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Summary. A key quantity needed to model the physics of accretion
disks is the turbulent viscosity vy. Most disks calculations have
thus far used an expression for v; that contains an unknown
quantity, the Shakura-Sunyaev a-parameter. This precludes the
possibility of making theoretical predictions. Astrophysical data
are often used to fix a, which should be calculated by a model of
turbulence.

A successful model to treat fully developed turbulence (the
Direct Interaction Approximation, DIA) was derived from first
principles by Kraichnan in the early 60°s and yet it has not been
used in astrophysical problems like accretion disks or turbulent
convection in stars.

This paradoxical situation may perhaps be explained by the
fact that the DIA equations are rather complex in structure and
time consuming to solve, a difficulty which becomes all the more
serious ,when turbulence is just one component of a larger
problem.

To bridge the gap between the fully predictive but hard to use
DIA and the phenomenological, easy to use, but non-predictive a-
model, we propose a model for fully developed turbulence whose
predictions compare favorably with those of the DIA and whose
main equations are easy to handle.

Using this model, we derive four different expressions for v,
Eqgs. (50) and (56). The four expressions contain no free para-
meters. Two of the expressions are given in terms of properties of
the turbulent fluid itself; the other two are given in terms of the
instability that generated the turbulence and of the properties of
the mean flow (shear). The numerical coefficients entering these
relations are evaluated and found to be in good agreement with
previous theoretical estimates based on a) Kraichnan’s DIA, b)
the Renormalization Group Method, and ¢) Turbulence Model-
ing. In the case of shear in the mean flow, we show that a < 1072,

The four expressions can be generalized to include the effect of
rotation and/or magnetic fields.
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1. Introduction

The existence of gaseous structures surrounding massive objects
has by now permeated the field of astrophysics and planetary
physics. Although the presence of a gaseous, dusty disk around the
young Sun was postulated long ago by Laplace, it was not until
this century that quantitative attempts were made to describe in
detail the structure and evolution of such disks structures. More
recently, the probable existence of disk-like structures surround-
ing compact collapsed objects and binary stars has also signifi-
cantly contributed to current interest in the physics of disks
(Pringle, 1981).

In almost all types of disks of astrophysical interest, the main
problem is that of removing the main component, i.e., the gas, by
causing it to drift outward as well as inward toward the central
object, may that be a black hole or a central star. Since in the
economy of the problem, it is usually assumed that the disk is not
acted upon by external forces, one is forced to search for an
internally generated mechanism capable of initiating the drifting
process. To break the otherwise stable Keplerian motion, “viscous
forces” are often invoked. Since kinematic viscosity is far too
weak to cause a timely dispersal of the gas, it has become
customary to call upon the presence of dynamical processes, like
turbulence, to obtain an “enhanced” or “turbulent” viscosity. The
effect comes about in the following way. If » represents the total
velocity of the fluid under consideration, the Navier-Stokes
equations read

Ov; o  1ap 0

E_*_vja_Jc—jvi—_g@xi_*_B_)cj(vaij)’ (1
_on iy,

Gij_axj+6xi’ 2

where o;; s the stress tensor. Suppose now that the total velocity v
is decomposed into the sum of a mean flow velocity, U, plus a
fluctuating or turbulent velocity, «,

v=U+u. &)

Substituting (3) into (1) and (2), one obtains two coupled
equations for U and u. The equation for Uis known to be, (see for
example, Hinze, 1975)

oU; 0 _1dp
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where 7;; is the Reynolds stress tensor defined as
7= — Uy )

The structure of the mean flow thus depends on the presence of
turbulence, i.e., in order to solve Eq. (4), one needs to have first
solved the turbulence problem so as to be able to evaluate the
Reynolds stress tensor.

Until a satisfactory model of turbulence became available, one
had to make educated guesses about the tensor ;. This usually
meant that one proposed empirical formulae containing one or
more free parameters to be determined later using experimental
data. This approach was proposed long ago to deal primarily with
engineering types of flows, where the main interest is that of
describing rather than predicting phenomena. Furthermore, the
success of the approach was assured by the availability of many
laboratory data that allowed the use of increasingly complex
phenomenological expressions for 7;;. This “engineering” appro-
ach, dating back to Boussinesq (1877, 1897), Taylor (1915), and
Prandtl (1925), consists of writing 7;; in terms of the shear §;; as

T,‘j:vTSij, (6)

where vy is a “turbulent” or “enhanced” viscosity. By inserting (6)
into (4), one notices that the effect of turbulence is that of
renormalizing the kinematic viscosity v to

Vo v+ vr. @)

While (7) is physically appealing, the problem remains of how to
compute vr. For example, in the case of channel flow, i.e. a two
dimensional flow in the x-direction, limited in the y-direction
between two planes at y = + 1, one can solve Egs. (4) and (6) and
show that (Hussain and Reynolds, 1975)

¥ 1 _ y
VO = Ao ®
Since in the laboratory the mean flow, U (y), can be measured at
different positions in the channel, Eq. (8) is often used to “derive”
the turbulent viscosity from the experimental data.

