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Atomic and gravitational clocks are governed by the laws of electrodynamics and gravity respectively.
While the strong equivalence principle (SEP) assumes that the two clocks have been synchronous
at all times, recent planetary data seem to suggest a possible violation of the SEP. Our past analysis
of the implications of an SEP violation on different physical phenomena revealed no disagreement.
However, these studies assumed that the two different clocks can be consistently constructed within
the framework. The concept of scale invariance, and the physical meaning of different systems of
units, are now reviewed and the construction of two clocks that do not remain synchronous—whose
rates are related by a non-constant function B,—is demonstrated. The cosmological character of B,

is also discussed.

OF the forces of nature, the two more successfully described
are the electromagnetic forces, through quantum -electro-
dynamics (QED) and macroscopic gravity, through Einstein’s
theory of general relativity (GR). The high level of agreement
between predictions and observations leave little doubt that we
now possess the correct physical interpretation as well as the
theoretical tools to describe both forces.

QED and GR are also complete theories in the sense that
they yield operationally well-defined clocks which satisfy the
dynamical equations of the theories themselves. To understand
what is required for a theory to yield a well defined clock, we
introduce the notion of scale invariance, SI.

Consider a dynamical equation defined in a given system of
units, containing field variables and dimensional parameters.
Consider now a scale (length) transformation of the type

L>L,=0; (x)L 1)

where (1,.(x) is a dimensionless arbitrary function of space-time.
Regarding coordinates as dimensionless space-time markers,
it follows from equation (1) that

g:‘:v = 8uv Q;z(x), dS* = Q;kl ds (2)

Furthermore, a physical tensor A of arbitrary rank will be taken
to transform like

A= A*=AQ ™™ (3)

where 7(A) is called the power of A: w(ds)=1, m(g,,)=2.
Because null cones transform into null cones, it follows that
¢ = 1 holds in all systems of units. Therefore, because v = (v/c)e,
m(v) = 0. The power of any quantity can therefore be expressed
in terms of w(m) and w(L)=1.

Given these definitions, an equation is scale invariant if: (1)
in the transformed system of units, it preserves the same form
involving the transformed fields; (2) it has the same parameters;
and (3) there is no explicit dependence on Q,(x)

We now show that a SI theory cannot yield a unit of time,
that is, a clock. Because of the assumed SI, the dynamical
equations governing the clock are identical in any system of
units and so their solution for the period p of the clock in one
given system of units is the same in any other system of units,
P = p,. On the other hand, if instead of solving the dynamical
equations, we apply the transformation (1) directly to p, we
obtain the result p = Q.p,, that is p # p,, in contradiction with
the previous result. It follows that a SI theory yields a solution

that is simultaneously constant and variable, thus proving that
such a quantity is physically meaningless. In other words, a SI
theory, being invariant with respect to changes in scale, does
not possess a scale, thus lacking an intrinsic unit of time.

Therefore, a SI theory cannot provide a clock. For a clock
to exist, the underlying theory must be non SIL

As an example, let us consider the case of the electromagnetic
clock, an electron revolving around a proton, governed by the
following equations’:

L JgF*),, =1+, U U = FY @)
N g m
The periodic solution with the period p is given by
2[3
p=2m " [1+0(0/c)’] ®)

where [/ is the angular momentum per unit mass. In equations
(4) there is a ‘time coordinate’ x° whose physical meaning is
not given by equations (4), where x° is in fact a marker. Its
physical meaning can be determined by considering that since
de/dx°=dm/dx"=dl/dx°=0, we have from equation (5)
dp/dx®=0, thus allowing one to attribute a physical meaning
to x°. Equations (4) are therefore constructed so as to yield a
physical unit of time, given by equation (5). This property is
due to the fact that equations (4) are not SI. In fact, let us apply
equation (1) to equations (4). As 27 (e)=m(h)=1+nm(m)=
2—-nw(G)=2-g and 2#(F8)=2#(E,H)=7(p,)=mw(m)~-3,
(E and H are the electric and magnetic field strengths, p, is
the energy density, e/ hc is a pure number and both k/mc and
GM]/ c? have the dimensions of a length), equations (4) become
treating coordinates as dimensionless,

1 — + +m
e Ve. Fy Q31 =T504 (6a)
8«
Q*’V
WU AL ST = Py, 07 (6b)
%

with A, =uw,u, —g,, and 27 =27 (F*)=a(m)—"1.

