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ABSTRACT

Exact solutions to the relativistic Euler equations found by Landau that do not postulate a
self-similar character are evaluated and presented graphically.

The temperature, energy density, entropy density, and total energy density when plotted
against r (the distance from the center) exhibit maxima toward the end of the flow in sharp distinc-
tion to the self-similar case where such quantities monotonically decrease from the center outward.

Subject headings: galaxies: structure — hydrodynamics — radio sources: general — relativity

I. INTRODUCTION

Exact solutions in fluid mechanics are rare, and the
ones that exist are usually of self-similar nature. When
it can be proved that the physical system under con-
sideration admits similarity solutions, it is found that
either the partial differential equations describing the
motion of the fluid can be converted to ordinary differ-
ential equations, or that the order of the equations can
be reduced (Zel’dovich and Raizer 1966). At the least,
this is the motivation for seeking such solutions.
Stanyukovich (1960) and Landau and Lifshitz (1959)
have given similarity solutions to the Euler equations
in detail. Instanced by an interest in plasmas, Mathews
(1971) has extended such similarity solutions to include
an external magnetic field. Sedov’s (1959) book is
devoted to similarity methods, which have been
applied to problems ranging from explosions to cos-
mological expansion.

However, not all problems admit self-similar solu-
tions. Actually, the rather specialized conditions
necessary to manufacture these solutions make them
inapplicable in many physical situations. In this paper,
we shall present an exact solution to the one-dimen-
sional relativistic Euler equations that satisfies certain
initial conditions and is not of self-similar nature.
These initial conditions have been found to be appro-
priate, for example, in the description of high-energy
cosmic-ray collisions (Belenkij and Landau 1956), and
may also be of interest in models of radio galaxies, as
well as cosmology. Landau expressed the solution to
the relativistic inviscid Euler equations in an implicit
integral form that unfortunately makes understanding
difficult. Because of the importance of these solutions
to a variety of astrophysical phenomena, we have
decided to perform a full numerical analysis in order to
exhibit the behavior of all the thermodynamic quanti-
ties versus time at any given point in the expansion.

The main result may be summarized as follows. At
the very beginning of the free expansion, the motion is
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self-similar. This description ceases to be valid when the
entire bulk of the fluid is in motion, because a length
characterizing the size of the system is brought into
play. With the passage of time, the nonsimilar solution
prevails over more and more of the fluid, except for a
small region near the leading edge where the fluid
borders on the vacuum. The reason is that the leading
edge of the self-similar solution moves into the vacuum
at the speed of light, but the leading edge of the non-
similar solution (which is just behind the self-similar
solution) approaches ¢ only asymptotically. The
distinguishing feature of this problem is that the very
bulk of the expansion becomes nonsimilar.
Application of Landau’s solution to cosmic-ray
high-energy collisions and to extragalactic radio
sources is discussed. Since particles are not conserved
in Landau’s solution, it is necessary that, for radio
sources, only particles with thermal energies greatly
exceeding their rest mass dominate the flow. For then
the exact number of particles involved is irrelevant,
even though the chemical potential does not vanish.

II. INITIAL AND BOUNDARY CONDITIONS

The one-dimensional fluid equations simplify
considerably when no length-scale can be formed out of
the dimensional constants that characterize the prob-
lem. Mathews (1971) studied this situation, and as a
result the integration of the relativistic one-dimensional
magnetohydrodynamic equations yielded temperature,
entropy density, and energy density profiles of the
type schematically indicated in Figures 1 and 2. His
results were subsequently applied to the problem of
radio galaxies. However, since the choice of initial
conditions did not allow any of the thermodynamic
quantities to possess a maximum anywhere along the
flow pattern, an external medium had to be postulated
which would pile up the expanding material in the so-
called hot spots.

It is the purpose of the present paper to indicate that
one can obtain an entirely different set of profiles
(Figs. 1 and 2) that clearly exhibit a maximum some-
where toward the end of the flow, without the need of
an external medium. Such profiles are obtained by
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TEMPERATURE PROFILES
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Fi1c. 1.—Temperature profiles at various times, from the time r = 0 when the expansion just begins. (a), (b) A simple wave S
moves out from its center C. (c) Rarefaction wave R reaches W, the midpoint of the fluid mass. (d), (¢) A new wave N moves away
from W. The dotted line on the cusp of wave is the continuation of the simple wave.

imposing initial conditions different from the ones of
Mathews, which we shall now describe in detail.

