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ABSTRACT

A three-dimensional, severely truncated, quasi-geostrophic model in a beta channel is used to explore the
dynamics of the observed anticorrelation between the amplitudes of planetary waves 1 and 2 in the Northern
Hemisphere winter stratosphere. The model, which includes interactions among eight horizontal modes, generates
realistic wave 1-wave 2 vacillations when westward traveling wave | interacts with stationary waves | and 2.
It is found that while wave 1 oscillates in response to wave-mean flow interactions, the oscillations in the
amplitude of wave 2 are driven primarily by wave-wave interactions. Experiments with a barotropic model
reveal that the timing of the strongest wave-wave interactions is determined by the wave 1 interaction with the

mean flow.

1. Introduction

The wintertime circulation of the stratosphere in
high northern latitudes is dominated by one or two
quasi-stationary waves on a strong westerly jet. The
amplitudes and phases of these waves vary considerably
with time, the largest variations occurring in association
with stratospheric sudden warmings, minor warmings,
or sudden coolings, events that involve rapid changes
in both the waves and the zonally averaged circulation.
But even when the stratosphere is relatively quiescent
the waves are unsteady. Labitzki (1977) presented ob-
servations of the geopotential amplitudes of planetary
waves 1 and 2 at 30 mb and 60°N for 12 winters. A
conspicuous feature of these data is the tendency for
the amplitudes of waves 1 and 2 to be anticorrelated
on time scales ranging from longer than a month down
to a week. Examination of her results for the 1975/76
winter reveals that the relationship between waves 1
and 2 was especially strong during this winter in which
the zonally averaged circulation was unusually undis-
turbed.

Smith et al. (1984) studied the negative correlation
between waves | and 2, denoted the wave 1-wave 2
vacillation, for the 1978/79 winter. During this winter
the vacillation was clearly evident at 10 mb but was
not apparent at 300 mb. The authors concluded that
the wave 1-wave 2 vacillation was generated in the
stratosphere. Their analysis of the potential enstrophy
budgets of waves 1 and 2 showed wave-wave interac-
tions to be as important as$ interactions with the mean
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flow and generally more important than dissipation.
While their results suggested that the wave 1-wave 2
vacillation originated in the stratosphere and involved
wave-wave interactions, there was no obvious rela-
tionship between the sign and strength of the transfers
of potential enstrophy between the waves and the be-
havior of the wave amplitudes.

There are at least three plausible mechanisms to ex-
plain the wave 1-wave 2 vacillation. McIntyre (1982)
suggested that negative correlations between the
strengths of waves 1 and 2 could result from variations
in their tropospheric forcing. If the two waves are pri-
marily forced by tropospheric geopotential anomalies
in the North Atlantic and North Pacific Oceans, wave
1 will result when the anomalies have different signs,
whereas anomalies with the same sign will generate
wave 2. However, the absence of the vacillation at the
tropopause, at least during the 1978/79 winter, argues
against this idea.

Another possibility is that the amplitudes of the
waves vary in response to changes in the zonal flow
that cause the vertical propagation of one wave to be
favored at the expense of the other. By this mechanism,
the linear responses of the waves to a varying zonally
averaged stratospheric circulation could cause a wave
I-wave 2 vacillation in the presence of constant tro-
pospheric wave forcing. Quasi-periodic fluctuations in
the strength of the polar night jet have been observed
on time scales identical to those of the wave 1-wave 2
vacillation (van Loon et al., 1975). However, the ob-
servations of Smith ef al. suggested that the vacillation
involves wave-wave interactions, and was not simply
the passive response of the waves to changes in the
mean flow.



2290

This paper is an investigation of a third possibility,
consistent with the results of Smith et al., that the wave
1-wave 2 vacillation comes about through direct non-
linear interactions between the waves. Section 2 is a
brief discussion of when wave-wave interactions are
likely to be important in the stratosphere. It is found
that wave~wave interactions arise from two distinct
processes. Interactions can occur between steady waves
with different zonal phase velocities or they can occur
in association with wave-mean flow interactions in-
duced by wave transience or dissipation. Section 3 de-
scribes a numerical model used to study the dynamics
of wave-wave interactions in the stratosphere. The

. model is a severely truncated spectral representation
of quasi-geostrophic dynamics in a beta channel. Sec-
tion 4 reports results of model experiments in which a
wave 1-wave 2 vacillation is produced by the inter-
action of westward traveling wave 1 with stationary
waves 1 and 2. A barotropic version of the model is
used to illuminate the mechanism by which the vac-
illations in waves 1 and 2 are synchronized, and these
investigations are described in Section 5. Section 6
contains a summary of the results and a discussion of
their relevance to the observed phenomenon.