Clearly, while equation (6a) can be made SI by assuming
m(m)=—1, equation (65) cannot, for the , dependence in
the A term cannot be made to disappear because there are no
free parameters in A,,,. Therefore the system (4) is not SI.
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Let us now consider a gravitational clock (a planet and a
star, for example) and let us consider the Einstein equations
describing macroscopic gravity. From the previous analysis it
follows that the lack of SI of equations (4) is due solely to the
equations of motion which in the gravitational case are already
contained in the Einstein field equations, which can therefore
be expected to be not SI. This is indeed the case’: Einstein
equations do not retain their original form under the scale
transformations (1)—(2). Their lack of SI is why a gravitational
clock is a well-defined quantity, whose period, given by Kelper’s
third law, reads (M is the total mass and J is the orbital angular
momentum per unit mass)

27 3
(GM)?
The above discussion shows that the electromagnetic and gravi-

tational clocks are meaningful because the dynamical equations
governing them are not SL

M

The strong equivalence principle

To study the relationship of the two clocks, consider a physical
phenomenon characterized by a proper length interval As,
which we shall measure using electromagnetic and gravitational
clocks, the results being As, (atomic) and Asg (Einstein), respec-
tively.

Because clocks are the manifestation of underlying forces
and we do not yet possess a unified theory, we do not know a
priori whether the ratio

ASE _
As, - Ba

is constant. The lack of knowledge of the function 8, has so
far been circumvented by adopting the strong equivalence prin-
ciple®* (SEP) which assumes that

B.=constant=1 9

implying that, for example, the value of the period of a planet
should be independent of the clock used to measure it.

The SEP comprises two assumptions®: (1) that the weak
equivalence principle (WEP) holds; and (2) that local gravita-
tional and non-gravitational experiments are independent of
where and when in the Universe they are performed. The
requirement (9) refers to ‘when in the Universe’, since, due to
the high degree of homogeniety observed in the Universe, we
assume that 3, is only time dependent. Furthermore one experi-
ment is not sufficient to test the SEP, at least two experiments
are needed at two different times, because B, can be normalized
to unity at any one time; what is physically relevant is 3..

®

Tentative evidence of a violation of SEP

Usmg 8, 249 lunar occultation measurements®, lunar radar rang-
ing data®’, and dynamical determinations of the lunar peri-
ods®1°, 1t has been suggested that at the present epoch ./ 8. =
107" yr™'. However, as tidal forces make the Earth-Moon
system less than an ideal laboratory for our purposes, it would
be more satsisfactory to use radar ranging data to the inner
planets Mercury, Venus and Mars Usmg the available results,
an upper limit |8,/8.] <107'° yr™! was set"’

We stress here one aspect of the theoretlcal analysis. It may
seem natural to use the standard Einstein equations with the
simple alteration G = G(t)=Go+ GoAt+: -, whenever G
appears. However, from Einstein equations it follows quite
generally that for an isolated system GM = constant (refs 12,
13), where M is the total mass. (For any local system, this
constraint holds regardless of cosmological expansion®.) The
violation of this constraint can lead to serious errors. For
example, because the period and distance to a planet are given
by P~T1°/(GMY, R ~J*/(GM), GM = constant implies R = 0
and P = 0and not2R/R = P/P = —2G/ G, as usually stated. This

argument shows that a value of G/G cannot be extracted from
the standard Einstein equations where by construction G always
appears multiplied by M, the product being required to satisfy
the constraint GM = constant.

For these reasons, we (in collaboration with R. Helling and
P. J. Adams of JPL) have enlarged the system of dynamical
equations (originally used by R. Helling) to make them compat-
ible with a possible violation of the SEP. The Viking radar
ranging data to Mars are now being analysed. The best fit
solution will hopefully provide a reliable value for S,.

Purpose and basic assumptions

Let us construct a theoretical framework that allows for an SEP
violation in the form of a non-constant 8,. This allows for the
presence of two fundamental systems of units in nature, which
is necessary to explore consistently the implications of an SEP
violation as well as to provide relations which can be subjected
to observational test.

Gravitational or dynamical units (EU, where E stands for
Einstein), are the units in which Einstein equations remain
unchanged. These field equations contain the equations of
motion that yield the clock equation (7), which is therefore
taken to give the gravitational or dynamical unit of time (also
called ephemeris time). In EU, Gg = constant by definition and
so the total mass is also constant, since GgMfg is constant. In
addition, from Tg!, = 0 applied to a pressureless fluid, we find
that the rest mass is also constant. Therefore, in general

Mg = constant (10)

where M is either total or (macroscopic) rest masses. As the
particle number N will be shown not to be constant, equation
(10) does not mean that microscopic masses my are constant
in EU. Other atomic quantities such as ¢ and h, are also in
principle not constant in EU.