Let us suppose that the fluid is initially a disk at
rest, and let us follow the development in time of the
temperature profile (Fig. 1a). The face of the disk is
perpendicular to the x coordinate, and the thickness
is A = 2. We shall investigate the one-dimensional
motion along the x-axis. The system is symmetrical
about the half-thickness of the disk, and we shall
for convenience locate the plane of symmetry at
x = —[. In the next stage, the edge of the blob, E(z),
that abuts the vacuum moves out. The subsequent
motion is that of a simple wave centered at the leading
edge of the blob, Figure 1b. The leading edge E(¢)
advances at the speed of light ¢, whereas the trailing
edge of the simple wave (rarefaction wave, R), traveling
at the speed of sound, soon reaches the midpoint of
the blob, or wall, W (Fig. lc) at a time #, = I3%/%/c,
after which time the condition that the gas is at rest
at this point becomes important. A new wave N,
propagating away from the wall, satisfies two important
conditions (Fig. 1d). First, the gas is at rest at the wall
at all times, and second, the motion merges into the
simple wave on the vacuum side.

The simple wave is, of course, Mathews’s solution,
and we see that it is not the whole story. There is the
exact solution N which beginning at the time ¢, when
the rarefaction wave reaches the wall, makes its
presence felt more and more, until at later times,
when the leading edge of the N wave has advanced far
beyond the original length of the blob, it becomes the
predominant wave over the extent of the fluid mass

(Fig. le). At these times, only a thin slice at the leading
edge is described by the simple wave. Figures 2a-2e
describe the corresponding velocity profiles. Our
results (Figs. 4-10) show that the exact solution gives
a vivid picture of hot spots, which are terminal en-
hancements in density and temperature. Throughout
this motion, the energy and entropy should be exact
integrals of the motion.

It is interesting to consider the circumstances under
which such an initial condition might obtain. One such
way is to imagine two identical masses colliding head-
on and face-to-face. Since the masses and temperatures
of the fluids are the same, it is only necessary to con-
sider one such blob, let us say the one at the right. This
blob runs into the other and the fluid is brought to
rest immediately at the plane of symmetry, which can
be thought of as a wall. What happens next is well
known in the theory of fluids. A shock wave propa-
gates away from the wall into the advancing blob
(Fig. 3a) raising the temperature of the gas behind the
shock front and eventually reducing the entire fluid to
rest, by which time the shock wave will have reached
the tail-end of the advancing blob (Fig. 3b). This
would be the initial condition that we have prescribed.
Even though this example does not exhaust all
possibilities, it is certainly of great interest since it
occurs in cosmic-ray physics. In fact, where two high-
energy protons collide, it is thought that the clouds of
pions forming them, contracted along the motion by a
factor M/E, give rise to a hot gas of strongly inter-
acting pions that, after colliding, expand under their
own pressure.
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VELOCITY PROFILE
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Fi1G. 2.—Same as Fig. 1, but for velocity profiles. The quantities ¢ and ¢, are velocities of light and sound, respectively. Dotted lines

indicate continuation of single curve.
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Fic. 3.—Temperature profiles at different times after two
blobs of fluid run into each other. The blobs meet in the plane
W. (a) The shock front S propagates into the incoming fluid.
The fluid between S and W is brought to rest. (b) S reaches P.
The entire fluid mass is brought to rest.

The present solution also suggests a model for double
radio sources which does not require the action of an
intergalactic medium to produce the so-called hot
spots. In all the models presented so far, the existence
of an intergalactic medium was indeed a condition
sine qua non to produce the braking action of an
otherwise freely expanding gas. In the present analysis,
the crucial role is played by the initial conditions which
demand the existence of a hot stationary blob of gas
confined to a finite region of space. Such an initial
condition can be achieved, for example, but certainly
not uniquely, by two colliding blobs of gas brought to
rest at the moment of the collision. The central galaxy
plays no part in the subsequent dynamics of the expand-
ing gas since there is no continuous supply of energy to
the components from this source. The energy of the
gas at the initial instant is assumed to be sufficient for
the subsequent evolution of the source.

III. THE EQUATIONS

Landau’s solution to the inviscid relativistic fluid
dynamic equations is valid when the number of par-
ticles forming the fluid is not a constant of motion. This
is certainly true for the specific example quoted above,
but more generally it is valid for any system of particles
when the temperature is higher than their rest masses
so that copious particle-antiparticle creation and
annihilation processes are continuously going on. An
example of this is encountered in the early phases of a
big bang cosmology when nucleosynthesis occurred.
The thermodynamic relations used in what follows will
therefore be valid for zero chemical potential.
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30 CANUTO AND TSIANG

We relegate the details of the calculation to the
Appendix, and content ourselves with quoting essen-
tial steps. Starting from the conservation equation

T,
el 0, 3.1
where
Tyy = Wity + pguy (3-2)

is the energy-momentum density, w = ¢ + p is the
enthalpy per unit volume, and p is the pressure, we get
Euler’s equation and the internal energy equation.

au, op op
"o = o T W g ©-3)
and
s’y
o = 0 (3.4

To derive equation (3.4), we have used the relation

Ts=¢+p, 3.5)

where s is the entropy per unit volume.