2. Theory of wave-wave interactions

The dynamics of waves with planetary zonal scales,
but which are confined to a narrow band of latitudes
around the polar night jet, are well described by quasi-
geostrophic dynamics on the beta-plane. The motion
is governed by the conservation of quasi-geostrophic
potential vorticity (PV) following geostrophic motion.

a+J¥,q9=S n

where W is the geostrophic streamfunction, S'is a source
or sink of PV, and J( ) is the horizontal Jacobian.
The PV, g, is given by

= By + V2V + (poe¥.). /o, )

where § is the meridional gradient of the vertical com-
ponent of the planetary vorticity, po is the basic state
density [po = exp(—z/H), where H is the density scale
height], and ¢ s a stability parameter (e = f;>/ N2, where
Jo 1s the Coriolis parameter and N is the Brunt-Viisilad
frequency).

For the purpose of investigating interactions among
waves ¥ and g are expanded in eigenfunctions of the
horizontal Laplacian..

¥ = 2 ¥, (2)fu(x, ¥) (3a)

g =2 g.(2W(x, »), (3b)

where vzﬁz = *anf;n and qn = —an\I’n + (Pof‘I’nz)z/Po-
Here K,? is the squared magnitude of the horizontal
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wavenumber of the nth mode. The three-dimensional
analog to K,?, the effective square wavenumber, a,,
can be defined:

a, = —Qn/‘I’n = an - (pOE‘I,nz)z/(pO‘I’n);

a, is undefined if ¥, = 0.

If the dependence of S on g and V¥ is linear, then
different waves are directly coupled only by the advec-
tion term in Eq. (1). The interaction between two
modes (say # = 0 and n = 1) in terms of their effective
square wavenumbers is given by

J(¥Yo fo, qi.f1) + J(¥1 /i, qofo)

= J(fo, fi)¥o¥ (g — ay).  (5)

I ¥, = 0, the interaction is simply J( f, /i) ¥o4q: . From
Eq. (5) it is seen that for waves to interact they must
have different effective square wavenumbers, ap # a;,
or one wave must satisfy ¥, = 0.

Some insight into how «, is determined may be
gained by considering the linearized PV equation for
a single wave propagating with zonal phase velocity, c,
in a mean flow under the influence of dissipation (for
simplicity treated as equal rates ‘of Newtonian cooling
and Rayleigh friction, A).

Ag' + ik(u — o)q' + ikg, ¥ = S". 6)

Here ¢’ and V' are the PV and streamfunction ampli-
tudes of a wave with zonal wavenumber k and S'is a
source of wave PV. The ratio of the wave PV to its
streamfunction is

@IV = —{1 + NG — OVG/E — 0
— ISk — O} X {1 + VIk@E = O} ()

A single wave can be considered to comprise two or-
thogonal modes, separated in phase by one-quarter
wavelength. In the absence of an external source of
wave PV one mode is described by the real part of Eq.
(7) which represents that portion of the wave PV that
is in phase with the streamfunction. This mode has an
effective square wavenumber given by
4y

(u-o
The imaginary part of Eq. (7) corresponds to a mode
with nonzero potential vorticity but with zero stream-
function. For a steady inviscid wave this second mode
is absent, and for the remaining mode a = ¢,/(# — ¢).
For a stationary inviscid wave a = g, /u.

As has been pointed out by Derome (1984), if g,/
depends only on z, then inviscid stationary waves, re-
mote from their forcing, all have the same value of «
and do not interact. He showed observations of g,/u
in which this ratio is nearly constant in those regions
of the winter stratosphere where the waves are strongest.
For a linear wave, deviations from the stationary in-

C))

{1+ ik = o]} (8
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viscid value of & come about because of zonal propa-
gation (¢ # 0), or because of dissipation or transience
(A # 0). That zonal propagation can induce wave-wave
interactions is significant, because westward traveling
wave 1 with a period of one to three weeks is often
observed in middle to high northern latitudes (Madden,
1978). Westward wave 2 is also observed, but its strato-
spheric amplitude is much weaker (Walterscheid,
1980).

Dissipation and transience can lead to wave-wave
interactions either through the modification of « or by
inducing a component of the wave PV which is in
quadrature with its streamfunction. In Egs. (7) and (8)
A can be considered a measure of the strength of wave
transience or dissipation. From Eq. (8) it is seen that
the deviation of « from its steady inviscid value is qua-
dratic in A while the strength of the PV which is in
quadrature with the streamfunction is linear in A. Thus
for weak transience or dissipation the latter effect
should be more important in causing wave-wave in-
teractions. The quadrature between this component of .
the wave PV and the streamfunction leads to a zonal
mean transport of PV, so that the wave affects the mean
flow. In violating wave-mean flow noninteraction
conditions (Dickinson, 1969; Andrews and Mcintyre,
1976; Boyd, 1976) dissipation and transience also cause
wave-wave interactions.

