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ABSTRACT

Microturbulence and systematic motions are viewed as simplifying assumptions made to
facilitate treatment of line formation in molecular clouds, and line intensities calculated in the
two approximations are compared to estimate how uncertainties about the actual line-broadening
mechanism affect the interpretation of molecular emission lines. For lines formed by two-level
molecules in an isothermal homogeneous cloud, the alternative assumptions lead to peak and
integrated line intensities which agree within the differences (up to a factor of 3) associated
with the ignorance of cloud geometry. New multilevel calculations for CO in the same cloud
model bear out the generality of this result. It follows that, within the geometrical uncertainties,
the Sobolev approximation may be used confidently in the numerous applications for which

this simple cloud model suffices.

Subject headings: interstellar: molecules — line formation — line profiles — nebulae: general —

radiative transfer

I. INTRODUCTION

The mechanisms which broaden the spectral lines
emitted by molecular clouds are poorly understood.
The lines are almost invariably too wide to be ex-
plained by thermal motions, and they frequently
imply supersonic velocities. The line widths have
commonly been attributed to turbulence, but diffi-
culties with line profile interpretation and energetic
difficulties associated with supersonic turbulence have
led to the supposition that the line widths reflect
systematic motions within the clouds, presumably
large-scale collapse (Goldreich and Kwan 1974;
Scoville and Solomon 1974; Liszt et al. 1974). How-
ever, other evidence seems to weigh against the notion
that collapse generally dominates the line widths
(Zuckerman and Evans 1974; Morris et al. 1974),
and has led to alternative suggestions that the lines
reflect the existence of unresolved fragmentation
(Zuckerman and Evans 1974) or the presence of
hydromagnetic waves (Arons and Max 1975).

The form of the velocity field has an important
bearing on the interpretation of the molecular line
observations. In general, the cloud densities are too
low for collisions to thermalize the populations of the
molecular energy levels; thus the molecular excitation,
and hence the observed line intensities, depend on the
degree to which radiative trapping thermalizes the
line radiation field. If systematic motions introduce
Doppler shifts far in excess of the local Doppler
widths, molecules can interact radiatively only within
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a small volume; trapping is local and can be treated in
a straightforward way (Goldreich and Kwan 1974;
Scoville and Solomon 1974; White 1973) which is
referred to hereafter as the ““Sobolev approximation”
(Sobolev 1960). More generally, scattered radiation
makes a significant nonlocal contribution to the
molecular excitation. Then numerical treatment is
much more complex, even in the simplest case, where
it is assumed that the cloud has no large-scale motions
and that the lines have a Doppler profile due to a
combination of thermal motions and small-scale
random motions, ‘“microturbulence” (White 1971,
1973; Clark, Buhl, and Snyder 1974; Lucas 1974;
Leung 1975; Leung and Liszt 1976). Hereafter, this
case is referred to as the “microturbulent approxima-
tion.”

Both microturbulence and simple collapse are
idealized motions, and neither may accurately rep-
resent the velocities in molecular clouds. Therefore
this paper investigates quantitatively how the choice
of velocity model may influence the interpretation of
molecular line observations. In § II it is argued that
the two velocity models can be viewed as approximate
limiting cases for the treatment of molecular line
formation. Consequently, a comparison of the in-
tensities predicted in the two approximations for
otherwise identical cloud models yields a fair estimate
of the uncertainties associated with the velocity field.
For isothermal homogeneous cloud models (§ III),
new microturbulent calculations and Sobolev calcula-
tions, both for a two-level molecule and for carbon
monoxide, yield line intensities which agree within
the approximately threefold uncertainty associated
with cloud geometry. The implications and limitations
of the calculations are discussed in § IV.
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II. MICROTURBULENCE AND SYSTEMATIC
MOTIONS AS LIMITING APPROXIMATIONS

The idea that large-scale motions develop in molec-
ular clouds as a result of gravitational instability
provides a plausible rationale for use of the Sobolev
approximation in studies of molecular line formation
(Goldreich and Kwan 1974). The idea that micro-
turbulence occurs in molecular clouds is implausible,
because it requires that the motions have a charac-
teristic length scale which is short compared with the
photon mean free path. Rotational lines of abundant
molecules in dense interstellar clouds, where the
thermal line widths are ~0.1 kms~*, have photon
mean free paths which are but a small fraction of the
cloud size. It is uncertain, and seems unlikely, that
turbulence, density inhomogeneities, or hydromagnetic
waves will be restricted to the small scale required.
So it becomes necessary to consider the effects of
macroturbulence on the molecular source functions
and line profiles.! In the course of this discussion,
we develop the rationale that the assumption of
microturbulence is useful as a limiting approximation,
and that the Sobolev approximation represents the
alternative limiting case, whether or not collapse
dominates the motions in molecular clouds.

