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Summary. We raise the question of whether the W-type
light curves (occultation primary eclipse) of TX Cnc are
due to the low mass component being slightly the
hotter component, as presumed until now, or whether
it might be due to TX Cnc having the relatively strong
classical gravity darkening law. To decide this question,
we have analysed TX Cnc light curves from four
“epochs” showing dissimilar behavior. Two of these
epochs appear (almost) reasonably normal, while the
other two are very abnormal. The analysis was done in
two different modes—one with the second temperature
a free parameter, as in Whelan et al. (1973), and one
with the second temperature determined by the first
temperature and the surface gravity as in Wilson and
Devinney (1973). We prefer the latter approach for
two reasons, which are discussed in the paper. We find
that the polar effective temperature of the low mass
star is then about 30 °K cooler than that of the high
mass star, compared to values of 125 to 175 °K hotter
under the “T 2 free parameter” approach. Thus we find

no evidence for a significant difference in the adiabatic
constants of the two convection zones. TX Cnc is the
second contact binary, after RZ Com, for which a gravi-
ty darkening explanation adequately accounts for a
W-type light curve. In regard to the mass ratio and
inclination, our results are in good agreement with
those of Whelan et al., but we find a significantly smaller
geometrical overcontact. Epoch to epoch changes in
the gravity darkening and albedo parameters suggest
differences in the degree of thermal contact over the
time scale of a few years. Some accuracy-related im-
provements in the Wilson-Devinney light curve and
differential corrections procedures are described. Also,
a scheme is given for ensuring convergence in differential
corrections solutions in the presence of high correlations
involving many parameters.

Key words: contact binaries — W UMa binaries —
TX Cancri

1. Introduction

TX Cancri is a binary of the W UMa class and is of
special interest since it is in the cluster Praesepe and
thus has a known distance, absolute magnitude and age.
It was discovered by Haffner (1937), and discussed by
Haziehurst (1970), Yamasaki and Kitamura (1972),
Biermann and Thomas (1973) and Whelan et al. (1973;
hereafter WWM). Hazlehurst (1970) considered TX Cnc
a puzzle since he was unable to make zero age models,
whereas TX Cnc, being several magnitudes below the
cluster turnoff, must be close to age zero. Biermann and
Thomas (1973) produced models for TX Cnc and
similar binaries with a model (cf. Lucy, 1968a) that has
different adiabatic constants in the two convection
zones around the two components. However they were
unable to reproduce the light curves adequately. WWM
analysed new observations and constructed a model
that reproduces all observed properties including the

light curve. In order to do this, however, they had to
push the region of energy exchange to highly super-
adiabatic levels, which is not comprehensible on physi-
cal grounds. This point kept Biermann and Thomas
from constructing such models, which are an extension
of their Table 1.

Thus no acceptable model for TX Cnc exists and we
are back to the puzzling conclusion of Yamasaki and
Kitamura (1972) who found it difficult to understand
the system with any theoretical model. More progress
at this stage may be expected from consideration of
the large body of observations.

In this paper we consider the following main question
in regard to TX Cnc: Is the component of lower mass
the hotter one, as found by WWM? Although this point
concerns temperature differences of only a few hundred
degrees, it places an important constraint on structural
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models, if true. Furthermore, it has become virtually an
accepted fact (Whelan, 1972; Hazlehurst and others,
private communication) that the low mass star is the
hotter one for all W UMa systems which show W-type
light curves, such as TX Cnc. However, on the basis of
our results below, it seems that TX Cnc is a counter-
example. According to Wilson and Devinney (1973),
RZ Comae is also a counter-example.

Here we derive photometric parameters for TX Cnc,
using observations by Kitamura and Yamasaki (1971;
hereafter KY), and by WWM. The least squares
differential corrections program has been described by
Wilson and Devinney (1971; 1973), and by Wilson et al.
(1972). We do the analysis for up to five colors rather
than one, as WWM and thus hope to improve the reli-
ability of the results. Second, we do the analysis for
four different epochs, rather than one, as WWM and
can thus check on temporal variations of parameters
connected with the energy exchange, such as the tem-
perature difference, the gravity darkening exponent,
and the bolometric albedo. This is of interest because
the thermal timescales of the surface layers can be as
low as a few years (Biermann and Thomas, 1973).
Furthermore Lucy (1975) recently suggested that small
oscillations might be the hallmark of the energy ex-
change. Finally we do the solutions in two different
“modes”—one with the temperature difference between
components a free parameter, as in WWM, and one
with the temperature difference determined by the sur-
face gravity field, as in Wilson and Devinney, 1973.
These modes are discussed more fully in the next
section.