3. Description of the model

Beta-channel models that include a single wave and
its interaction with the mean flow have been used to
study the dynamics of wave-mean flow interactions,
particularly in the context of the stratospheric sudden
warming (Geisler, 1974; Holton and Mass, 1976). Be-
cause the present hypothesis is that wave-wave inter-
actions play an essential role in the wave 1-wave 2
vacillation, it is necessary to extend the standard quasi-
linear model to include several horizontal modes. In
the interest of simplicity the number of these modes is
kept as small as will allow us to study the relevant
dynamics. The present model has eight horizontal
modes: two zonally symmetric modes and two merid-
ional modes for each of three zonal wavenumbers. The
streamfunction is given by

2
¥ = 3 {¥,cos(nwy/L)

n=1

3
+ Re 2 ¥, exp(imkx) sin(nwy/L)}. (9)

m=1

Here L is the width of the channel, equivalent to a
meridional extent of 40 degrees of latitude, y is the
distance from the southern boundary, and k the gravest
zonal wavenumber in the cyclic channel, k = (a cosf) ™!,
where @ is the latitude at the center of the channel,
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60°N and g is radius of the earth. The PV equation,
Eq. (1), is solved at this truncation on 50 levels ex-
tending from the surface to 122.5 km. Dissipation is
parameterized as Rayleigh friction and Newtonian
cooling. The rates of Rayleigh damping are those used
by Holton and Wehrbein (1980), and the Newtonian
cooling rates are taken from Holton and Mass (1976).
These profiles are shown in Fig. 1.

Dissipation moves the flow towards a zonally sym-
metric basic state which resembles a Northern Hemi-
sphere January. This basic state is obtained by com-
puting the meridional gradient of PV associated with
the winds shown in Fig. 2a. To be consistent with the
model truncation, both these winds and their associated
gradient of PV are separately projected onto sin(wy/
L). The resulting winds are shown in Fig. 2b. These
are the winds that are used in the model integrations.
The meridional gradients of PV obtained by this pro-
cedure are smaller and therefore more realistic than
those that would have resulted if g, had been computed
directly from the wind profile in Fig. 2b.

The appropriate boundary condition at the surface
for Eq. (1) when a log-pressure vertical coordinate is
used has been derived by Tung (1983). It can be written

8, + J(¥, 8) = —fo(wg + wr) — Dn(¥, — ¥o,), 2= 0
(10a)

where

3=foh+ (¥, — N*V¥/g), z=0. (10b)

Here Dy is the rate of Newtonian cooling, ¥, is the
streamfunction of the basic state toward which dissi-
pation relaxes the flow, 4 is the height of topographic
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FIG. 1. Dissipation rates used in the model (days™'): Newtonian
cooling (solid) and Rayleigh friction (dashed).
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F1G. 2. Zonal wind profile (m s™") for the zonally symmetric basic
state used in the model. (a) Basic state used to compute the zonally
symmetric potential vorticity; (b) projection of this state onto
sin(wy/L).

relief, and g is the acceleration of gravity; wg is the
vertical velocity induced by Ekman suction at the top
of the planetary boundary layer

Wg = DEVZ(‘If ‘Ifo) z=0 (1 l)

where Dy is a depth equal to 150 m, and wp is an
imposed vertical velocity used to generate both sta-
tionary and traveling waves in the experiments de-
scribed later.
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For the vacillation experiments, we desire an initial
state which includes a zonal flow and stationary waves
in dynamic balance. In order to obtain such a state,

" the stationary waves are forced from the model’s bot-

tom boundary, and the model is integrated forward in
time with the zonal flow fixed. The waves equilibrate
to structures that are not the same as those of linear
waves, because dissipation causes the waves to interact.
(The interactions between stationary waves will be dis-
cussed in a paper in preparation.) Dissipation would
also cause the waves to interact with the mean flow,
tending to decelerate the westerlies. To compensate for
this, a forcing is applied to the gravest zonally sym-
metric mode, which cancels the effect of the stationary
waves, and this constant forcing is maintained
throughout the time dependent experiments. The ad-
dition of this forcing is equivalent to strengthening the
westerlies in the basic state toward which dissipation
pushes the model. In the model this artifice represents
the discrepancy in the atmosphere between the ob-
served zonal winds and the winds that would occur in
radiative equilibrium.