Line profiles are exceedingly sensitive to the velocity
fields present in the line-forming regions. The micro-
turbulent approximation yields the prediction that
optically thick lines will be symmetrical and self-
reversed under most circumstances, with the result
that isotopic variants of an abundant molecule,
particularly 12CO and 2CO, should have very differ-
ent line profiles. Although some evidence for self-
reversed 12CO lines has appeared (Kutner and Tucker
1975), observers have used the much more common
absence of this effect to argue against the notion of
turbulent line broadening (Liszt et al. 1974). However,
systematic velocities only twice the thermal velocity
seriously and systematically distort the self-reversed
line profiles, while producing only modest differences
from the microturbulent source functions (Kunasz
and Hummer 1974b). Macroturbulence will almost
certainly produce comparable, but irregular, changes
in line shape. This circumstance obviates the line
profile argument against turbulent line broadening,
but it will often limit application of the microturbulent
approximation to cases where attention is restricted
to the peak and integrated intensities of the lines
(as in § III), or where a more realistic velocity field is
adopted in the line profile calculations.

Within these limitations, the relevance of the
microturbulent approximation hinges on its utility
in the more difficult problem of determining the
molecular source functions. For the homogeneous
velocity field assumed in the microturbulent approxi-
mation, the source functions are generally coupled
throughout the cloud by scattered radiation; for the

! For the purpose of this discussion, macroturbulence
refers to any motion which has a scale comparable to or
exceeding the photon mean free path. This includes hydro-
dynamic turbulence, macroscopic motion of cloud fragments,
and hydromagnetic waves.

large-amplitude systematic motions assumed in the
Sobolev approximation, the local source functions
are independent of one another. The crucial difference
here is not between microturbulent and systematic
motions, but between nonlocal and local radiative
excitation. Like systematic motions, macroturbulence
probably tends to decouple neighboring parts of the
cloud; but it may or may not isolate local regions
from the rest of the cloud. So, we reason that the
source functions of optically thick lines in the presence
of macroturbulence will approach those found in the
microturbulent (Sobolev) approximation to the degree
that radiative interaction between distant parts of the
cloud is strong (weak). And in the intermediate cases,
we expect a smooth variation away from the micro-
turbulent (Sobolev) source functions, like that found
by Kunasz and Hummer (1974b) for small-amplitude
systematic motions.

We conclude that the microturbulent and Sobolev
approximations may usefully be viewed as limiting
cases for the determination of molecular line source
functions, and that comparison of the peak and inte-
grated line intensities given by the two approximations
for otherwise identical cloud models will indicate the
effects which uncertainties in the velocity field have
on the interpretation of molecular line data. Section
III presents such a comparison for a very simple but
commonly used cloud model.

III. THE ISOTHERMAL HOMOGENEOUS CLOUD

The restriction of line-formation calculations to
simple geometrical configurations introduces a funda-
mental limitation to the accuracy of theoretical
studies of molecular cloud spectra. Hence we view
the geometrical variations in line strength as a
standard for assessing the influence of the velocity
field, and present calculations for the microturbulent
and Sobolev approximations in both plane-parallel
and spherical geometry. Part (a) of this section out-
lines the numerical formulation of the microturbulent
and Sobolev calculations. Part (b) presents results
obtained for a two-level molecule. In this case the
effects of temperature, density, and optical depth can
be accounted for in a compact way, which clearly
isolates and demonstrates the effects of the velocity
field and the cloud geometry. Part (c) extends the
results to carbon monoxide, showing that the influence
of velocity field and geometry are accurately illustrated
by the two-level calculations.

a) Numerical Formulation
i) Microturbulent Approximation

The radiative transfer problem posed in the micro-
turbulent approximation is global and nonlinear,
because scattered photons allow interaction between
distant parts of the cloud, and because multipole
collisions allow interaction between different lines.
The problem demands a simultaneous self-consistent
solution for the radiation field in the spectral lines
and for the occupation numbers of the molecular
energy levels throughout the cloud.
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We have solved this problem in plane-parallel
geometry using a variation of the linearization tech-
nique described by Auer (1971). With the adoption
of variable Eddington factors to relate the moments
of the specific intensity, the equation of transfer at
each discrete frequency takes the form of a second-
order differential equation for the mean intensity,
with the appropriate boundary conditions. A dif-
ference scheme in depth transforms each differential
equation and its boundary conditions into a system of
algebraic equations. The physical conditions are
specified, so these equations can be solved subject
only to the constraint imposed by the statistical
equilibrium equations at each depth point. The
difference equations are linearized to yield expressions
involving corrections to the adopted trial values of the
mean intensities and corrections to the adopted energy
level populations, while the latter are eliminated by
means of the linearized statistical equilibrium equa-
tions (Auer 1973). As suggested by Auer’s (1971)
discussion, complete linearization of the problem
was unnecessary for the work reported here. The
simple radiative selection rules (AJ = +1) which
govern rotational transitions of linear molecules allow
successive solutions of the linearized equations for the
radiation in each line rather than simultaneous
solution of all the equations. This line-by-line ap-
proach makes it economical to retain the Feautrier
(1964) method for solving the transfer equations,
rather than adopting the modified Feautrier technique
(Rybicki 1971).