Atomic units (subscript a) are the units in which the dynamical
behaviour of an electromagnetic clock is governed by equation
(4), which in turn implies that equation (5) is taken to be the
atomic unit of time. Furthermore, in AU we have

h. = constant 11

Gg = constant,

e, = constant, m, = constant,

The first two terms are the analogue of (10) for microphysics.
(Actually, terms in equation (11) are contained in equations (4).)
In analogy with what we said earlier, the second term of
equation (11) does not imply that macroscopic masses M, are
constant in AU. In fact, they are not (see equation (25)); G, is
also not constant (see equation (18)).

Let us now consider the basic problem of determining the
relation of the two ‘preferred’ systems of units. We introduce
a language that describes any physical equation in a general
system of units of which the two ‘preferred’ systems are special
cases.

Physics in general units
Let us reconsider equation (1) and transform L, to L,

L,» L =0"'x)L,=(Q, Q) 'L=Q,.L

The quantity (), has therefore power —1, as from equation (3),
where A*, A and (), are replaced by (3., Q. and Q, respectively.
Therefore, any quantity of the form A*QI‘ has zero power
under subsequent scale transformations:

Ry mA) _ A kk)m(A)
A*QTD = Ax*Q ¢

As an example, we perform a further transformation of
equation (6) t0 @ g, Fus Jxs system. The final result can
easily be seen to be of the same form as equation (6), with only
double starred quantities in it. Therefore, equation (6) can be
said to be written in general units.

Let us now define a fiducial system of units by Q, =1, and
a general system of units by Q, = 8. Here, as in previous work ',
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we choose EU as the fiducial system (8gy = 1), so that to be
consistent with equation (8), the AU system is defined by Bau =
B.. Note that while B, defining a general system of units, has
power ~1, B, is of power zero, because .= Bau/Beu is the
same in all systems of units. Clearly the use of general units
does not introduce any new physics.

The action

To deal with the problem of constructing the two clocks, we
propose an action in general units, which as such must be of
Zero power,

I= j uB* ds +—— j B> *F, FJgdx*
167

+J- B> %eA,u” ds (12)

where u represents masses in general (microscopic or/and
macroscopic) and where the relation between F,, 8'"¥? and
A, B %% is the usual one. It is easy to check that the power
of I is zero. Because the dimensions of I are [M][L], the 8>°¢
factors are required for #(I) =0. The matter part of equation
(12) is different from that proposed by Dirac'® which is a
particular case of equation (12) if w8~ = constant. In AU, and
for microscopic masses, this implies g = 1, because of equation
(11). However, g =1 will be shown not to allow the two clocks
to run at different rates. The relaxing of the restriction u8'™® =
constant is why we can construct two clocks that run at different
rates.

Macroscopic gravitational clock

Consider the periodic motion of a planet in the gravitational
field of a star. From the first term in equation (12), we derive
the following equations of motion in general units,
2~-g
wip + B LY o (13)
(uB°7%)

where the metric g,, due to the star is given in general units
by the Schwarschild metric times 87>, As we are dealing with
a macroscopic object, then

uw=M,  Mg=p""*M = constant (14)

where the second relation is the general law for mass transfor-
mation from Einstein units to general units, following from
equation (3) with A=Mg, A*=M, Q =8, m(m)=1-g. The
last equality in equation (14) follows from equation (10).
Equation (13), with equation (14), specializes to

EU: uu”=0; AU: u“;,u”+?-;—"A°‘*=O (15)

The solutions for the period P can be easily worked out. The
results are

2mJ3
EU: Pp=——-"-7-= .
E (G constant;
AU: P,=pB;'P: (16)

Electromagnetic clock

The motion of an electron in the field of a proton F"’, is
governed by the following two equations, derivable from
equation (12)

(VgFMB' 92, = 4x [ B %2 §*(x* —2°) dz* =J* (17a)
2—-g
usu” +((L‘f;;_3—;"/.\“"=£ uFe (17b)