For the principal experiments described in the next
section, initial conditions comprise the zonal wind
profile shown in Fig. 2b, along with stationary waves
1 and 2, with amplitudes and phases shown in Fig. 3.
{The phase is defined so as to be positive for a westward
displacement of the wave.) The relative phases of the
stationary waves are chosen so as to minimize their
interactions in the stratosphere. Thus, the structures
shown in Fig. 3 are nearly identical to those of linear
waves. The initial conditions include other modes
which are generated by the interaction. of stationary
waves 1 and 2, but these are very weak. The time evo-
lution of the wave amplitudes in the vacillation exper-
iments is not sensitive to the relative phases of the sta-
tionary waves, but the interpretation of the potential
enstrophy budgets (see below) is simplified if nearly all
the wave-wave interactions can be ascribed to the
presence of a traveling wave. ‘

The stationary initial state is disturbed by a westward
traveling wave 1, which is generated by a westward
moving distribution of vertical motion-at the lower
boundary. The traveling wave forcing is turned on
slowly according to

(1 —cos(xwt/7))/2, t<7

9 t=T
(12)

where T is the period of the traveling forcing and 7 is
a turn on time, 7 = 100 days. For both stationary and
traveling waves only the gravest meridional modes are
forced from the boundary. This is consistent with the
observed waves, which are typically weak in the tropics
and show a single maximum in their amplitudes north
of 40°N (van Loon et al., 1973). The integration is

wF = Wexp(211rt/T){
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F1G. 3. Initial conditions for the (a) geopotential amplitude, m,
and (b) phase (deg) of waves 1 (solid) and 2 (dashed) in model ex-
periments.

continued until all transients have disappeared, and
the model generates regular repeating vacillations.
Traveling waves generated in this fashion are unrealistic
in two respects. The observed amplitudes of traveling
waves fluctuate on time scales similar to the periods
of the waves (Lindzen et al., 1984). However the quasi-
periodic nature of the wave 1-wave 2 vacillation sug-
gests that the essential physics will be retained when
the vacillation is modeled as being truly periodic. Sec-
ond, although observations of the vertical structures of
traveling waves point to a tropospheric source, they
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are presumably not generated at the surface. In what
follows we will be concerned with wave-wave inter-
actions in the stratosphere, so the conclusions will be
unaffected by the nature and location of the tropo-
spheric source of the westward wave,

4. Results

For the first experiment (subsequently denoted the
“standard vacillation™) the initial state shown in Figs.
2b and 3 is disturbed by a westward traveling wave |
forced by a vertical velocity of W = 0.001 m s™! with
a period of 23.8 days. This is the period of the fastest
westward free mode of wave 1 in the model when dis-
sipation is excluded. This is a period longer than the
16 days characteristic of such waves in the atmosphere,
a consequence of using a narrow channel. A wider
channel would allow a better simulation of westward
traveling waves, but the stationary waves are well re-
produced in a channel 40 degrees wide, as was dem-
onstrated by Simmons (1974). The amplitudes of
westward wave 1 driven by a boundary forcing of 0.001
m s~} at periods of 20, 23.8, and 30 days are shown in
Fig. 4. (Reference to waves 1 and 2 denotes the gravest -
meridional modes of these waves. The higher meridi-
onal modes will be referred to as waves 1’ and 2'.)

Figure 5 shows the vacillations in waves 1 and 2 and
the mean flow at 32.5 km (~ 10 mb) when westward
wave 1 with a period of 23.8 days interacts with sta-
tionary waves 1 and 2 (Fig. 3). At this level the am-
plitude of the vacillation in wave 1 is about three times
as large as the vacillation in wave 2. This ratio depends
on the strength and the frequency of the wave forcing.

73.
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R \ \,'_.
0. - \\ .
E \\ Y
0. |-
zwn - / Vi
30. — e o
20. .
-
10. t
P N Y S
G. 400. 600.
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FiG. 4. Geopotential amplitude (m) of westward traveling wave 1 at
periods of 20 (long dashes), 23.8 (short dashes),and 30 (dots) days.
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FIG. 5. Vacillations in the amplitudes (m) and phases (deg) of waves 1 and 2 and the strength
of the zonal jet (m s™') at 10 mb, generated by the interaction of westward wave 1 (23.8 day
period) with stationary waves 1 and 2 (see text). Phase is denoted “THETA”.