In the case of astrophysical disks, the spirit of the above
approach seems intrinsically inadequate since the available data
are limited and because the main goal is to predict rather than
describe the phenomena. For example, Eq. (8) is of little use since
one cannot measure the mean field velocity U, which must be
computed once a model of turbulence has provided either 7;; o1 vy.

In their pioneering work on the structure of disks, Shakura and
Sunyaev (1973) adopted Eq. (6) but did not attempt to derive v
from a model of turbulence. Rather, they proposed on dimen-
sional grounds that v be written as

yy=acH, ©®)

where ¢, is the local speed of sound, H is a scale height (usually
taken to be the pressure scale height), and « is an unknown
dimensionless parameter adjusted to fit the data. The disk
structures so constructed are known as «-disks.

It seems to us that the original spirit of the SS paper was to
adopt (9) as a tool to analyze the ‘‘qualitative” effects of an
“enhanced eddy viscosity”, rather than as a ‘“‘quantitative’ tool.
In fact, Eq. (9) does not provide an « and cannot therefore be used
to make theoretical predictions. The use of astrophysical data to
determine « is also not a very satisfactory procedure. First, it
should not be astrophysics that fixes the parameters of turbulence
but rather a model of turbulence. Secondly, the value of o derived
from one type of disk need not be the same as the one derived from

another type of disk. In fact, enshrined in the parameter « is the
information characterizing possibly very different types of disks.

Given the astrophysical importance of disks and the fact that
successful theories of turbulence were available long before the
Shakura and Sunyaev paper, it is at first surprising that no
attempts were made to calculate vy from first principles.

A possible explanation may lie in the rather intimidating
derivation and final structure of the most successful turbulence
theory today, the Direct Interaction Approximation (DIA)
(Kraichnan, 1964), whose equations for the turbulent energy
spectral function are two coupled non-linear integral equations
(see Sect. 4). The same reason may also explain why the DIA has
not been employed in other astrophysical contexts where
turbulence is equally important, e.g., in the convective interiors of
stars (for an application of DIA to laboratory convection, see
Hartke et al., 1987).

In the present paper, we shall present a model of turbulence
that yields, among other things, a turbulent energy spectral
function very similar to the one derived from DIA and yet, is easier
to visualize and simpler to use. One of the assets of the new
model lies in its easy inclusion of the effects of magnetic fields and
rotation. Its weakness is that, unlike DIA, it is not a deterministic
approach from first principles (although it must be stated that the
DIA does contain approximations, see Martin et al., 1973).

The turbulence model to be presented here is based on a
physical model for the non-linear interactions whose implications
have been tested against a variety of experimental data on
turbulence and found to yield satisfactory results. Moreover,
Kraichnan (1987) has recently shown that the DIA model
yields an expression for the turbulent viscosity of the same form as
the one suggested by our model. This feature, together with the
similarity of the resulting spectral functions as well as other
comparisons discussed elsewhere (Hartke et al., 1987), leads us to
believe that our model contains the main features of the DIA
without the complexities that have made the latter impractical for
most astrophysical applications.

Before presenting the model, it is important to stress that the
turbulent viscosity derived from the DIA or our model, usually
called v,, represents the action of a given group of eddies on all the
larger ones. The concept, first introduced by Heisenberg, makes
no reference to the existence of a mean flow and represents an
intrinsic property of any fully developed turbulent flow. If in the
calculations of v, one includes all the eddies smaller than the
largest ones, in practice one computes the effect of turbulence on
the mean flow since the largest eddies have dimensions compar-
able with that of the mean flow itself. Based on this qualitative
physical argument, and following previous practice, we propose to
use v, for vy in Eq. (6). Disk computations performed under this
assumption were carried out by Cabot et al. (1987).

2. The new model for turbulence

A turbulent medium is characterized by eddies whose sizes range
from that of the containing volume (largest eddies) to small
enough sizes where kinematic viscosity dissipates into heat the
energy originally injected into the fluid to make it become tur-
bulent (we shall deal only with incompressible fluids). The eddies
interact via non-linear forces that cause the energy fed into the
system at the largest eddies to “cascade” into smaller eddies. Any
given group of eddies may originate both from the source as well
as from the break-up of larger eddies (into smaller ones). Clearly,
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Fig. 1. The general shape of the energy spectral
function F(k) indicating the region of the
energy-containing eddies, the Heisenberg-
Kolmogoroff inertial region and the high-k
viscosity dependent region
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the largest eddies cannot originate from even larger ones and so
they are primarily dependent on the type of stirring mechanism
actually at work. By the same token, eddies that in & space are far
removed from the source which acts primarily on the largest
eddies (small k’s), owe their existence mostly to the break-up
processes. Much as the stirring (or input of ) energy does not affect
all the eddies equally, neither does the process of energy dissi-
pation. Since molecular viscosity is the main agent in the latter
process, the smallest eddies are the ones mostly involved in the
dissipation while the largest eddies are largely immune to viscos-
ity. In summary, the larger the eddies, the more they depend on the
characteristics of the energy source, the less universal is their
spectrum and the less they are affected by viscosity. Conversely,
the medium size eddies, having lost memory of their origin because
of the large number of break-ups that preceded them, acquire a
universal spectrum. Finally, the smallest eddies fall under the
influence of molecular viscosity. (As customary, we shall use the
inverse of the wave number k to characterize the size of the eddies.)