In equation (17h) we used e’ #% = constant, a constraint deriv-

able from equation (17a) using the antisymmetry of F,,. Let

us now specify equation (17) to AU and EU. In AU we require
equation (17) to coincide with equation (4). In AU, 8 = 8,, and
for a microscopic mass u = m = m, = constant. The requirement
can therefore be fulfilled only if

g=2, w(m)=-1, G.B2=constant (18)

To derive the last term of equation (18) we have used equation
(3) with A= Gg, A*=G,, Q,=p,, as well as equation (10).
The corresponding solution for the period p, in a local
lorentzian coordinate frame is now given by equation (5),
with the subscript a attached to all the quantities. Let us now
consider EU, where
w(m)

B=1’ ”’EmE:maBa >

e’=ef =elpa ™™ (19)

where we have again used equation (3). Because g =2, equation
(17a) retains the same form as in AU, whereas equation (17b)
becomes

Bay

B

Using a local lorentzian coordinate frame, the solution for the
period pg is found to be

EU: ulu'——=A"= ;—ﬂ Bu'F3 (20)

Pe = Ba Da, (D = constant, equation 5) 21

To achieve the desired result we had to fix a gauge: a relation
between B, and G,, equation (18). This is a welcome feature
because until now , we had to consider g as a free parameter'®'’.
This no longer the case, as the theory now demands equation
(18). Note that such a gauge was previously suggested in connec-
tion with the 3K black-body radiation'®,

We have proposed a lagrangian whose solution for the periods
of gravitational (P) and atomic (p) clocks are

Px=8.P,, De = BaDas Pg, p, = constant 22)
or
Pa  PE
£_%E g 23
P. P, B (23)

namely: in either atomic or gravitational units, the ratio of the
periods of the two clocks is not constant, provided 8, is not
constant. We have therefore proved that, provided g=2, a
framework exists which allows the two clocks to run at different
rates.

We must stress that the extension of equation (17a) to a
charged fluid must be written as F** ;, = J*, where J* = enu"f,
f being an undetermined function of 8.. Due to the antisym-
metry of F**, it follows that J* , =0, which implies eNf=
constant. Because for g =2, e is constant in any units, equation
(19); it then follows that f~N"!. The Coulomb force now
becomes e¢>N?f?/r’. The analogous gravitational force is
GM?/r?, with GM?*= GgM% = constant, a result valid for g = 2.
The correspondence between macroscopic Coulomb’s and
Newton’s laws is therefore preserved.

Weak equivalence principle

In achieving the result (23), the central part was played by the
action (12) and the equations of motion ensuing from it. Since
equation (13) is in general units, using g =2, the fact that
mB ¢ =me =m,B. % ~B:*, and equation (14), we obtain

B..

. . . Ba,
Microscopic bodies: u®,u’ +== A == A*

B B
B.

Macroscopic bodies: u*, u” +F A*=0

(24a)

(24b)

which indicate that the two types of bodies do not follow the
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same type of trajectories. Equations (24) are still in general
units.

From the operational point of view, we are only interested
in AU, so we limit our considerations to them. Equations (24)
tell us that in AU, microscopic masses follow geodesics while
macroscopic masses do not. In either case, however, masses do
not enter the equations and the WEP is separately satisfied, in
the sense that all macroscopic objects follow the same path as
do all microscopic ones. The results of the Eotvos-Dicke-
Braginskii experiments>'®, showing that two (macroscopic) bars
of Al and Au (or Al and Pt) follow the same path, are therefore
in full agreement with equations (24), as the extra ‘force’
represented by B,, is independent of the mass and it affects
both bars equally. Thus, its effect cancels out in this type of
experiment.

To test equations (24) one should follow in time the trajec-
tories of an atom and of a planet, which is the procedure in
the radar ranging experiments. In fact, one may think of atomic
and gravitational clocks (the Earth-Moon system), as two
‘objects’ moving in space-time following two given trajectories.
If, as time evolves, the two systems follow different types of
trajectories, charting the time evolution of the macroscopic
object with the reference provided by the microscopic object
cannot yield constant results if the ratio of the proper lengths
spanned by the two objects is not constant in time. Therefore
equations (24) are an alternative way of interpreting the lunar
and planetary data that stresses the difference in the two trajec-
tories rather than the difference of the two clocks. These two
ways of interpreting the data are equivalent, although the
second one is the one almost exclusively referred to in this
context.