The solution proceeds iteratively. A trial set of
occupation numbers, described below, determine the
line opacities and source functions needed to calculate
the trial intensities by formal solution of the transfer
equations. The new intensities yield the radiative
transition rates; then solution of the statistical
equilibrium equations provides improved estimates
of the occupation numbers.?2 At each iteration the
current estimates of the mean intensities and occupa-
tion numbers determine the coefficients of the
linearized equations, which are solved line by line,
first J=1-—0, then J =2-—1, and so on. The
intensity corrections for each line are used to improve
the radiative transition rates, and the occupation
numbers are correspondingly revised before the
solution for the next line is begun. After all the lines
have been treated, the fractional mean intensity
corrections are calculated; another iteration begins
if any of the fractional corrections exceeds a prescribed
limit, which was 0.1, in the work reported here. The
line-by-line solutions typically require five to 10
iterations, not more than 3 times the number required
if all the linearized equations are solved at once; while
the computation time per iteration may be smaller
by one to two orders of magnitude, depending on the
number of lines treated. The computation time varies
approximately linearly with the number of lines
considered, the number of depth points used, and

2 Repetition of this sequence (A-iteration) represents the

most obvious approach to the problem, but it may fail under
many important circumstances (Mihalas 1970, p. 214).

Vol. 211

the number of iterations required. To cite a single
case, a solution involving 10 lines, 20 depth points,
and seven iterations took 27 seconds on an IBM
360/95.

The proper choice of trial solutions is crucial to the
stability of the linearization scheme. To ensure
adequate initial estimates, a set of calculations for a
given density and temperature begins at low projected
density of molecules (N), so that the optically thin
statistical equilibrium solutions apply. The computa-
tions proceed to successively larger values of N at
intervals of 0.5 dex. In each case after the second one,
the molecular occupation numbers (n;) are extrapolated
from the two preceding cases:

In (#;);41 = In (), + fIIn (n,); — In (n,); 4] .

Values of f~ 0.4 give the most satisfactory con-
vergence. We have encountered no convergence
problems using this approach, even in cases where
the J = 1 — 0 line of CO has inverted populations
(Goldsmith 1972).

Simplifying assumptions and  parameter choices
made in the calculations include the following. The
assumption that photons scatter isotropically with
complete redistribution in frequency renders the
source functions independent of frequency across each
line. The Eddington approximation fixes the Edding-
ton factors throughout the calculations. Only half
the line is treated explicitly, because of the symmetry
of the line profile; the discrete frequencies are spaced
uniformly from the line center to a frequency 4.5
Doppler widths away, at intervals of 0.5 Doppler
units for the source function calculations, and at
intervals of 0.25 Doppler units for the emergent in-
tensity solutions. Except at the cloud surface, the
discrete depth points are spaced at intervals of 0.25
dex in projected density. With these parameters, our
two-level Eddington approximate calculations agree
with those of Avrett and Hummer (1965) within a few
percent, while the Eddington approximation itself
provides about 10%, accuracy (Avrett and Hummer
1965). The formal accuracy associated with the
assumption of complete redistribution is probably
poorer than this (Hummer 1969); but, given the un-
certainty in the line-broadening mechanism, a more
precise treatment is unwarranted.

The multilevel calculations treat cases that have a
wide range of excitation conditions in a single run.
Consequently, the total number of transitions in-
cluded and the number treated self-consistently are
varied from one case to the next. The total number of
transitions is limited by the condition that the neg-
lected transitions contribute < 1%, of the total flux, as
estimated from the trial solution. Transitions are
treated self-consistently when the density of scattered
photons at the cloud center, again estimated from the
trial solution, exceeds 0.1%, of its equilibrium value.
The calculated intensities of the observable millimeter
wavelength lines are unaffected by the treatment of the
highest energy levels.