Because of the non-linear nature of turbulence, the turbulent
kinetic energy at a given k is the result of a complex transfer
process caused by the non-linear interactions. One therefore
defines the turbulent energy spectral function F(k) as
u? (k)= [ F(k'ydk’' (10)

k
i.e. 1/2u®(k), the turbulent kinetic energy (per unit mass) of the
eddies of size k™!, is contributed by all the eddies of sizes smaller
than k~*. From (10) it is clear that to obtain the total kinetic
energy one must integrate from the smallest value of k allowed by
the system.

The main goal of any theory of turbulence is the determination
of the energy spectral function F(k). Since the Navier-Stokes
equations are highly non-linear, the equation satisfied by F(k),
usually an integral equation, is also highly non-linear. For
reference purposes, we present in Fig. 1 the expected shape of
F (k). We have divided the k interval into two broad regions: the
low wave number, energy containing part and the medium size
eddies that may exhibit universal features, since they are some-

what equidistant between the regions influenced by the source and
the regions acted on by molecular viscosity. To construct the non-
linear equation satisfied by F(k), we shall propose the following
physical picture (Fig. 2). Consider the interval k, —k, where kg is
the smallest k allowed by the geometry of the system. Let us call
& (k) the energy (per gram per second) injected into that interval by
the external source. Since a turbulent state is characterized by the
break-up of the laminar flow and the onset of an instability
characterized by a growth rate n, (k), it follows that (Canuto and
Goldman, 1985)
k
e(k)= [ [n (k') +vk'?] F(k')dk'. (11
ko
This input energy is partially dissipated by viscosity and partially
transferred to higher &’s by the non-linear interactions. The loss
due to viscosity is simply given by
k
vk'? F(k')dk'. (12)
ko

The most difficult problem lies in the determination of the transfer
due to the non-linear interactions i.¢., the closure problem. This
process will be visualized as occurring in two steps: in the first
process (A of Fig.2), energy is “extracted” from the k,—k
interval, much as if it were due to molecular viscosity. However,
since the non-linear interactions are exclusively a transfer process,
the energy must be re-distributed to all the remaining eddies, i.¢.,
process A must be followed by process B, the “redepositing” of the
same amount of energy to all the eddies with wave numbers larger
than the ones in the k£, —k interval. Alternatively, one may view
the latter group of eddies as creating an “‘enhanced or turbulent
eddy viscosity”” on the eddies in the k,—k interval. Thus, the
whole non-linear transfer process may be written as the product of
the A and B processes, i.¢.,

k
v (k) § &' F(l)dk', 13)
ko
where the turbulent viscosity must be of the form
v (k)= [ ¥k dk’, (14)
k
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Fig. 2. The three main processes visualized in the construction of the present
model of turbulence: the energy input ¢ (k) is dissipated by molecular viscosity v
and redistributed by the non-linear interactions to all the eddies with wave
number higher than k. The transfer process is visualized as a two step process, 4
and B. The first “extracts” energy from the ky—k interval, like ordinary viscosity
would, while the second, B, redistributes the same energy to all the remaining
smaller eddies

g —— ————— — — —

i.e., it must be contributed by all the eddies from wave number & to
infinity. Putting Egs. (11), (12), and (13) together, we obtain the
energy conservation equation

k
e(k)=[v+v (0] [k'2 F(k')dk’

ko

(15)

which becomes the non-linear equation for F(k) once ¥ (k) is
specified in terms of F (k). However, it is already clear from Eqgs.
(14) and (15) that by extending the integration to all k’s, we obtain
the expression for energy conservation,
e=v|k'? F(k')dk', (16)
ko

where ¢ is the constant given by (11) when the upper limit k is
extended to infinity. In accordance with the physical interpre-
tation of the non-linear interactions as a purely transfer process
that does not dissipate energy, the effect of the non-linear
interactions has disappeared from Eq. (16). Let us now return to
the determination of the turbulent viscosity v, or more specifically,
of the function ¥ (k). In technical jargon, this is known as the
“closure problem”. Since the non-linear interactions are charac-
terized by a correlation time scale n, (k), we have in general