I1. Procedural Improvements

One of the main points of divergence in recent papers
on models for contact binaries concerns the presence
or absence of a discontinuity, or region of rapid transi-
tion in surface effective temperature, at the narrow
neck connecting the components. While the issue is
not usually posed in terms of such a discontinuity, it is
implicit in the procedures adopted by various authors.
For example, Lucy (1968b) and Wilson and Devinney
(1973) tacitly excluded such a discontinuity, the former
because he made no distinction between one component
and the other so far as the surface is concerned, and
the latter by constraining T2 (polar) to have just that
value which, given T'1 (polar), causes the discontinuity
to vanish. On the other hand WWM allowed T2 to be
a free parameter, to be chosen so as to give agreement
with the observed light curve, so that in general such a
discontinuity is expected. This follows from the fact
that local effective temperature is given by a law of
the form

Qiocal 0-239
Tiocal = Y;.p. ( ) (1)

ar.p.

where we call g the “gravity darkening exponent”,
a is the local acceleration due to gravity, and r.p. stand

~for “reference point” (usually the pole of one compo-

nent). Since all authors adopt only one value of g for
the entire surface of a given contact binary, Eq. (1)
contains no further free parameters except the tempera-
ture of the reference point, and thus specifies T2 (polar)
as soon as T'l (polar) is given, for a given choice of g.
The treatment of T2 as a free parameter by WWM,
is thus equivalent to the introduction of a scaling factor
between separate laws of the form (1) for each compo-
nent, so that a discontinuity in surface effective tem-
perature will necessarily result at the boundary which
separates the components.

It now seems clear that the question of whether T2
should be regarded as a free parameter in analyzing
the observations of normal WUMa type stars is a matter
to be approached with some caution, especially since
it has important consequences for the theory of their
structure. Thus a new mode of operation has been
added to the basic light curve and differential correc-
tions programs by Wilson and Devinney (1971), in
which all the constraints otherwise applied to contact
binary cases are applied excepr that on T2. That is the
new mode (mode 3) sets

g2= gl (gravity darkening)
A2=A1 (albedo)

Q22=01 (surface potential) and
x2=x1 (limb darkening)
but not

T2=T1(a,/a,)**%,

as in the other contact binary mode (mode 1). The new
mode makes it possible to repeat the analysis of TX Cnc
by WWM?!) but now with the temperature difference
between components found by simultaneous solution
of light curves in all measured passbands rather than
the ¥V passband alone. Of course the older mode (1) can
also be used, so we shall be in a position to judge
whether or not the extra degree of freedom provided
by the parameter T2 significantly improves the agree-
ment with the observations.

Since we are concerned here with temperature differ-
ences of at most a few hundred degrees between tem-
peratures of the order of 6000 °K, good internal con-
sistency and overall accuracy of the basic computing
scheme are very important. Several accuracy-related
improvements were made before treating TX Cnc.
One of these provides the option of computing symme-
trical derivatives (i.e. the finite difference equivalent of
a Schwarz derivative) rather than asymmetrical numeri-
cal derivatives. The asymmetric “derivatives” are de-

1} There is, however, one difference: They adopted a fixed value for g,
whereas we treat g as a free parameter to be determined from the data.
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fined by
A _lp+4p) ~1p)
ap 4p

as before, while the symmetric “derivatives” are defined
by

ol lp+4p/2) —lp-4p/2)
op Ap ’

where p is any model parameter. Experience shows
that the use of symmetric derivatives makes negligible
changes in the solutions for TX Cnc, but it is reassuring
to know this, and the option is now available for future
use. Symmetric derivatives require about 1.8 times as
much computing time as asymmetric derivatives.

In the original program, the boundary between the
components of a contact binary was taken to be the
intersection with the common envelope of a plane
normal to the line of centers which passes through the
inner Lagrangian point. However it happens that the
minimum “neck” diameter does not coincide exactly
with this plane, but in general is displaced slightly
toward the less massive component. Neglect of this
apparently rather fine point will result in a loss of
computing accuracy for the lower mass component
because the region around the “hole” near the L 1 point
turns slightly outward like the mouth of a trumpet.
As a result, the local surface elements, which are most
conveniently spaced at equal angular intervals, became
rather large, and this condition leads to a major
increase in quantizing error as these areas are clipped
off at the boundary. We now eliminate this problem
by placing the boundary ring actually at the neck
minimum rather than at the x-coordinate of the L1
point. This is accomplished by a subroutine (called
NEKMIN)} which computes the x, z coordinates cor-
responding to minimum neck diaimeter. The ring around
the minimum in the neck is not precisely a plane curve
since the minimum occurs at a slightly different x-co-
ordinate in the x, y plane than in the x, z plane. For
definiteness, therefore, we adopt the x, z plane, in the
equation which defined the surface of our common
envelope (Kopal, 1959; Wilson and Devinney, 1971).
Expressed in rectangular coordinates, it then becomes