The two vacillations are almost exactly 180 degrees
out of phase. Despite the large changes in the wave
amplitudes the zonal wind varies over less than 10 m
s~!. The vertical structure of this wave 1-wave 2 vac-
illation is shown in Figs. 6, 7, and 8 at times separated
by six days, about one-quarter cycle. The strength of
the zonal wind does not vary substantially in the tro-
posphere, and the tropospheric vacillation in wave 1
is weaker than and out of phase with that in the strato-
sphere. This is consistent with the vacillation in the
atmosphere. The anticorrelation of waves 1 and 2 is
robust under changes in the frequency of the traveling
wave, the amplitudes and relative phases of the sta-
tionary waves, and the strength of the zonal flow. For
example, the vacillations generated by the interaction
of the same stationary waves as before with westward
wave | at traveling wave periods of 20 and 30 days are
.shown in Fig. 9a, b. While the strength of the wave 2
vacillation, relative to that of wave 1, decreases at the

longer period, the anticorrelation of the wave ampli-
tudes is preserved. Further examples of the wave 1-
wave 2 vacillation with altered stationary waves and
in different zonal flows, which show the anticorrelation
of the two waves, are shown in Robinson (1985).
Two distinct interactions contribute to the behavior
displayed in these figures, the interaction of westward
traveling wave 1 with stationary wave 2, and the in-
teraction of the traveling wave with stationary wave 1.
We consider their effects separately, beginning with the
former. In the model the interaction of waves 1 and 2
acts primarily to force the second meridional mode of
wave |, denoted by wave 1'. This wave, with its small
horizontal scale, is trapped near the altitude at which
it is generated. Because this wave is responsible for the
interaction of waves 1 and 2, these interactions tend
to be much more local in altitude than the long waves
themselves. Wave !’ is generated at the expense of sta-
tionary wave 2, as is seen in Fig. 10, which shows the
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FIG. 6. Amplitude {m) of wave 1 at day 0 (solid), 6 (long dashes),
12 (short dashes), and 18 (dots) of vacillation shown in Fig. 5.

structure of stationary wave 2 when it interacts with
westward wave 1, forced at periods of 20, 23.8, and 30
days with a vertical velocity of 0.001 m s™!. The inter-
action with wave 1 acts to dissipate wave 2 in the
stratosphere, decreasing its amplitude and increasing
its westward slope with height. Because the strength of
this interaction is independent of the relative phases
of the waves, this is a steady picture. This interaction
causes no vacillations either in the wave amplitudes or
in the mean flow.
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FIG. 7. As in Fig. 6 but for wave 2.
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FIG. 8. As in Fig. 6 but for strength of the zonal jet (m s™).

Waves 3 and 3’ are also generated by wave-wave
interactions during the vacillation, but they are rela-
tively weak. The results change only slightly when the
model is truncated at zonal wavenumber 2. The pres-
ence or absence of waves 3 and 3’ does not affect the
negative correlation between the amplitudes of waves
1 and 2. :

The interference of the westward traveling and sta-
tionary components of wave 1 causes a vacillation in
both the amplitude of the wave and the strength of the
zonal flow. The theory of such interference-generated
vacillations was discussed by Lindzen et al. (1982), and
Madden (1983) described observations of this effect in
the winter stratosphere. The evolution of vacillations
generated by the interference of westward and station-
ary wave 1 in the model is shown in Fig. 11, for the
10 mb level. The traveling waves shown in Fig. 4 are
forced in the presence of stationary wave 1 (shown in
Fig. 3). At this level, remote from any wave forcing,
wave | grows and decays by exchanging energy with
the mean flow. Thus the minima in the zonal wind
coincide with the maximum amplitudes of wave 1. The
amplitude and phase of wave 1 trace distorted sinu-
soids. As discussed by Lindzen et al., this is a conse-
quence of the linear interference of the stationary and
traveling components of the wave, and does not depend
on the induced vacillation in the mean flow.

These results show that traveling wave 1 interacts
strongly with stationary wave 2, and that the interfer-
ence of westward and stationary wave 1 leads to vac-
illations in wave 1 and in the zonal wind. It seems
plausible that the variation in the amplitude of wave
1, brought on by the interference of the stationary and
traveling waves, could modulate the strength of the
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FIG. 9. As in Fig. 5 but for westward traveling wave 1 periods of (a) 20 and (b) 30 days.

nonlinear interaction between waves 1 and 2, inducing
the vacillation in the latter wave seen in Fig. 5. How-
ever, it is not clear how the relative phases of the vac-
illations in the two waves are selected.