In one-dimension, the flow is describable by a
velocity potential ¢, and equation (3.3) and (3.4)
combine to give, after a hodographic transformation
(Belenkij and Landau 1956),

*x 2 %x 2 ox
Wt et —DFE=0, (36

Oa?
where
e=tanhev, y=InT, ¢, =32 (speed of sound),
v being the ordinary velocity and y the Legendre-

transformed velocity potential ¢. To these we must add
boundary conditions and the set chosen are:

i) Xl ata=o0, G
ii) x=0 ate=—yc,, 3.8)
iii) a transformation admitted by equation (3.6), i.c.,
x(% y) = xe77, (3.9
where
¥ = x:(2), z=a+ ylc.

The solutions satisfying all these conditions are

T .
V3 = pycosha + pysinh e,

R .
3= pisinha + pycosh e, (3.10)

where
p1 = Lyexp (—2y)

_ f‘ UI(L) exp 202 + A3)2)dr’
. @2 + X7 ’

342 p, = A : L) °xf§,[3§'2)‘;;,22)“2]d§' +exp(2)) »
(3.11)

and where
A =a3"12, (3.12)
y=—C+ "2, (3.13)

I,,, I, being the modified Bessel functions of the first
kind.

IV, RESULTS AND CONCLUSIONS

In Figures 4-10 we display the velocity v/c, tempera-
ture T/T,, energy density €/e,, entropy density s/s,, and
total energy density E/E,, where

T * — A ~1
(E)a-e.

€

€

o

£ - (£)'@u -,

B =vfc,

versus distance from the wall for different times. The
unspecified initial values are here indicated by Ty, e,
o, Eg. The position R is measured in units of 3'/2/ and
the time in units of 3'/2//c.

The features that we have qualitatively discussed in
§ 11 concerning the hot spots are borne out by these
profiles. The integrals of the total energy density
E/E, and entropy density s/s, over the fluid, that is, the
total energy and entropy, are conserved quantities.
Their values are

f EdR = 0.9873E, , f sdR = 1.0045s, .

On the basis of our calculations and results, we
enact the following development: as the gas expands
into the vacuum and cools adiabatically, the tempera-
ture, energy density, and entropy density all become
peaked about the wave front. This has been achieved
without the aid of a confining medium or magnetic
field.
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Fic. 4—Velocity, temperature, thermal energy density, entropy density, and total energy density plotted against the dimension-
less coordinate x (x = R(z)/31/3]) at dimensionless time = = 1.0102 (r = c#/3'2]).
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FI1G. 5.—Same as Fig. 4, at time = = 1.2970
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F1G. 6.—Same as Fig. 4, at time + = 1.8563
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FiG. 7.—Same as Fig. 4, at time r = 2.9877
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Fi1G. 8.—Same as Fig. 4, at time r = 7.3144
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Fi1G. 10.—Same as Fig. 4, at time r = 29.1883

APPENDIX

Here we shall consider the relativistic expansion of a gaseous disk, by first writing the equations of motion in
their general form

oTw
_gx&t'_ =0, (Al)
where
Ty = wuu, + pguy (A2)
is the energy-momentum tensor and
cetp (A3)

is the enthalpy per unit volume.

Our treatment follows closely that of Belenkij and Landau (1956). The relativistic internal energy € and entropy
are assumed to satisfy the following Gibbs-Duhem relation when the chemical potentials of the particles are zero
{nonconservation of particles)

w=e+p=1Ts. (A4)
By the thermodynamic law dE = TdS — pdV, where E = €V, S = sV, we get
dp =sdT, de=Tds. (AS)
The speed of sound is by definition
c? = %IT: = % . (A6)
The projection of (A1) in a direction perpendicular to u, is
JOTY | oTy Lol | oT)

+

Wt oy T W e T

P 0, (A7)
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No. 1, 1977 HYDRODYNAMIC EXPANSION

which becomes Euler’s equations after substituting (A2),

ou ap ap
w v _F b .
o T T T Y o
The projection of (Al) along u* is
v
or
0 ap
ox’ (wu’) — 6x" =0

By the use of (A4), (A10) simplifies to

o(sut)
ox*

=0,

which is the equation for adiabatic motion.
Let us add a null term wu* ou,/0x" to equation (A8) which then becomes

ap ouy  op uy

—_— 1 —_
ity o T o T o - w ox’ 0.
By using w = Ts (eq. [A4]), we arrive at
oT ou 0 o (Tu
w 3xu(Tuv)+ 5 — Wl = w og (Tw) — w55 (Tw) = u [ z (Tu v)—-—( “)]-—0.