Particle number non-conservation

The fact that only g = 2 is allowed has important consequences.
In fact, since m, and Mg are constant, it follows that (using
equation (3) between AU and EU)

mg~Ba %,  M,~Bi"', N~pi’ (25)

implying that N is no longer constant. To have a conserved N,
we have to choose either 8, = constant, in which case the SEP
is automatically satisfied or g = 1, which would also lead us to
an SEP conserving framework. In fact, for g =1 the left-hand
side of equation (15) governing the macroscopic gravitational
clock in AU would be identical to that of equation (174) govern-
ing a microscopic electromagnetic clock in AU, thus leading to
no difference between the two periods P, and p,, thus returning
to the SEP. (The right-hand side of (17b) does not affect this
statement because, due to spherical symmetry, it does not affect
the angular momentum conservation law),

Equation (25) is the most important consequence of the SEP
violation framework as it indicates that a violation of the SEP
is intimately related to a violation of the particle number cori-
servation law.

Gravitational constant

It is often stated that if atomic and gravitational clocks are
different, the gravitational constant G must vary with atomic
time. While the statement is not incorrect, it may give the
impression that it adds some new fact. This is not the case. In
fact, neither in the gravitational action of ref. (14) nor in the
one presented here, is there an independent function G. One
calls G the combination Gg B7* = G, G = constant. But one
does not introduce new physics, one simply lumps together a
function B, a parameter g, and a constant Gg. That the physics
is contained in 8. and not in G,, is evident from the fact that
the experiments on the Moon and the inner planets, yield
directly 8. and not G,, which is derived quantity, equation
(18).

Cosmological meaning of 8,

The framework presented here while permitting the examina-
tion of the implications of an SEP violation, does not explain
the physical mechanism behind it. In fact, B3, is treated here as
an external quantity, much as viscosity is treated in classical
fluid mechanics, where it enters as an external parameter whose
evaluation requires a microscopic kinetic theory.

Although we do not offer a dynamics for 8,, it is important
to stress that a dynamics of 8, can be either of a local or global
nature. In the first case, B, is regarded as a space-time field
described by an action to be added to the total action; this
would entail a coupling of B, to local matter, with the result
that even in EU, macroscopic gravity would no longer be
described by standard Einstein equations, thus departing com-
pletely from our basic assumptions. A local approach was
adopted by Brans and Dicke (BD). As several studies have
indicated®®?', Solar System experiments constrain, within the
BD approach, the variability of 8, to some orders of magnitude
below the value quoted previously. As there is no reason why
we should arbitrarily restrict 8, to such low values, we find the
local approach inadequate.

The value of 8, implying 8./ 8. ~ H, suggests that 3, is related
to the structure of the Universe and that its dynamics is likely
to be governed by topological rather than local space-time
considerations. The SEP violation represents therefore a cos-
mological influence on local physics, in accord with Mach’s
principle. In contrast, accepting the SEP as an exact law of
physics is equivalent to assuming that local physics is indepen-
dent of the rest of the Universe.

Recent work on nucleosynthesis’® has indicated that, as
expected, an SEP violation with a time scale of the order of
the Hubble time cannot be extrapolated back to the radiation
dominated era. Furthermore a dynamics for photons can be
constructed®* independently of 8,: in particular, a very general
argument has been found indicating that the photon number
N,, contrary to the particle number N, equation (25), is adiabati-
cally conserved for any value of the parameter g. (The photon
treatment presented in (ref. 16) is therefore valid only if g = 1).

The two previous results suggest that an SEP violation, if it
exists, began to manifest itself only after the Universe entered
the matter dominated era, before which 8, may have been
constant.

Conclusions

The most important results of the present analysis are:

® Einstein field equations retain their standard form only in
EU. In AU, they depend on B, and their form is given by
equation (2.34) of ref. 14.

® The trajectory of a macroscopic (many body) object is a
geodesic in EU; in AU, B, factors enter. The results are given
in equation (24b).

® The trajectory of a microscopic (one body) object is a geodesic
in AU; in EU, B, factors enter, equation (24a).

@ While in AU the description of a microscopic one body
dynamics is unchanged, (this holds true even at the level of
the Schrddinger equation), the description of a many-body
situation is affected by 8,. In fact, the particle number N ~ g,
equation (25). This in turn implies that macroscopic masses
are such that M, ~ 8., Mg ~ constant, Microscopic masses are
such that m, ~constant, mg~ 3, . Finally, the gravitational
coupling G is such that G = constant, G, ~ 8;°.

