.

From equations (48), (76) and (82) it follows that the largest
scale that can be generated is given by

I 8 .\
~<19x 1092
e (0.3 S“’)

1 1/2
« (th)”z(l—:—;) , <z,
d

Since for z < z,, I oc (1 + z)~ 32, it follows from equation (85)
that the present epoch size is independent of z:

(85)

50 1/2
Iz = 0) < 0.2 kpc (—“ Sm> , (86)

0.3
which is smaller than that of equation (73) by a factor of ~30
and contains amass of ~1 M.

The amplitude of the generated turbulent velocity is
obtained from equations (74), (76), and (82) to be given by

v 0 1/2 1 +z 1/2
-~2x 107628
T (0.3 ‘°> (1 n z,,)

and is maximal for z = z;. On such small scales one expects
that local flows will be more important than turbulence. From
equations (76) and (87), it follows that for z 2 90, relevant to
our discussion, turbulence is subsonic.

The small values of the turbulent velocity and of the largest
scales are a consequence of the small value of the sound veloc-
ity. On these same scales turbulence has already been gener-
ated in the radiation-dominated era but was dissipated by the
radiative viscosity prior to f,. Since the viscosity in the post-
decoupling era is many orders of magnitude smaller than the
radiative viscosity, equation (50} can be satisfied anew and
turbulence can be generated again on the same scales.

7. DISCUSSION

&7

Inflation can provide a natural mechanism for the gener-
ation of cosmic turbulence and thus motivates a reexamination
of this issue. We have found that by the end of inflation any
turbulence generated during the inflationary phase or in the
preinflation era will be suppressed by a factor 2 10'°°. There-
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fore, the constraints imposed on large-scale turbulence would
not feed back into constraints on inflation itself. This consti-
tutes yet another demonstration of the consistency of inflation
with observations.

The other key result of this work is that the density fluctua-
tions spectrum generated by inflation could excite turbulence
at later cosmic epochs. Because the source that generates the
turbulence is the gradient of the dimensionless density fluctua-
tions, the turbulence is purely longitudinal. Only if a seed of
vortical velocity fluctuations were present, could it have been
amplified by the nonlinear interaction with the longitudinal
turbulence, resulting in a component of vortical turbulence in
addition to the longitudinal turbulence. We find that turbu-
lence generation could have occurred at two epochs. One at
redshift z 2 27z, and the other in the postdecoupling era, z <
z4 In the first case, the largest generated scale has a present
epoch size of ~ 6.3 kpc which includes a mass <3.6 x 10* M.
The amplitude of the generated turbulent velocity is 0.01c
which is smaller than the sound velocity. In the second case,
the generated turbulence is much weaker and its scale is much
smaller, as a resulit of the small value of the sound velocity. The
amplitude of the turbulent velocity is <2 x 107¢ ¢ and the
largest scale is ~0.2 kpc. Turbulence on these small scales does
not conflict with the observed isotropy of the background radi-
ation and with the absence of overdense structures on scales of
galaxies and clusters of galaxies.
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In the postdecoupling epoch, the sound velocity is much
smaller than in the earlier cosmic epoch. As a result, if part of
the turbulence that was generated in the earlier epoch survived
dissipation by the radiative viscosity, it would become super-
sonic and form shocks resulting in large density enhancements.
The latter can grow faster than the density on larger scales for
which turbulence was not generated, and serve as seeds for the
growth of density on scales of galaxies and clusters of galaxies.

Numerical solutions are required to obtain the detailed evol-
ution of the coupled spectra of the density fluctuations and
turbulence. Specifically, they are needed to find if part of the
turbulence, generated in the earlier epoch, would survive
viscous dissipation. The computation of the dissipation, as
function of cosmic time, will allow a quantification of the
expected spectral distortion of the background radiation
(Sunyaev & Zeldovich 1970) and its comparison with the
observational upper limits. Direct numerical simulations are
limited by their ability to resolve a sufficient number of scales.
The possible approaches are large eddy simulations which use
some analytical subgrid model, or spectral models. In future
work, we consider using the latter by applying the EDQNM
model (Orszag 1977; Lesieur 1990) to the present problem.

We thank David Kraft for a careful reading of the manu-
script, and a referee for helpful comments.
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