¥ (k)= ¥ (k,F(k), n.(k)).
On equally general grounds, it follows that

< F(k')
n0= )
The main problem is that of determining »_ (k). If one wants to
reproduce the universal or “inertial region” (see Fig. 1), where
F(k) ~ k>3, the choice of the correlation rate n, (k) is a simple
matter. In fact, the “inertial region” is by construction indepen-
dent of the features of both the source (low £’s) and the sink (high
k’s) and can therefore depend only on local variables, i1.e. k and
F(k). The only dimensionally correct expression is n, ~ k3/2 F112,
This is the Heisenberg expression for n,. Use of it in Eq. (17) and
thenin Eq. (15) with ¢ (k) = ¢ constant, gives rise to the well-known
Kolmogoroff spectrum in the inertial subrange,

Flk) ~ k™53, y ~ k=43,

dk' .

an

The solution of Eq. (15) under these two assumptions can be
found in Batchelor (1973). Since we are interested in constructing
the spectral function F (k) for the whole k-spectrum and not only
for the inertial subrange, we cannot adopt either of the two
assumptions, ¢ (k) = const, or 1, (k) ~ k32 F1/2 (k), since they are
strictly valid only in a small portion of the k-spectrum. Clearly, the
generalized form of n, (k) that we are about to propose must be
proportional to k32 F'/2 in the inertial subrange.

First, let us rewrite Eq. (15) using (17). With the definition of
e(k) given by (11), we obtain the general non-linear integral
equation for F(k)

k © F(k’) k

{n (k" F(k')dk' = | ~dk' [ k' F(k')dk' . 18

ko i e (k") ko

Introduce now the “mean squared vorticity” Y (k)
k

Y(ky= {k'* F(k')dk' 19)
ko

and differentiate (18) with respect to £. The result is

ny (k) +ng 1 (k) Y (k) =k? v (k). 20

The left-hand side of (20) is the sum of two rates: n, (k), which re-
presents the net rate of energy input from the source into the unit
interval centered around k, and »; ! (k) Y (k), which represents the
rate of energy input into the same interval from the eddies in the
interval k, — k; the right hand side of (20) is the rate controlling the
process of energy cascading from that unit interval into all wave
numbers larger than k. Since the latter process is caused by the
non-linear interactions, the right hand side of Eq. (20) must be
related to n, itself. This gives rise to the “‘closure equation”,
namely,

vi(k)y=yk *n,(k), @n

where 7 is a numerical constant that can be shown to be equal to
~0.1 since in the inertial range F(k) must reproduce the
Heisenberg-Kolmogoroff spectrum.

Equation (21) completely determines the spectral function
F(k). In fact, differentiating Eq. (21) with respect to k and using
(17) and (20), one obtains the differential equation satisfied by the
“mean squared vorticity” Y (k), namely

d 2 ~-1.2

Y R +1/2yns ()] =2yk™ " ng (k). (22)
The correlation rate #, (k) is obtained by solving Egs. (20) and (21)
with the result

2yn (k) =n (k) + [n (k) + 4y Y (k)]'2. @3

Equation (23) is the general expression for the eddy correlation
rate that we would like to propose. To understand its content, let
us first consider the small &k region, where the largest eddies reside.
Since the latter are known to possess small vorticities, we can take
Y (k) < n? and so Eq. (23) reduces to
e (k) ~ n,(6), 23a)
which implies that near the source the dominant time scale is the
one that characterizes the source (Canuto and Goldman, 1985).
As we consider larger values of k, i.e. smaller eddies, the values of
the vorticity increases while the time scale n, ! characterizing the
source becomes increasingly less important. In fact, one is
approaching the universal or inertial subrange, where the most
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important time scale is the one due to the local break-up of the
eddies. In this region, nZ < Y (k) and so

Mo~ Y2 (k). (23b)

Insertion of (23b) into (15) with ¢(k)=const yields the
Heisenberg-K olmogoroff spectrum, F (k) ~ k£~ > and (23b) then
yields n, ~ k3?2 F1/2 (k), as expected.

Substituting (23) into (22), one obtains the desired equation
for Y (k). The equation is non-linear but easy to solve numerically.
Once the vorticity is known, the energy spectral function F (k) is
easily obtained since from (19) (' =d/dk)

F) =k 2Y (k). 24)

Therefore the procedure is as follows: for a given instability, one
inserts the corresponding growth rate n (k) into Eq. (23). The
resulting n, (k) is then used in Eq. (22) to solve for Y (k). Equations
(24) then yields the corresponding spectral function F(k).

It is of interest to note that by eliminating #, (k) between Eqgs.
(17) and (21), one obtains an integral equation for v, (k) of the
form

O

which can be rewritten as
F k , 172
w= (2 f5 )

i.e., the turbulent viscosity is completely expressed in terms of
F(k). A similar result was derived by Moffat (1981) for tempera-
ture fluctuations using phenomenological arguments, while
Kraichnan (1987) has recently shown that the DIA theory also
gives rise to an expression for v, (k) of the same form as Eq. (21).
Considering that our treatment of turbulence is based on a
physical model rather than on an a priori deterministic approach
like DIA, the agreement between the two expressions for the
turbulent viscosity is very reassuring.