The relativistic version of potential flow is just

(Tu,) _ (Tu,)
ox*  ox'

and so Tu, is just 0p/0x*, where ¢ is the velocity potential.

35

(A8)

(A9)

(A10)

(A1)

(A12)

(A13)

(Al4)

To proceed further, we specialize our equations to one dimension, which is not a bad approximation if the disk
is thin. We expect three-dimensional motion to be important at later times (Belenkij and Landau 1956). At any

rate, the one-dimensional motion admits of an analytic solution. We have

b/
’ Tuo=——¢,

17
Tu1=— 6t

P
ox
or

dq? = —Tuodt + Tuldx .
By a standard Legendre transformation

X=(P_Tu1+Tuo,
it follows that

oy 1 oy
t = aTCOSha—Ta_Slnha’

ox 1 oy
X = —ﬁ,smha - Ta—COShOt,
where
#, =sinh«, Uy = cosh a,
and « is the rapidity variable. The adiabatic condition in one dimension is

Asuo) . )

ot ox =0.

(A15)

(A16)

(A17)

(A18)

(A19)

(A20)
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36 CANUTO AND TSIANG

By changing variables from ¢ and x to T and o, equation (A20) becomes

Vol. 213

o(t, x) [ &(s cosh «, x) + ot, ssinhe)] _ o(ssinh e, x)  O(ssinh o, 7)
T, @) o(t, x) o(t, x) T AT, oT, o)
= 1B} 2 (x cosh e — ¢sinh inth o — £ cosh @) |+ =2 (£ cosh inhe) = 0. (A21
=< \z7)| 3 x cosh e — tsin o) — (x sinh ¢ — 7 cosh &) +~6—T( coshae — xsinha) = 0. (A21)
By the aid of equations (A18), (A19), and (A6), we get
o2 02 7
‘6—(;%“0025J7‘§+(002—1)5§=0’ (A22)
where
y=InT. (A23)
Equation (A22) is a linear equation with constants, to which must be added the proper boundary conditions, taken
as follows:
i) «a=0 at x; =-/ (A24)
or
v =% at w=0; (A25)
da ’
1.e., the velocity is zero at the plane of symmetry, taken as x; = —1
ii) A progressive wave on the vacuum side,
V= -2,
X =17 — and o = o (A26)
where
v = uy/u, = tanh « (A27)
is the ordinary velocity.
In «, y variables, (A26) is
x=0 and = —ylc,. (A28)
Defining x = y;e~¥ and letting y; = x1(z), where
z=—a— Yy, (A29)
the order of equation (A22) is lowered by one. In what follows, we shall use
Co = 3712, (A30)
The transformed equation (A22) is
02 2?
(65026—27—3%5—1)"1:0 (A3D)
with boundary conditions
x1=0 for z=0, (A32)
Ox1 ox1 _ 2z _
a———g—lexp —W » for «a=0. (A33)
By Laplace transformation techniques, it may be shown that
x = —I31%e¥ f ' LI(Y'? — 3e®)2]dy’ . (A34)
3-~-12,
The expressions (A18) and (A19), that is,
_o{%x ox . _of %% . ox
= Ly i —_—— Y = v{_2 _—— s
t=e ( oy cosh a P sinh oc) x=e ( By sinh o Fa cosh a) (A35)
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No. 1, 1977 HYDRODYNAMIC EXPANSION 37

give the following values for ¢ and x:

j \/3 = p,cosha + pysinhe, (A36)
= 7 = pysinha + pycoshe, (A37)
where
’ r (] 01/2 14
py= Toexp (-2 - [ D eRp BT L OPAL, a3®)
? l2 231/2 ’
{ J‘ L )expc[?z(l+ Az)itm) 1d¢ + exp (2)0} , (A39)
A= 3"12 (A40)
y=—(24+ )2 =InT/T,). (A41)

T, is the arbitrary initial temperature, and I, I, are the modified Bessel functions of the first kind.
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