The two-level results for spherical geometry, which
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appear in part (b) of this section, were derived by
formal solution of the radiative transfer equation,
using the source functions given by Kunasz and
Hummer (1974a).

ii) Sobolev Approximation

In the Sobolev approximation, the radiative transfer
problem remains nonlinear; but it may be solved
locally, so that the scale of the numerical problem is
reduced dramatically. Our mathematical formulation
of the problem follows that of Lucy (1971); but it is
equivalent to that clearly presented for the molecular
line problem by de Jong, Chu, and Dalgarno (1975),
and need not be repeated here. The calculations assume
complete redistribution and adopt the Eddington
approximation. The number of transitions included
in the multilevel calculations is varied according to the
same conditions applied in the microturbulent
approximation.

iii)y Comparison of Results

To ensure comparable line widths in the two
approximations, a uniform velocity gradient was
assumed in the Sobolev calculations, with the velocity
difference (V') between the center and edge of the cloud
set equal to the microturbulent Doppler parameter

1/2
vp = (%’;—T + vﬁ) .

For the comparisons of plane-parallel with spherical
geometry, the slab thickness and sphere diameter
(2R) were taken to be equal.

Numerical results are presented only for the specific
intensities emitted perpendicular to the cloud surface,
which correspond to observations toward the center
of an extended source. Intensity variations across a
source depend sensitively on variations in physical
conditions through the cloud, and especially on the
cloud shape. The simple cloud model considered in
this section is too crude for interpretation of source
maps, even if plane-parallel cloud models could
realistically serve such a purpose.

b) The Two-Level Molecule

In general, the intensity of a spectral line emitted
by a diffuse gas depends on the temperature and
density of the gas, the abundance of the radiating
molecule, the profile of the line, the shape of the
cloud, and the details of the molecular structure and
transition probabilities. For a two-level molecule, the
complications due to molecular structure are sup-
pressed, and the effects of the physical conditions on
line strength can be economically presented. The effect
of the velocity field on line shape and the effect of
cloud geometry can then be isolated and compared.

We first consider the peak intensity of the spectral
line. In the Sobolev approximation, the specific in-
tensity I, at any frequency v in the line is given by

I, — I, = [S — L]l — exp(—n)], M)
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where I, is the intensity of the background radiation
(assumed isotropic), S is the line source function, and
7, is the optical depth of the line along the chosen line
of sight. For the direction normal to the surface of

the cloud,
di
7 = x(r) / (vD‘1 (T’r’) , V)

where the assumed velocity law uniquely relates a
position r in the cloud to a frequency v in the line.
In the usual notation,

8 3 2
K= e (/g — nalga) ©)

and vp = vy = (2kT/m)*2. For the assumed linear
collapse, ‘
di
vo™ 5 = V/ooR “

everywhere in the cloud, and for homogeneous physical
conditions « and S are constant, so that

7, = kR/(V[vp), Sobolev, ®)

at each frequency in the line, and 7, is independent
of v.

In the microturbulent approximation, S generally
varies with position in the cloud, and I, — I, is given
by the usual integral form of the equation of transfer.
It will suffice here to consider two special cases. If
the cloud is optically thin, equation (1) applies, with
the peak intensity corresponding to the line center
optical depth:

2R
To = w2 f xdr, microturbulent . 6)
0

If the cloud is optically thick, the Eddington-Barbier
relation associates I, with the source function at
monochromatic optical depth unity. This accounts for
the characteristically self-reversed line profiles, because
the line center intensity corresponds to S near the
cloud surface, while the maximum intensity, I,
occurs away from the line center at a frequency such
that +, ~ 1, and reflects the larger source function
deep in the cloud. If the maximum value of the source
function is S,,, then

Im—Iszm_Ib° (7)

We emphasize that S, is the source function at the
cloud center, and that the commonly encountered
statement that the observer cannot see deep into the
cloud in the microturbulent case is generally incorrect.

To proceed further, we utilize the particularly
simple expression for the source function that follows
from the two-level statistical equilibrium equation.
Using the photon escape probability 8 to eliminate
the mean intensity of line radiation (Goldreich and
Kwan 1974; de Jong, Chu, and Dalgarno 1975), the
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expression for the source function at a given point in
the cloud becomes

- g+ 2, ®

where b, is the Planck function at the local kinetic
temperature, 7,

€ = Cyu/Anll — exp (—m/[kT)], ®

C,, is the downward collision rate, and A,;, is the
Einstein coefficient for spontaneous emission. In the
Sobolev approximation, B is determined locally and
can be expressed

B = [1 — exp (—amy))/aro, (10)

where 7, is given by equation (5), and the geometrical
factor a is 1 for the spherical case and 3 for the
Eddington approximate plane-parallel case. In the
microturbulent approximation, 8 varies with position
in the cloud. However, for the optically thin case
B ~ 1, and in the optically thick case, 8 can be
approximated by the probability, P,, that a photon
is emitted sufficiently far in the line wings that the
cloud is transparent. For escape from the center of a
g}ane-parallel cloud with a Doppler absorption pro-
c,