The treatment presented above is quite general and can be
applied to any problem once ng(k), the growth rate of the
instability that generates the turbulence, is known. In the example
given below, we shall use the form of n, (k) corresponding to a
convective instability.

(25)

3. Convective instability

Since this type of instability is quite common in many astrophy-
sical problems, we shall study it in detail although we expect that
many of the results have a more general validity.

In this case, the form of the linear n, (k) is well known (Canuto
and Goldman, 1985)

2n,(k)=x(1+0)

[ 4&%%“1—@#—1{2] (26)

Here, y is the thermometric conductivity, ¢ the Prandtl number
= y/y, where v is the kinematic viscosity, S = ¢ R, where R is the
Rayleigh number R=gapf4*/vy, g is the local gravity, « the
volume expansion coefficient and f the temperature gradient
excess over the adiabatic gradient. Finally, 4 is the geometrical
size of the convective region, x the degree of anisotropy of the eddy

295

sizes, and the parameter p=4c/(1+0)% Following previous
authors (e. g., Spiegel, 1962) x = x (k) = (k2 + k2)/kZ , will be taken
to be equal to x = (k4/m)* — 1.

For the case of very low Prandtl numbers (as in most cases of
astrophysical interest), the function F(k) derived from (22) using
(26) is presented in Fig. 3a and b for two different vaiues of S. As
one can see, F (k) goes naturally into the Kolmogoroff spectrum in
the inertial region. Once F(k) is known, one can compute the
“convective flux” defined as (Canuto and Goldman, 1985).

Fc:chﬂXTECpQ;BX(pz

where the “‘turbulent conductivity” yr can be derived to be
(Canuto and Hartke, 1986, Appendix A)

@7

@0

xr=gaf)" " [In (k') +vk'*] F(k') dk'.

ko

(28)

Once yr is known, the quantity ¢, Eq. (16), is easily derived to be
e=gafyr=Sxy: 1" 47", 29)

Finally, the turbulent kinetic energy (per unit mass) K, defined as

K=1/2<u*y =12 [ F(k') dk’ 30)
ko

is obtained by setting k =k, in Eq. (10). The turbulent viscosity

can be obtained by means of Eq. (25). Actually, the largest value of

v, 1.e., v, (ko) can be obtained by noticing that since at k = k, the

vorticity vanishes [see Eq. (19)], we obtain from Eq. (20)

ve=v (ko) = kg > ny (ko) , (3D
a result first derived in Canuto et al. (1984). Dividing Eq. (20) by
k? and differentiating, it is easy to show that the wave number &,
defined so that

F(ko)=0, (32

corresponding to the point where v, is maximum, can be found by
solving

d -2

e nk™%)=0 (33)
Using Eq. (26), we may solve Eq. (33) for k,. We find
kod=m]/3/2. 34

4. Comparison with DIA results

As stated earlier, Kraichnan’s DIA (for a detailed presentation,
see Leslie, 1973), represents to date the most successful approach
to the problem of describing fully developed turbulence starting
from the full non-linear Navier-Stokes equations. The approxi-
mations contained in arriving at the final DIA equations have
been elucidated by Martin et al. (1973). Using the formalism of
quantum field theory, they showed that the DIA equations are
equivalent to taking the lowest order in the vertex corrections.
With that proviso, the equations are (Leslie, 1973)

(5 -m®) Qt=
=27z”dpdrkprb(k,p,r)[ (fx ds' G(k,o—5") Q(p,t—s") (35)

xQ(r,t—s)— E ds' G(p,o—s") Q(r,t—5") Q(k,o—s’)}
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(f-n®)oke-0

p| T

= —2x{{dpdrkprb(k,p,r)fds' G(p,c~5) O(p,1—5)

x Gk,o—5)+0(t—0), (36)
where b(k, p,r) is a geometrical coefficient,
%<u2>=4nfk2 Qk,0) dks% [ F(k) dk @7
0 [

and G(k, 1) is the response function. We have solved the DIA
equations for the growth rate ng (k) corresponding to a thermal
instability, Eq. (26). The resulting F(k) is presented in Fig.4
together with the F (k) obtained from our model. The agreement is
satisfactory, implying that our model must contain the main
ingredients of the DIA theory. The fact that at low &’s our F (k) is
skinnier than the DIA is most likely due to the absence in our
model of back-scatter from the small eddies to the large ones. In
principle, our “pure cascade” model can be made to accommodate
the latter effect without undue complications. However, it must be
noted that in the region affected by the back-scatter, F(k)is rather
small and therefore the back-scatter may be expected to have little
effect on the bulk properties of interest here.

5. The results

Using the F(k) calculated in Sect.2, we then calculated the
convective flux F,, Eq. (27), the turbulent energy K, Eq. (30), and
turbulent viscosity v,, Eq. (31) for the case of g = 0, as appropriate
for most astrophysical scenarios. The results are presented in
Table 1 for different values of S. (see also Figs. 5-7). Also listed in
parenthesis are the values of y;/y from the Mixing Length
Theory ! (Gough and Weiss, 1976), i.e.

xr/x=(729/16) ST [[/1 +(2/81) S —11°.