1
0- N q @+1)
Vx*+22 J1—xP+22 2

Since two coordinates are to be found, a second
condition is needed, and this, of course, is that
0Q/0x=0, since we are to find a minimum in the
surface. We have, therefore,

)

©_ x 41—
dx - (xz +ZZ)3/2 [(1 —X)2 +ZZ]3/2
+{g+1)x—g=0. (3)

A\L\L\
ﬁ\\“
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X

N

Fig. 1. Schematic representation of a section of grid elements as
viewed from the inside of one component. Vertical and horizontal
lines are lines of constant longitude and latitude, respectively. The
curve is part of the boundary ring, by which we separate components 1
and 2. Crosses mark the intersections of the coordinate grid with the
boundary ring

We can find x, z from Egs. (2) and (3) in an iterative
way by solving the two simultaneous equations

o2 1594
Q,—Q=—A4x+ —- Az 4
0x oz

and

w_ e, o
ox 02 T Bzox

Az, (5)

where (4) is the condition to be on the surface and (5)
is the condition for a minimum neck radius. The
quantities Ax, Az are corrections to the x, z values of
the previous iteration. Finally, we list the three re-
maining derivatives

2*Q 2x? —z2 gl 21— x)?—z7]

5)(7 = (X2+22)5/2 + [(l_x)2+22]5/2 + (q+ 1) (6)
oQ _ z qz 7
6_2 - (x2 +22)3/2 - [(1 —x)2+22]3/2 (7
0*Q 3xz 3qz(1—x) ®

0z0x  (x2+z%)°7  [(1—x)*+227%
Quantizing error due to the “clipping off” of surface
elements by the boundary ring is now dealt with in a
more effective way than originally. Figure 1 is a schema- .
tic representation of a short arc of the boundary ring
as it intersects the surface of the common envelope,
with the view from the inside of the star. While the visual
impression is that of rectangles marked on a surface,
we are really most basically concerned with the solid
angles subtended at the center of the star by these
“rectangles” and, in fact, the solid angles define the
surface areas (not the other way around). In order to
correct for quantizing effects, we multiply the local
contributions to luminosity and line-of-sight flux by
a function F, defined so as to correct for fractional
area effects. Table 1 summarizes the exact way in which
F, and an intermediary function, f, are defined.
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Table 1
Case Values of F, f 0.90 b
I. Center of elemental area (e.a.) inside F =0. 0.80
boundary ring 0 =f=05
. . 0.70
II. Entire e.a. outside F =1
boundary ring f =1 0.60
III. Center of e.a. outside ring, but part F =f £
of e.a. inside ring 05<f=<10
IV. Special case of first e.a. with center F zi 1,
outside boundary ring. k is running =1 k
e.a. number on latitude row, nis 05<f,=10
number of first e.a. with center out- 0. <f,=05for1sk<n

side boundary ring.

The function f'is the fraction of an elemental area which
lies outside the boundary (i.e. the fraction which should
be counted.) However we do not wish to work with an
elemental area whose center lies “in the hole” for
obvious reasons. Therefore we assign all fractional
areas associated with such elements to the first elemental
area whose center lies outside the hole (case IV). The
values of f are obtained by actually locating the lati-
tude and longitude (6, ¢) of each intersection between
the boundary ring and the sides of the elemental areas.
These intersections are marked by crosses in Fig. 1.
At present, we make the approximation that these
intersections are connected by straight lines in com-
puting f. One could make them arcs of circles, but that
refinement seems unnecessary, at present. The analytic
techniques and logic schemes by which the intersections
are found are much too extensive to be given here, but
if significant interest in these matters should arise, we
might write up a description for private circulation.
However, the computing time required is not very
great and is negligible compared to that for the light
curve or differential corrections program as a whole.

II1. Differential Corrections Solutions

The observations of TX Cnc by KY show changes in
the form of the light curve with time, and the light
curve by WWM is different from any of those by KY.