P, 5 [7o(m In 76/2)"2] 71, an

where 7, is given by equation (6) (Athay 1972, pp.
22 ff.); for a spherical cloud, P, is larger by a factor Q,
where 1 < Q <2 (Kunasz and Hummer 1974a).
Thus, except for the logarithmic factor, 8 has the same
dependence on optical depth in both the Sobolev
and the microturbulent approximations, a fact that
was noted by de Jong, Chu, and Dalgarno (1975).3

Use of the above expressions for the escape
probabilities and substitution for S from equation
(8) yields, in the optically thin case,

Iy—1I,= - (b/T) - (12

In the optically thick case, B ~ (¢7o)~', where ¢
includes the influence of both the geometry and the
velocity field, so

__CeTo

1+ cero

Equations (12) and (13) express the dependence of
the peak intensity on physical conditions, transition

L, -1, = (bv(T ) — L). (13)

3In a sense, this agreement is fortuitous, because B is
independent of the assumed absorption profile in the Sobolev
approximation, but depends on the shape of the line wings in
the microturbulent case. However, for an exponential line
profile, which may result from supersonic turbulence (Miinch
1957; Hobbs 1969), P. = 1/7, in the plane-parallel case, so
that the agreement is preserved. Line profiles having still
more extensive (e.g., damping) wings, which could give more
significant changes in B, seem unlikely to occur for the ob-
served molecular lines.

Vol. 211

probabilities, velocity field, and geometry. The tem-
perature establishes the scale of intensities, so the
relations can be compactly represented if I, — I, is
normalized to its equilibrium value. The cloud
density, the molecular abundance, and the transition
probabilities determine the fractional thermalization
through the product ez, as discussed for the spherical
Sobolev case by Goldreich and Kwan (1974). Instead
of ery, we use the factor Ar,, with A = ¢/(1 + ¢),
as the abscissa in Figure la, because this choice
combines the results for the optically thin and
optically thick regimes, and substantially isolates the
effects of the velocity field and cloud geometry on the
peak intensities.

Figure la presents numerical results for the nor-
malized peak intensity emitted by two-level molecules
in isothermal homogeneous clouds. The curves in the
figure display the basic similarity expected from the
common variation of the photon escape probability
with optical depth in the cases considered. They also
show the differences associated with the velocity-
geometry factor ¢ in equation (13), amplified in the
microturbulent cases by the effect of self-absorption
on the line profiles. The intensity differences attribut-
able to the choice of velocity field are comparable to
those due to the shape of the cloud (about a factor of
3). Hence, the Sobolev and microturbulent approxi-
mations yield peak intensities which agree within the
relatively fundamental uncertainty imposed by ig-
norance of molecular cloud geometries. It is note-
worthy that the Sobolev slab case, in which photons
suffer an unrealistic geometrical limitation to escape
from the cloud, differs most from the other cases.

The integrated intensities of the lines exhibit even
closer agreement than the peak intensities, for reasons
which depend, not on the circumstantial agreement
between the escape probabilities, but on the charac-
teristics of line emission from effectively thin media.
Effectively thin clouds resemble optically thin clouds
in local thermodynamic equilibrium (LTE): virtually
every photon created by collisional excitation and
radiative de-excitation of a molecule, though it may
scatter many times, ultimately escapes the cloud.
Hence, independent of the velocity field, the flux
integrated over frequency (H) is simply proportional
to the rate of collisional excitation and to the pro-
jected density of molecules. Quite generally, for 8 > ¢,
one finds

2R
H= Ef eb(T) — Lloowdr , slab, (142)

[}
_v j Ib.T) — hloow(g)'dr ., sphere , (14b)

while once again, in the optically thin case, one can
replace e with A, Restricting attention to the special
cases considered in this section, one may write for
both geometries:

H = g2 Myja(b(T) ~ Fero, (15)
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F1G6. 1.—(a) Comparison of peak line intensities emitted normal to the cloud surface by a two-level molecule in an isothermal
homogeneous cloud, for slab (pp) and spherical (ss) geometries in the Sobolev (S) and microturbulent (M) approximations, for
A = 1 (solid line, LTE) and A = 10-2. The LTE relationship [eq. (1) with S = b,(T)] is the same for all four cases. Note that
for A = 1072, the curves depart from the solid line when 7, ~ 1. (b) Normally emergent intensities integrated over velocity, nor-
malized as suggested by eq. (15), for the microturbulent approximation and the same conditions as in (a). The plane-parallel Sobolev
and LTE Sobolev curves, which are omitted for the sake of clarity, are identical to the corresponding curves in (a).

where Av,, is the full width at half-maximum
(FWHM) of optically thin lines, i.e., 2V in the Sobolev
approximation, and 2(In 2)'/?vp, in the microturbulent
approximation, and g is a geometrical factor which
approximately equalizes the volume emissivities of
the clouds (g ~ 1 for the slab and g ~ 1/6 for the
sphere in the microturbulent case, with strict equality
in the Sobolev case). Equation (15) describes the
linear portion of the non-LTE curve of growth, which
extends to 7, ~ €~ for the Sobolev and microturbulent
cases.*