(38)

6. Relations between turbulent Kinetic energy,
turbulent viscosity and energy dissipation rate

Since the results just described have been obtained using a specific,
although common, form for the growth rate corresponding to a

! In Cox and Giuli (1968) S = 160 42 (V —V,4), where 4 is defined
in Eq. (14.99). Equation (38) above, once multiplied by c,¢fx
coincides with Eq. (14.108) of Cox and Giuli (1968)
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Convective Flux
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Fig. 5. The dimensionless convective flux, @ = y/x Eq. (27), vs. S, for zero

Prandtl number. Also shown is the result from the Mixing Length Theory, MLT,
Eq. (38) of the text

convective instability, it might appear that these results are only
valid for that case. However, since global turbulent properties are
obtained by integrating F (k) and s, (k) over all £’s and since only a
few k’s may contribute most of the global values (the partial
success of the “one mode analysis™ like the MLT is an example),
one may try to obtain a set of relations that are independent of the
value of the growth rate and therefore of more general validity. One
may expect that a different functional dependence of n (k) will
yield a similar set of relations with coefficients that are of the same
order of magnitude as those corresponding to a convective
instability. If the dominant k& is called k,, and the corresponding
value of the growth rate n, = n (k,), one may write

K=K(n,), e=¢(n,),

V= (n,). (39)

Eliminating n, among these relations, one may obtain K vs. ¢ or v,
vs. K relations. We have found that the best choice for #, is the
value of n, computed at k£ = k,. We shall therefore parameterize
the turbulent velocity <u?>!/2 =y, the energy dissipation rate ¢
and the turbulent viscosity v, as (4 and B dimensionless
coefficients)

u=AA4n,, (40)

e=BA*nd, (41)
-2 2

vw=Kko‘n,=5>5 4°n 42)

3n? *2

where we have used Egs. (31) and (34) in Eq. (42). The left hand
sides of Egs. (40)—(42) were computed using the model of
turbulence described in Sect.2 (the results are presented in
Table 1) and the right hand sides were computed using Eq. (26).
This permitted us to estimate the coefficients 4 and B. Only if they
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Turbulent Kinetic Energy
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S

Fig. 6. The turbulent kinetic energy, K, Eq. (30), in units of (y/4)?. The result is
for zero Prandtl number

4
1A 10 E
F  Turbulent Viscosity
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E
=
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l0® 10 105 108 107 108 109 100

S
Fig. 7. The turbulent viscosity v,, Eq. (31), in units of x, for the growth rate given
in Eq. (26)

are reasonably constant over the wide range of values of S of
physical interest, would the parameterization (40)—(41) foruand ¢
be meaningful. The values of 4 and B are listed in Table 2.

It can be safely stated that in spite of the wide range of values of
S, the values of 4 and B do remain constant within a very

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1988A%26A...200..291C&amp;db_key=AST

FTI98BAGA © Z200: ZZJ1T

298

Table 1. Turbulent kinetic energy, turbulent eddy viscosity and
turbulent conductivity [K is in units of (y/4)*] vs. S

Table 3. Comparison of the valuesof &, , &, , and &, from different
models

S K v/x xt/x Present work DIA RNG  Turb. modeling
103 120 0.83 1.8(3.1) &, 0.042-0.059 0.053 0.0424

104 2.6 10° 34 20 (15) ¢, 0.49 -0.75 0.66 0.7116

103 3.510* 12 115 (53) &5 0.087-0.17 0.12 0.0837 0.09

108 4.0 10° 39 513 (173)

107 4.3 10° 123 2.0 10% (560)

108 4.4 107 390 7.1 103 (1.8 10%)

10° 45108 1.2 10° 2.4 10* (5.6 10° .

1010 4.5 10° 39 103 8.1 10% 51‘8 1043 (Launder and Spalding, 1972; Launder et al., 1975; Reynolds,

Table 2. The coefficients 4 and B

S A B

104 1.4 1.5
103 1.5 241
10° 1.6 2.8
107 1.6 33
10® 1.6 37
10° 1.6 4.0
101° 1.6 42

acceptable margin. We can therefore conclude that the para-
meterizations (40)—(42) may be meaningfully used.

Let us now elimintate the growth rate n, = n, (k) from any
two of the relations (40)—(42). We obtain the following results:
a) From (41) and (42), we obtain

2
V=5 B 1/38”3414/32{181/31!4/3,

in 43)
where
0.042 ¢, £0.059. (44)

b) A second type of relation can be obtained by eliminating the
growth rate between (40) and (41), with the result

K= %AZ B—2/3 A2/3 82/3 Eéz A2/3 82/3 (45)
where
049<¢,<0.75. (46)

¢) Finally, eliminating 4 between relations (43) and (45) yields the
K—¢ relation

w=¢K%e7! (47)
with &, =¢&, &, 2 given by
0.087 <¢,2017. (48)

7. Comparison with DIA, RNG and Turbulence Modelling

The numerical coefficients &, &,, and &5 have in the past been
evaluated using DIA, (Yoshizawa, 1982), RNG (Renormalization
Group, Yakhot and Orszag, 1986) and Turbulence Modeling

1976). It is therefore important that we compare these previous
results with the ones obtained from our model.