Table 2. Definition of Epochs

Epoch Dates of Passbands Reference
Observation Included
I 1962, Dec. 12, 13 V.B,U 14870, KY
1965, Nov. 30, Dec. 21 4110
1966, Jan. 15, 17,27,
Feb. 17
11 1965, Jan. 13, 14 V.B KY
111 1971, Feb. 4,5 V.B KY
v 1972, Jan. 13-16, vV WWM
Feb. 12-14

1 -l I 1 1

1
0.8 0.0 0.2 0.4 0.6

PHASE
Fig. 2. The light curves of epoch I by KY and our mode 1 solution
curves. From top to bottom the passbands are ¥, B, U, 14870 narrow
band and A4110 narrow band. Notice the asymmetries in the ob-
servations. The vertical scale numbers apply directly for the upper-
most curve. For the second curve, add 0.10 to the numbers; for the
third 0.20, etc.

1.00

0.90

0.80

0.70

0.60

Fig. 3. The light curves of epoch Il by KY and our mode 1 solution
curves in V (top) and B. This is the epoch treated by WWM. The
asymmetries are somewhat different from those of epoch I, but other-
wise the curves are similar to epoch I. Notice that the bottom of
secondary eclipse is fitted poorly, as was also the case in WWM. The
vertical scale comments for Fig. 2 apply here also

Although the differences amount to a few hundredths
of a magnitude only, they are unquestionably real and
may give clues to the nature of the energy exchange.
However the changes are not secular (similar light
curves return) so we have grouped the data into four
“epochs™ according to light curve similarities, as defined
by Table 2.

Note that epochs II, IIT and IV cover fairly brief inter-
vals of time, but that “epoch” I is a blend of several
true epochs at which the light curve appeared essentially
the same to visual inspection. Note also that these
sub-epochs of epoch I bracket epoch II in time. Normal
points of the observations for epochs I, II and III, and
the individual observations of epoch IV are shown in
Figs. 2-5.
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1.00, .
0.90
0.80

0.70

038 0.0 0.2 04 0.6
PHASE
Fig. 4. The light curves of epoch III by KY and our mode 1 solution
curves in V (top) and B. The asymmetries are now very large. The
vertical scale comments for Fig. 2 apply here also

I 1 1 1 !
0.8 0.0 0.2 0.4 0.6

{ 1 1 1 1

PHASE

Fig. 5. The Vlight curve of epoch IV by WWM and our mode 1 so-
lution curve. The general shape of the light curve is conspicuously
different from that of a normal W UMa system at this epoch

At this point we encounter the first of two problems
with parameter correlations. It is well known that strong
correlations exist among the parameters of eclipsing
binary solutions, and we have confirmed this by com-
puting and printing the matrix of correlation coeffi-
cients with each solution, as a matter of routine. We
find that the correlations are especially strong for
contact binaries. Now the object of treating four
separate epochs of observations is to detect real
temporal changes in the binary system, but if we solve
for all parameters at all epochs we can expect difficulty
in deciding how much of an apparent change in, say,
bolometric albedo, is real and how much is due to
correlations with other quantities, such as the incli-
nation. Therefore we solved for the full set of elements
only at epoch I and, at the other three epochs, solved
only for those elements which might reasonably be ex-
pected to vary with time. Thus, at epochs II, III and IV,
we implicitly accept a certain (hopefully small) amount
of systematic error in the derived parameters, which is
due to the imposition of fixed values for selected
parameters, in order to obtain meaningful epoch-to-

Table 3. Parameters Not Adjusted?)

T1 6400 °K ry {(pole) 0.317+.002 pe.
0.318+.002
x(V) 0.66
r, (side) 0.331+£.003
x (B) 0.79 0.333+.003
x (U) 0.84 r, (back) 0.365+.005
0.368 +.004
x (14870) 0.72
r, (pole) 0.401+.002
x (A4110) 0.82 0.404+.002
€ inner contact 4.7649 r, (side) 0.4254.003
4.7883 0.4284+.003
Q outer contact 4.1800
4.2027 r, (back) 0.455+.004
0.459 £.004

%) Where two entries are given, the upper is for the mode 1 solution,
the lower for the mode 3 solution.

Here T1 is the effective temperature at the pole of component 1,
x(U), x(B) and x(V) are the limb darkening coefficients, Q the Roche
modified potential at the inner and outer contact points (the surface
potential of the stars must lie between the two values for a contact
binary), r;, and r, the radii of the two stars in the respective
directions in units of the distance between the centers of gravity of
the two components.

epoch differences for other parameters in a simple and
direct way. All fixed and adjusted parameters are listed
in Tables 3 and 4.