Figure 1b illustrates the dependence on physical
conditions exhibited by the normally emergent
integrated intensity. Not surprisingly, the figure
shows that, for nonthermalized lines, the integrated
intensities vary in proportion to the total flux, as
expressed by equation (15). They are more sensitive
to the cloud shape than to the velocity distribution,
even though the geometrical effects are minimized
by observation perpendicular to the cloud surface.
For thermalized lines, the integrated intensities depend
strongly on the velocity distribution, because the
lines fall on the Doppler part of the curve of growth.

For the very simple cloud model considered here,
both the Sobolev and microturbulent approximations

* For a stationary cloud with a Lorentz line profile, 8 x
7o~ 1/2, and the linear part of the curve of growth extends to
7o ® €~ 2 (Athay 1972, pp. 22, 29, 192-193).

yield unrealistic line profiles, and further comparison
is unwarranted. For a macroturbulent cloud, it is
clear that the integrated intensities must follow the
relationships illustrated in Figure 1b. In this case
one cannot write down simple expressions for 8 or
7,. But as long as the line width is insensitive to optical
depth, variations in the integrated intensity emitted
by effectively thin clouds must be matched by variation
in the peak intensity, yielding curves similar to those
in Figure la.

¢) Carbon Monoxide

The relative insensitivity of peak and integrated line
intensities to velocity fields, demonstrated in part
(b) of this section for a two-level molecule, persists
when a realistic molecular model is introduced. To
show this, we present calculations made for carbon
monoxide, using the Green and Thaddeus (1976)
cross sections for collisional excitation by H,, fitted
to the empirical form adopted by de Jong, Chu, and
Dalgarno (1975).5

5 After several trials involving fits over different temperature
ranges, a single least-squares fit to the collision rates at all
temperatures treated by Green and Thaddeus was adopted
for each value of AJ. The derived constants differ somewhat
from those of de Jong, Chu, and Dalgarno, but represent
the rates within their theoretical uncertainties (Green, private
communication).
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The multilevel results do not admit the compact
representation that is possible for the two-level case.
The parameter A cannot be satisfactorily defined,
because collisions are not restricted to follow the
radiative selection rules, and 7, depends on the excita-
tion of all the energy levels. Hence it is preferable to
abandon the two-level parameters, and to use contour
diagrams to display the calculated intensities for the
J=1-0 or the J=2-—1 line or the intensity
ratio between the two lines. For a specified cloud
temperature, the adopted independent variables are
the molecular hydrogen density, ng,(cm~3), and the
projected density of CO molecules per unit velocity
between the surface and the center of the cloud,
Neofv (cm~2/km s~*1), where

Neofv = ngof(dv/dr) = neoR/V, Sobolev, (16a)

R
Neofv = f Neodr[vp = NeoRfvp, microturbulent .
0

(16b)

To facilitate comparison with observation, the in-
tensities are expressed in terms of the peak line
temperature emitted normal to the cloud surface,

c2
T, = P Un — 1), amn

where I, = b,(2.7 K), or in terms of the corresponding
integrated line temperature, normalized as in Figure
1b to the optically thin line width, i.e., [ Tidv/Avys.

In each panel of Figures 2-6, the solid contours
show the results of the microturbulent slab calcula-
tions, with representative contours for the Sobolev
slab and sphere given for comparison. We have not
calculated contours for the microturbulent sphere;
but the consistency of the velocity-geometry effects
between the CO results and the two-level calculations
provides assurance that this omission will not invali-
date our discussion. The contour shapes in each of the
diagrams are insensitive to velocity field and cloud
geometry. Moreover, comparison of parts (a) and (b)
of Figures 2, 3, and 4 reveals that, as in the two-level
case, the appearance of the contours is very similar
for both the peak intensities and the integrated in-
tensities. Thus, with one exception, these three figures

are discussed without specific reference to parts (@)

or (b), and only integrated line temperature contours
are subsequently presented in Figures 5 and 6.
Figures 2 and 3 illustrate the dependence of line
temperature on density and molecular abundance at
constant temperature, 7" = 30 K. For both the J =
1 —0 line (Fig. 2) and the J = 2 — 1 line (Fig. 3),
the contours become independent of density at large
ny,, where collisions thermalize the excitation. At
low densities the contours are diagonal, reflecting the
dependence of the emitted line intensities on the
product nyNgof/v (cf. eqs. [13] and [15]). Between
these limits, at ng, ~ 10° cm~3, the line temperatures
exceed their LTE values by factors as large as 2.2
for J=1—0, and 1.2 for J = 2—1, producing
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bulges in the contours toward smaller Ngofv. This
intensity enhancement results from the predominance
of multipole collisional excitations and the tendency
of such excitations, when followed by spontaneous
emission, to overpopulate the upper levels of the
transitions (especially J = 1; Goldsmith 1972). Since
it is primarily due to collisional excitation, the en-
hancement is largest for optically thin lines, and
diminishes as the lines approach thermalization.