Upon inspecting Table 3, two considerations are in order.
First, the agreement of our results with those of the other methods
is very reassuring. Second, while the evaluation of £,, &,, and &,
using DIA and RNG is rather complex, in our method it is a
simple matter.

Furthermore, our method can be easily generalized to include
additional physics such as magnetic fields and rotation by
appropriately modifying the growth rate. One would then deter-
mine the functions (i=1, 2, 3)

fizfi(Bw{))’ (49)

where B is the magnetic field and  the rotation. The inclusion of
additional physics within the DIA and RNG formalisms is a more
complicated matter.

8. Four “representations” of the turbulent viscosity

Thus far, we have provided three alternative representations of the
turbulent viscosity v,, namely

vt=k52ns(k0), v1=é181/3d4/3, v1=é3K28_1,

where k, and A4 are related by Eq. (34).

The first expression yields v, in terms of the physical para-
meters contained in #,(k,). From this form, one can tell whether
turbulence occurs, and if it does, how it depends on the physics of
the problem. Such an expression is useful when one knows
precisely the type of instability that causes the turbulent state;
alternatively, it may serve the purpose of deciding, among possible
candidate instabilities, the one that contributes the most to the
turbulent viscosity. For example, consider the case of the primitive
solar nebula, where turbulence is suspected to have played a major
role but where one cannot be certain of which mechanism domi-
nated. This representation was recently used to “quantify” the im-
portance of a particular instability, convective instability (Cabot
et al., 1987). This expression for v, is also useful if one wants to
understand the effect of external forces like rotation and magnetic
fields; their presence can in fact be incorporated into the form of
the growth rate n (k). In this respect, it is important to recall the
work of Chandrasekhar (1961), where the form of the linear », (k)
is given for different types of instabilities with and without
rotation and magnetic fields (convective instabilities, Rayleigh-
Taylor instabilities, Kelvin-Helmholtz instabilities, etc.).

The second representation may be useful to evaluate v, once
one knows the total amount of energy ¢ (per second per gram) that
goes into stirring the medium, without necessarily having to know
its wave number dependence. (The length 4, in both the first and
the second expressions, need not be known a priori; it will in fact

(50)
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be the result of the self-consistent solution of the disk structure
equations, pressure balance and energy flux). One circumstance of
particular interest for solar nebula type disks has direct bearing on
this representation for v,. After the original molecular cloud
collapsed into a rapidly rotating disk with most of the gas
following “Keplerian grooves™, one may be left with an “excess”
energy ¢ that may disturb the orderly Keplerian motion, thus
leading to a turbulent state (Terebey et al., 1984). In this case, the
second representation may be useful in quantifying the amount of
turbulent viscosity generated by this excess energy.

The third representation may be useful if one knows the
turbulent kinetic energy; the latter may be calculated, for example,
from mearurements of spectral line broadening.

There is, however, one more representation that we could like
to derive. Suppose one wants to express the turbulent viscosity not
in terms of the properties of the turbulent fluid itself, as the last
two representations in (50) do, but in the same spirit of the first
representation, i.e., in terms of the properties of the mean flow (if’
there is one), an instability of which may be the cause of
turbulence. In the case of a shear in the “mean fow”, one may
want to employ the strain-rate rate tensor

_oU; oy
Sij_“é};‘*- o, (51

or perhaps more conveniently the scalar

S=(S; S (52)
In 1963, Smagorinsky suggested the following representation for
V1,

vp=CA4*§, (583)
where C, known as Smagorinsky’s constant, has been traditionally
fitted to the data. In what follows, we shall derive (53) and
calculate the value of C.

The derivation is based on two steps. First, one employs the
relation

e=1/21;8;;. (54)

This is an exact relation that has been derived several times in the
literature (Lilly, 1967; Hinze, 1975; Monin and Yaglom, 1971;
Deissler, 1984; Stewart, 1976). The ingredients of the derivation
are as follows: consider the Navier-Stokes equation for the total
velocity field »; divide # into mean flow U and turbulent flow »;
derive the equation for » and then that for v2. Integrate the latter
over the volume of the system. The final result is Eq. (54), where the
tensor t;; is defined in Eq. (5).

Next, one needs an expression relating 7;; to & and S;;. Such a
relation is given by Eq. (6). Putting together Egs. (5), (6) and (54),
we obtain
e=1/2v.5%. (55)

Eliminating ¢ between Egs. (55) and the second of (50), one
obtains

vp=CA4%*S (56)
with the Smagorinsky’s constant C, given by
C=[}$&1'"7. (57)

Using the previously derived values of &, our model predicts

611073 <C<1.01 1072, (58)
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Table 4. Values of the constant C{ x 10?)