In order to understand the mechanics of the vacil-
lation, it proves useful to consider the potential en-
strophy (PE) budgets of the waves. Potential enstrophy
is a useful diagnostic quantity because, like the wave
energy, it is a positive measure of the strength of a
wave, but unlike the energy, it is separately conserved
at every level of the atmosphere (in the quasi-geo-
strophic system). The PE equation is obtained by mul-

tiplying Eq. (1) by ¢, giving
Q + J(¥, Q) =gS
Q=4q2

Foliowing Smith (1983), by multiplying the PV equa-

(13a)
where
. (13b)

tion for each mode by the PV of that mode, Eq. (13)
can be written in spectral form. For eachv wave

O, = Qur + Quww + Ob, (14)

where Qyr is the rate at which the wave extracts PE
from the zonal flow, Oy is the rate at which the wave
gains PE from wave-wave interactions, and Qp, is the
rate at which PE is lost to dissipation. The PE budget
for a wave allows the importance of the different dy-
namic processes, wave-mean flow interactions, wave-
wave interactions, and dissipation, to be compared.
Figure 12 shows the PE budget for wave 1 at 10 mb
for the standard vacillation. The change of wave | PE
with time is largely determined by the interaction of
wave | with the mean flow. Dissipation causes a slight
displacement of Q, from Qur, and Quw is relatively
unimportant. This suggests that wave-wave interac-
tions have little effect on the wave 1 dynamics, so that
with or without wave 2 present the vacillation of wave
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1 is driven by the simple interference of its stationary
and traveling components. This is confirmed by com-
paring Fig. 12 with Fig. 13, which shows the PE budget
for the wave 1 interference vacillation (short dashes in
Fig. 11) for which wave 2 is entirely absent. Figures 12
and 13 are very similar (note the change in scale),
though of course Qyw = 0 in Fig. 13. The PE budget
for wave | is dominated by Qyr in all the model ex-
periments. This term shows a nearly sinusoidal evo-
lution in time, leading the amplitude of wave 1 by one-
quarter of a vacillation period.

Having established that wave-wave interactions are
unimportant for the wave 1 vacillation, we turn our
attention to wave 2. Figure 14 shows the PE budget
for wave 2 at 10 mb during the standard vacillation.
Its behavior is more complicated than that for wave 1,
with wave-mean flow and wave-wave interactions
playing roles of equal importance. Averaged over time
Qww is negative and Qy,r is positive. This is consistent

with the results for the interaction between stationary
wave 2 and westward wave 1 (Fig. 10), which showed
that this interaction tended to dissipate wave 2. How-
ever it is the time dependence of these interactions that
is important in the vacillation. The rate Quw oscillates
both with the same period and one-half the period of
the westward wave 1; Oy is most negative when Qyr
for wave | is a maximum. Comparison with Fig. 12
indicates that most of the lost wave 2 PE is gained by
wave 1. This pulse in the rate at which wave 2 loses
PE to wave-wave interactions, coinciding with the most
rapid growth of wave 1, is a feature common to all the
cases of the wave 1-wave 2 vacillation generated by
the model. Figure 15a, b shows the PE budgets for
wave 2 at 10 mb for the 20- and 30-day vacillations
(Fig. 9a, b). In both cases there is a negative pulse in
Qww, which coincides with the fastest growth of wave
1: days 7, 27, and 47 in Fig. 15a, and days 1 and 31 in
Fig. 15b. For the 30-day vacillation this correspondence
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curves show the structure of wave 2 when wave 1 is absent.

still holds, even though the most negative values of
Qww occur on days 15 and 45, during the declining
phase of wave 1. This pulse of PE transfer out of wave
2 appears to play a crucial role in aligning the maxima
of wave 1 with the minima of wave 2, i.e., in producing
in the model the observed negative correlation between
the amplitudes of the two waves.
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5. Barotropic experiments

In the three-dimensional model the anticorrelation
of waves 1 and 2, and thus the resemblance of the
model’s behavior to that of the atmosphere, depends
on a strong transfer of PE from wave 2 to wave 1 during
the increasing phase of the latter wave. Understanding
which mechanism determines the timing of this transfer
is difficult. The interference of the stationary and trav-
eling components of wave 1 causes several quantities
to vacillate simultaneously, the amplitude and phase
of wave 1, the zonal wind speed, and the strength of
wave 1’s interaction with the mean flow, and it is not
clear which is responsible for the variations in the non-
linear forcing of wave 2. In order to isolate the effects
of the oscillations in these quantities on the wave 1-
wave 2 interaction, a barotropic model was constructed.
This model exploits the nearly equivalent barotropic
nature of the three waves responsible for the wave 1-
wave 2 vacillation in the three dimensional model, sta-
tionary waves 1 and 2 and westward wave 1. The model
describes the quasi-geostrophic motion of a barotropic
fluid confined between rigid upper and lower bound-
aries in a beta-channel. Eq. (1) is still the appropriate
PV equation for the motion, but now ¢ is given by

q =By + V*¥ + foh/H. - (15)