We thank Drs P. J. Adams, J. Anderson and J. Lodenquai
for constructive criticism, and Ms Doris Smith for typing the
manuscript.
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Protein dynamics investigated by the neutron
diffraction-hydrogen exchange technique

A. A. Kossiakoff

Department of Biology, Brookhaven National Laboratory, Upton, New York 11973, USA

A new approach, using neutron diffraction and the hydrogen exchange (H/D) technique, has been used to study the
extent and nature of the inherent conformational fluctuations in the protein, trypsin. The observed pattern of exchange
was used to investigate systematic relationships between exchangeable sites and structural and chemical properties of
the molecule. Results of this analysis indicate that hydrogen-bonding structure is the dominant factor governing rates of
exchange. The model of conformational mobility which best explains the experimental findings involves a localized
disruption of the secondary structure within different regions of the protein molecule, each limited in extent to the breaking

of a small number of hydrogen bonds.

STRUCTURAL and chemical investigations have clearly
demonstrated that, despite their high degree of hydrogen and
hydrophobic bonding, proteins are far from rigid matrices of
atoms and have certain component segments which exhibit
considerable dynamic mobility’ . Because of their fundamental
importance to the understanding of biological processes®™,
the dynamical properties of proteins have recently been the
subject of intense study by a variety of methods. However,
important issues remain concerning the effects of protein
folding on the extent and nature of its dynamical motions.

Ireport here a study of the mobility characteristics of trypsin,
a 223 amino acid protein, by coupling the hydrogen exchange
(H/D) technique with neutron diffraction. Since its introduction
by Linderstrom-Lang and his colleagues®'?, the H/D exchange
method has been widely recognized to have great potential as
a probe for protein conformational change (for detailed dis-
cussions of the potential applications of the H/D method to
evaluating protein dynamics see refs 2, 11-14). H/D exchange
has major advantages over other labelling techniques in that a
deuteron has a negligible space requirement and has chemical
properties nearly equivalent to those of the proton it replaces
in the structure. Further, potentially labile sites are distributed
throughout the molecule and therefore probe the dynamical
properties of the whole structure.

Kinetic studies have shown that H to D exchange rates of
peptide NH groups in a protein can differ by as much as 10
decades'?. It has been generally supposed that the groups which
exchange at rapid rates similar to those characteristic of small
molecules are those located on the surface of the protein and
hence in direct contact with the solvent. Conversely, the groups
which exchange much more slowly are assumed to be located
in the interior of the protein and involved in internal hydrogen
bonding' "2,

It is generally accepted that in the conditions of this experi-
ment (pH 7), the exchange reaction is catalysed by the presence
of hydroxyl ion. However, little is known about other relation-

ships between the exchange chemistry and the dynamical
properties of proteins. For instance, the size of the solvent unit
required to facilitate the exchange process is an open question,
a situation which has led to the postulation of two distinct
stereochemical models for exchange. One model, which will be
referred to as the cooperative or local unfolding mechanism,
is described by a transient, cooperative unfolding of a segment
of secondary structure'' ">, Access to the exchangeable protons
is assumed to be accomplished by the extrusion of the chain
into the bulk solvent where the exchange reaction can proceed
by normal water chemistry. In the second model, the penetra-
tion mechanism, it is assumed that the exchange reaction takes
place, shielded completely from the bulk solvent, within the
tightly packed interior of the protein. It is proposed that the
necessary solvent molecules can be diffused through the protein
to the interior sites via pathways opened by local atomic
fluctuations'* or by mobile defects in the protein packing'’.

A variation of local unfolding is introduced here and termed
‘regional melting’. It differs from the mechanism described above
in that exchange does not require the chain to be extruded into
the bulk solvent. In this variant, the reconformation process is
limited to the cooperative breaking of several hydrogen bonds,
resulting in the formation of a solvent-filled cleft in the protein
surface. The exchange is assumed to take place within the cleft
if the cleft is sufficiently large to permit the solvent molecules
to arrange themselves in a stereochemically productive orienta-
tion with respect to the exchange site. Although the solvent
molecules within the clefts cannot be considered to have
chemical properties identical to the bulk phase, they are
assumed to be contiguous to the bulk solvent.

Unfortunately, previous H/D exchange experiments have
been unable to relate exchange rates with specific groups or
even regions of polypeptide chain, thus limiting the usefulness
of exchange methods in elucidating the factors responsible for
protein conformational mobility, and the mechanism of the
exchange reaction.
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