Present work 0.61-1.01
DIA 1.21 (Yoshizawa, 1982)
RNG 0.6 (Yakhot and Orszag, 1986)

Turb. modeling 0.3-0.7  (Deardorff, 1971; Moin and Kim,

1982)

For completeness, we quote in Table4 the values of C
that have been published thus far in the literature.

Like in the case of the constants &, , &, , and &5, the agreement
among the DIA, RNG, Turbulence Modeling and our model is
reassuring. In the presence of external fields, use of Eq. (49) and
(57) would thus give the dependence of C on those fields, i.e.,

C=C(B,Q). (59)

9. The Shakura-Sunyaev « parameter

We have presented four representations for the turbulent visco-
sity, Egs. (50) and (56); three of them contain a length 4 that may
not be calculable from within the model of turbulence; it must be
calculated self-consistently when solving the disk structure equ-
ations (the thickness of a disk is in fact determined by the point
u =0 where the total flux vanishes). In spite of not knowing the
value of 4 a priori, we can nevertheless carry out an estimate of the
disk parameter o, Eq. (9), for the case when there is a shear in the
mean flow,, i.e., when Eq. (56) holds.
Equating Eqgs. (9) and (56) yields

. C4*S
T H

(60)
Since in disks the largest component of the tensor S;;is S,,,, where
for Keplerian motion

_,d®)
S0 =20y = ~3129

and since the speed of sound ¢, is related to £ and H by ¢, = HS,
we have

a=3/2C<%>2.

Since 4 is not expected to be larger than H, we have the upper limit

(61)

(62)

a<3C2 (63)
or using Table 4,
a<107? (64)

in agreement with results recently obtained by Cabot et al. (1987).

The above calculation of « serves hopefully another purpose,
namely that of clarifying the problem of whether v, must be
computed locally (z-dependent) or globally (z-averaged). Cabot et
al. (1987) used the first of the representations (50), which depends
on “local values” through the local gravity g=zQ? These
authors, however, pointed out that since only the average value of
v, should be used in the disks equations [see Eq. (65) below], the
local value of v, was first averaged over the height of the disk and
then employed in the disk structure equations. Other authors (Lin
et al, 1980), have instead used local values of v,. The above
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analysis, and especially the derivation of (56), show that it is
incorrect to use local values of v, if, at the same time, one uses Eq.
(54). In fact, we have already pointed out that (54) follows only
after the turbulence equations have been integrated over the
physical volume. Once that process has been carried out, it is
clearly inconsistent to try and resurrect local properties. As shown
in detail in Cabot et al. (1987), an integration over the volume is a
basic ingredient in the derivation of the relation satisfied by the
total flux F (Pringle, 1981),

dr

vd;ZQTrq)Srq)’

(65)

used in disks calculations.

In conclusion, whenever one uses (65), one has already
committed oneself to an averaging process and therefore, for
consistency reasons, one must also use an average v,. The
derivation of v, given above clearly shows that the same averaging
process that is implicit in (65) is also at the very basis of Eq. (56) for
V.

10. Conclusions

In 1973, Shakura and Sunyaev presented the first detailed analysis
of the physics of accretion disks. Their paper influenced and
spurred much detailed work on one of the most interesting
phenomena in astrophysics.

Regrettably, however, little progress has been made to im-
prove the physics of perhaps the most important parameter in the
description of disks: the turbulent viscosity. More than a decade
after the Shakura-Sunyaev paper, most disk calculations still
employ Eq. (9) that contains the unknown parameter «, thus
precluding the achievement of the major objective of theoretical
computations, that of predicting new phenomena.

Even before the Shakura-Sunyaev paper appeared, a well
known model for fully developed turbulence had been worked out
(Kraichnan, 1964; Leslie, 1973). Kraichnan’s DIA model is
however rather complex and that might explain why it has not
been used in astrophysics and in particular in accretion disk
problems.

The present paper tries to fill the gap between the phenomen-
ological a-model approach which is easy to use but has no
predictive power and the DIA model which is fully predictive but
hard to use. Clearly, any model that tries to fill the gap must share
the advantages of both approaches while avoiding their shortcom-
ings, i.e. it must be simple to use while it must yield results of
comparable quality to those of DIA. The model we have proposed
here satisfies these criteria.

Using it, we have derived four theoretical expressions for the
turbulent viscosity. The four representations reflect different
physical situations that may give rise to turbulence. The first is
given in terms of the physical parameters at a given radius on the
disk via the growth rate of the instabilities that generate the
turbulence. This representation may also be used to determine if
turbulence is indeed generated. The other three representations

are valid once turbulence is known to exist and are useful
depending on the available data for a given problem. Contrary to
Eq. (9), these representations contain no free parameters. Exten-
sion of the model to encompass the effects of rotation and/or
magnetic fields can also be carried out.
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