H is the average depth of the fluid and 4 is the ampli-
tude of bottom relief, so that the depth is given by H

- — h. The source term [S in Eq. (1)] includes both im-

posed wave forcing and the damping of the motion
towards a zonally symmetric basic state

S =DV¥ (¥, — V) + F (16)

where D is a damping rate (D = 107® s7'), and ¥, is
the streamfunction of a zonally symmetric basic state

¥, = UL cos(wy/L)/x, an

where U, the velocity of the zonal windlat the center

Waves can arise either from bottom relief or from
imposed forcing [F in Eq. (15)]. In the latter case the
PV of the nth mode is given by g, = —K,>¥,,. There
can be no quadrature between the wave’s streamfunc-
tion and its PV, and therefore no interaction between
a single wave and the mean flow is allowed. By com-
paring results from experiments in which wave 1 is
forced by bottom relief or by F, the importance of the
interaction between wave 1 and the mean flow in the
wave I-wave 2 interaction can be determined.

The two-dimensional experiments follow the para-
digm described in Section 4. Initial conditions consist
of stationary waves 1 and 2 in equilibrium with the
zonal flow. Westward traveling wave 1 is driven at its
free wave period (15 days for this mean flow and chan-
nel width) by forcing that is turned on according to



1 NOVEMBER 1985

WALTER A. ROBINSON

2299

AMP
THETA
UBAR
mu—,—
L e e i e e i e g
o 5 1o 15 20 }m 3 4 45 SO 55 B0
DAY

FiG. 11. Vacillations in the amplitude (m) and phase (deg) of wave 1 and the strength of the
zonal jet (m s~') at 10 mb generated by the interference of stationary wave 1 and westward wave
I with periods of 20 (long dashes), 23.8 (short dashes), and 30 days (dots).

DQ/DT

E-15/5%%3)

gL LU EL UL L L L]
0 5 10 15 20 25 30 35 40 45 S0 55 60
DAY

FIG. 12. Potential enstrophy budget for wave 1 at 10 mb in standard
vacillation: rate of change of PE (solid), rate of gain of PE from the
mean flow (long dashes), rate of gain of PE from wave-wave inter-
actions (short dashes), rate of gain of PE from dissipation (dots).
Units are 1076 573,

Eq. (12). The forcing, whether or not it is due to bottom
relief, can be defined by an amplitude of bottom relief,

F = —fo(uh, + h)/H. (18)

The values given correspond to a value of 7 km for H,
the mean depth of the fluid.

Results of two-dimensional experiments will be most
clearly analogous to the three-dimensional results when
waves 1 and 2 are both forced by bottom relief, and
are therefore able to interact with the zonal flow. When
stationary waves 1 and 2 are forced so as to achieve
amplitudes of 500 and 250 m respectively, and west-
ward wave 1 is driven by bottom relief of 50 m with a
period of 15 days, the resulting wave 1-wave 2 vacil-
lation (Fig. 16) shares several features with the vacil-
lation in the three-dimensional model. Both the am-
plitude of wave 2 and the strength of the zonal jet vary
in opposition to the amplitude of wave 1, and the mag-
nitude of the oscillation in the amplitude of wave 2 is
smaller than that for wave 1. The PE budgets for this
vacillation (Fig. 17a, b) also resemble the three-dimen-
sional results. The PE of wave 1 varies in response to
its interaction with the mean flow, while the wave 2
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FIG. 13."As in Fig. 12 but for vacillation with wave 2 absent.

vacillation is driven by wave-wave interactions. Wave
2 loses PE to wave ‘1 most rapidly on days 10, 25, 40,
and 55, when Qyr for wave 1 is largest.

This experiment is repeated with the same param-
eters, with the PV of both the stationary and traveling
components of wave | forced at the same rate as before
but by external forcing as opposed to bottom relief.
Wave 1 is thus unable to interact with the zonal flow.
The evolution of this vacillation, shown in Fig. 18,
indicates that changing the nature of the wave 1 forcing
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FIG. 14. As in Fig. 12 but for wave 2. The arrows show the times
of the maxima in Q) for wave 1.
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F1G. 15. As in Fig. 14 but for vacillations with periods of
(a) 20 and (b) 30 days. -

alters the behavior dramatically. The oscillations in
waves | and 2 are now in phase, and the variations in
the zonal wind are much weaker than in the previous
experiment. The latter result is expected, as the large
oscillations in the previous two-dimensional as well as
the three-dimensional experiments resulted from the
wave | interaction with the mean flow. The extraction
of PE by wave-wave interactions still dominates the
evolution of the wave 2 PE, but in the absence of wave
1--mean flow interactions the peaks in this term are no
longer locked to the growing phase of wave 1.
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FIG. 16. As in Fig. 5 but for barotropic vacillation at period of 15 days.