Figure 4 indicates more clearly than Figures 2 and
3 how observation of the two transitions can deter-
mine the physical conditions in molecular clouds. Like
the individual line temperature contours, the ratio
contours become vertical at large ny, and diagonal at
small ny,, which indicates that both transitions yield
essentially the same information under these con-
ditions. At intermediate densities and large Ngofv,
both lines become thermalized, so the intensity ratio
is a poor diagnostic of density or molecular abundance;
but it does serve to validate the use of either line as a
temperature indicator. For effectively thin lines at
these densities, the ratio contours run transverse to
the line temperature contours, so that, in principle,
observations of the two lines quite accurately de-
termine both the density and the molecular abun-
dance. Moreover, the availability of isotopic species
with widely different abundances ensures that this
approach can be readily utilized.

The separations between the line temperature
contours representing the different velocity-geometry
cases in Figures 2 and 3 correspond quite accurately
to the intensity differences found in the two-level
cases (cf. Fig. 1, which is analogous to a plot of line
temperature against Ngo/v at constant ngy,). The
differences, of course, are small at high densities. At
low densities for effectively thin lines, the differences
increase to factors ~ 3, the most intense lines arising
in the Sobolev slab case, with its smaller escape
probabilities. The differences approach an order of
magnitude for lines which are nearly thermalized,
corresponding to the knee of the curves in Figure 1.
Here the effects of the velocity field and cloud shape
are paramount, and the observer is ill-advised to
draw conclusions from small intensity differences.

An important implication of these model-dependent
effects concerns the derivation of isotope ratios from
molecular line intensities. For example, all four
velocity-geometry cases predict the same intensities
for optically thin lines (cf. Fig. 1), but threefold
differences emerge in the optically thick regime.
Hence, the derivation of an isotope ratio from two
nonthermalized lines when one is optically thick and
one is optically thin can lead to results which differ
by factors ~3 between different velocity-geometry
models.

The ratio contours (Fig. 4) show slightly more
sensitivity to velocity and geometry than the line
temperature contours themselves. The most con-
spicuous deviation between solid and dashed curves
occurs for the contours representing line temperature
ratios equal to 1. The low escape probability in the
Sobolev slab case causes the J = 2 — 1 line to reach
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Fi16. 2.—(a) Comparison of the peak line temperatures emitted by homogeneous clouds at 30 K in the CO J = 1 — O transition.
The contours of T,,(1 — 0) in kelvins are presented as functions of ng, and Ngofv for the microturbulent slab (solid line), the Sobolev
slab (dashed line), and Sobolev sphere (dash-dot line) cases. (b) Comparison of the integrated line temperature contours for the CO

J = 1 — 0 transition.

a given intensity at systematically lower densities than
in the other cases. However, even here the differences
in physical conditions deduced for given line tem-
peratures hardly exceed a factor of 3, except for large
Ncofv in Figure 4b. In that case, the wide divergence
between the microturbulent and Sobolev contours
simply reflects the divergence in the “flat” portions
of the curves of growth, as shown in Figure 15.
Figures 5 and 6 present the contour diagrams for
T = 5K and 100 K, respectively. They show that
both the general dependence of line temperature on
physical conditions and the effects of velocity field

and cloud geometry are insensitive to kinetic tem-
perature. However, two temperature-sensitive effects
warrant further comment.

1. The “bulge” in the line temperature contours
due to the multipole collisions grows as the tempera-
ture increases. It is absent at 5 K, while at 100 K,
the excess over LTE reaches a factor 5.9 for J =
1—0and 2.6 forJ = 2— 1. At 100 K, a population
inversion occurs in the J=1-—0 transition for
Ny, ~ 102 cm ™2 and low Ngof/v, but it produces no
noticeable effects in the emergent intensities. In fact,
the maximum intensity enhancement occurs at slightly

i (0
! CO(J=2-1)
| T=30K ]

\ ST,(z-q)dv/Av,/2

e ——

log Ngo/v (cm-2/km s-1)
FI1G. 3.—Same as Fig. 2, for the CO J = 2 — 1 transition
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Fi16. 4—Comparison of the ratios of the peak line temperatures (@) and integrated line temperatures (b), for the same conditions

as in Figs. 2 and 3.

lower densities, and, in any event, the effectiveness of
the collisional pumping declines as the line radiation
fields build up. Leung and Liszt (1976) have remarked
upon the intensity enhancement and derived CO
abundances appreciably smaller than previous esti-
mates. Since their discussion is based on 2CO/*3CO
intensity ratios, however, it rests not only on the
enhanced !3CO intensities, which are insensitive to
velocity and geometry, but also on the slow approach
of the 12CO lines to thermalization. The latter feature
is very model-sensitive, and we expect it to be very
slow for their microturbulent sphere models (cf. Fig.
1). Hence, the low CO/H, abundance ratio which they
derive must be viewed with caution.