This vacillation does not show the inverse relation-
ship between waves 1 and 2 that is seen in the three-
dimensional model and the atmosphere, and it differs
from the previous barotropic experiment in its lack of
wave 1-mean flow interaction and in the absence of a
strong oscillation in the zonal wind. In order to deter-
mine which of these factors is responsible for the an-
ticorrelation of waves 1 and 2, the experiment is re-
peated a second time using bottom relief to force wave
1, but holding the zonal wind fixed at 40 m s™!, While
this experiment is unphysical in that PV and PE are
not conserved, it is useful for determining the role of
the mean flow vacillation. Figure 19 shows the results
of this experiment. It its details the vacillation is dif-
ferent from that shown in Fig. 16, but the inverse re-
lationship between waves 1 and 2 is preserved, and the
time dependence of the PE budget for wave 2 (not
shown) is still dominated by Quw. We conclude that
the wave-wave interactions which drive the wave 1-
wave 2 vacillation results from the interaction of wave

1 with the mean flow, and that variations in the zonal
wind do not play an essential role in the wave 1-wave
2 vacillation. This general conclusion, that the vacil-
lation in the barotropic model only shows the observed
phase lag between the oscillations in waves 1 and 2
when wave 1 is permitted to interact with the zonal
flow, holds over a wide range of parameters, and shows
little sensitivity to changes in the zonal flow, the period
of the forcing, or the amplitudes of the waves. In ad-
dition, experiments in which the strength of the zonal
wind is varied by external forcing fail to show the char-
acteristic wave 1-wave 2 vacillation.

6. Summary and conclusion

We have seen that realistic wave 1-wave 2 vacilla-
tions are generated in a severely truncated, quasi-geo-
strophic model by the interaction of westward traveling
wave 1 with stationary waves 1 and 2. Vacillations in
wave 1 and the mean flow result from interference be-
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FIG. 18. As in Fig. 16 but for vacillation with wave 1 forced nontopographically.
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tween the stationary and traveling components of wave
1. Wave 2 vacillates because of temporal variations in
its interaction with wave 1. Specificaily, a rapid loss of
wave 2 PE to wave 1 accompanies wave 1’s gain of PE
from the zonal flow durings its increasing phase. Ex-
periments with a barotropic model suggest that the in-
teraction between the waves is governed by the inter-
action of wave 1 with the zonal flow, and that it is the
wave |-mean flow interaction that causes the decline
of wave 2 to coincide with the amplification of wave
1. That wave-wave interactions should be catalyzed
by wave-mean flow interactions is consistent with the
results of Section 2. The interaction of a wave with the
zonal flow implies that there is a component of the
wave PV in quadrature with the wave’s streamfunction.
When wave-mean flow interactions are strong, this
component of the wave PV is large, and this in turn
leads to strong wave-wave interactions.

The model generates wave 1-wave 2 vacillations

which are realistic in several respects. The waves os-
cillate -out of phase, variations in the mean flow are
relatively weak, and the vacillations in the wave am-
plitudes are largely confined to the stratosphere. How-
ever the simple nature of the model raises questions
about its applicability to the atmosphere. The rigid
walls that bound the flow meridionally, the severe
truncation, and the perfectly periodic westward trav-
eling wave are its least realistic features. The first con-
straint means that the model can only treat interactions
between waves confined within the natural channel
created by the large meridional gradient of PV asso-
ciated with the polar night jet. Wave-wave interactions
at critical lines and wave breaking are excluded. The
occurrence of the vacillation during periods when the
zonal flow is relatively undisturbed suggests that the
inclusion of the “surf zone” (Mclntyre and Palmer,
1984), while obviously very important in the sudden
warming, may not be essential in simulating the wave
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I-wave 2 vacillation. The steadiness of westward wave
1 is clearly unrealistic in light of recent observations
(Lindzen et al., 1984). But there is strong support
(Madden, 1983) for the idea that vacillations in the
amplitudes of planetary waves and the strength of the
mean flow result from interference between stationary
and traveling waves. The results of Section 2 are suf-
ficiently general that strong wave-mean flow interac-
tions associated with this interference in the atmosphere
would promote wave-wave interactions. The details of
these interactions will presumably differ from those in
a severely truncated model. So while the current model
of the wave 1-wave 2 vacillation presents a plausible
picture of how the vacillation could occur in the at-
mosphere, confirmation of these results will require
detailed diagnoses of the vacillation both in observa-
tions and in the results of more comprehensive models.
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