2. At T = 100 K and low densities, the J = 1 =0
and J = 2 —1 line temperatures (Figs. 6a, 6b) ap-
proach equality for [ T dv/Avy, ~ 10K, and grow
only very slowly with further increases in Ngo/v. This
slow intensity variation reflects decreases in the
relative populations of the lowest energy levels, which
partially compensate for increases in column density.
This effect must occur whenever cloud temperatures
are sufficiently high that many energy levels become
significantly populated. Under such conditions neither
line serves as a reliable indicator of density or CO
abundance; small intensity differences between models
lead to wide differences in the location of the contour
representing equal line strengths (Fig. 6¢). Moreover,
in this case, as opposed to the situation at 7 = 30 K,
near-equality between the J=1—->0and J =2 —1
line temperatures does not necessarily justify their
use as temperature indicators. However, these effects
are predicted only for clouds which have the im-
probable combination of high temperature with high
Neo/v and low ng,.

IV. DISCUSSION

This paper proceeds from the premise that the
dynamics of molecular clouds is too complex to be
precisely described either in terms of microturbulence
or in terms of simple systematic motions, and its
purpose is to evaluate the implied uncertainties in the
interpretation of molecular cloud spectra. It advances
the view that these two simple assumptions about the
velocity field represent alternative approximations in
which scattered radiation does or does not mediate
interactions among molecules in diverse parts of the
cloud. Then, by comparison of the intensities cal-
culated in the two approximations for isothermal
homogeneous clouds, the paper provides an initial
estimate of the velocity-dependent uncertainties in
molecular line analysis.

The calculations presented lead to the following
conclusions.

1. For effectively thin (nonthermalized) molecular
emission lines—which usually include all but the lines
of 2CO—analyzed using isothermal homogeneous
cloud models, the simplifying assumptions made
concerning the velocity field and cloud geometry
produce comparable uncertainties (factors ~ 3) in the
derived values of density and molecular abundance.
Lines which are near thermalization, like those of
12CO, yield good estimates of the cloud temperature,
but give values of density and molecular abundance
that are extremely model-sensitive.

2. Within the uncertainties introduced by ignorance
of cloud shape, the various studies which use the
simple cloud model adopted in this paper may
confidently utilize the relatively simple mathematical
apparatus of the Sobolev approximation, without
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Fi1Gc. 5.—Comparison of integrated line temperatures, as in F1G. 6.—Same as Fig. 5, for T = 100 K

parts (b) of Figs. 2, 3, and 4, for T = 5 K.
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regard to the true line-broadening mechanism. For
such work it is better to use spherical cloud models,
both because plane-parallel geometry is physically
unrealistic, and because for given physical conditions
the Sobolev slab case yields line temperatures at one
extreme of the range found in this paper.

To the extent that the microturbulent and Sobolev
approximations yield similar results, comparison
between the two cases provides no information about
the dynamics of molecular clouds. For more realistic
inhomogeneous cloud models, the two approxima-
tions will most likely predict larger intensity dif-
ferences, especially because the effects of nonlocal
radiative excitation will be more apparent in the
microturbulent results. However, it seems probable
that such comparisons will merely delimit the range
of cloud parameters which yield intensity distributions
in agreement with observed source maps, rather than
dictate a choice between the velocity models. Line
profile analysis can provide a more exacting test of
the models, but the microturbulent approximation

is too simplistic to pass such a test. However, micro-
turbulent source functions might be used with
approximate ““macroturbulent” velocity distributions
to generate more realistic line shapes. Such a pro-
cedure is not self-consistent, but it could help to
clarify what kinds of motion dominate line formation
in molecular clouds.

The calculations reported in this paper utilized
the IBM 360/95 computer at the Goddard Institute
for Space Studies. The author expresses his thanks
to Dr. Robert Jastrow, Director of the Institute, and
especially to Dr. Patrick Thaddeus, for support
during the course of this work. The author further
acknowledges support from NSF grant MPS 73-04949
to the Five College Radio Astronomy Observatory.
The Five College Radio Astronomy Observatory is
operated with the cooperation of the Metropolitan
District Commission of the Commonwealth of Massa-
chusetts.
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