Naturally it is the temperature difference between
components and not the individual temperatures which
are interesting in Table 4. For reasons of convenience
we have kept T'1 fixed (at 6400 °K) and allowed T2 to
adjust, rather than the other way around. If users of
these results prefer to keep T2 (i.e. that of the more
massive and more luminous component) fixed and
allow T1 to be variable, or if they prefer a reference
temperature other than 6400 °K, simple and obvious
scaling procedures can be applied without affecting
the other parameters of Table 4.

The solutions for the full parameter set were done at
epoch I because it contains data in five passbands,
compared to two in epochs Il and III and one in
epoch IV. It is well known that attempts to solve for
too many parameters will weaken a solution, so we
inserted theoretical values for the limb darkening
coefficients, and these were not adjusted. The limb
darkening values (viz. Table 3) were extracted from
tables by Carbon and Gingerich (1969). For epoch I
we solved for the orbital inclination (i), gravity darkening
exponent (g=4p), polar temperature of the photo-
metric secondary, or mass primary (7T2), bolometric
albedo (4), surface modified potential (2), mass ratio
(g=M 2/M 1), and relative luminosity of the photo-
metric primary (L 1), which includes the scaling factor
needed to match the observed light values. Only the
luminosity ratio has physical significance in analysis
of light curves, so we list only the quantity [L; AL, +L,)]
in Table 4. For the other three epochs, we kept i, 2 and g
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Table 4. Adjusted Parameters?)

. Wilson and P. Biermann

Nipoch I 11 111 v
param.
i 62.43+ .33 p.e.
62.84+.28
g . 0.88+.12 1.024+.03 0.69+.06 0.32+.07
0.60+.13 0.58+.04 0.17+.06 0.09+.08
T, 6431 °K 6431 °K 6424 °K 6411 °K
6338+47°K 6140 £36 °K 5991+47°K 6271+43°K
A 1.10+.21 1.36+.15 1.94+ .24 1.93+.24
0.33+.34 —0.29+.17 0.16+.22 248+ .22
Q 4.7364.026
4.7414.023
M,/M, 1.662+.015
1.678£.018
Ywr? 009943 .010240 015524 056564
009441 008765 013732 055299
L (V) 0.3795+.0031 0.3786 +.0017 0.3808 £.0027 0.3836£.0032
(Li+L,) .39314.0120 4269 +.0082 4536+.0116 4048 +.0081
L(B) 0.37831.0036 0.3773+.0020 0.3797+.0033 —
(Li+Ly) .3954+.0146 4380+ .0103 4714+ .0148 -
L{U) 0.3769+ .0041 — — —
(L{+L,) .3983+.0176 — — —
L,(4870) 0.3789+.0034  — — —
(Li+Ly) 13942 +.0133 — — -
L,(4110) 0.3779+.0039 — — -
(L,+L,) 3961+.0154  — — —

%) Where two entries are given, the upper is for the mode 1 solution, the lower for the mode 3 solution.

Here i is the inclination of the orbit, g the gravity darkening exponent, T2 the polar temperature of the secondary component, 4 the bolometric
albedo, Q the Roche modified potential at the surface of the system, M,/M, the mass ratio, ), w r* the sum of the weighted squares of the
residuals, and L,/(L, + L,) the luminosity contribution of component 1 in the five pass bands.

fixed at the values found for epoch I and solved only
for the “photometric” quantities g, A and L. Solutions
for epochs I, II and III were made from normal points
of 4 observations each. Solutions for epoch IV were
from the individual observations.

In the normal differential corrections process for TX Cnc
we at first encountered a failure of the iterations to
converge to small corrections. This problem does not
occur for most binaries and an investigation was needed
to uncover the cause. Numerous possible sources of
the problem were ruled out, and in fact one can show
that it cannot be due to any single cause. Rather,
convergence is prevented by two difficulties acting
together. These are

1) high correlations among parameters, and

2) neglect of second and, perhaps, higher derivative
terms in the equation of condition (cf. Wilson and
Devinney, 1971, p. 608).

Since 1) is inherent to the problem and 2} would be
prohibitively difficult (in terms of programming and
computer time) to correct, we developed a scheme
which ensures convergence without loss of rigor, and
which requires no programming changes. It is based
on the fact that, as experience shows, convergence is
adversely affected not so much by a few very high corre-
lations as by the presence of many high correlations

in the matrix of correlation coefficients. Therefore the
obvious remedy is to break the large, full parameter
set into two or more subsets. For example partition
the set a, b, ¢, d, ¢, f into subsets A (a, b, ¢) and
B (d, e, f). Then solve for parameter subsets A4, B alter-
natively, keeping parameters d, ¢, f fixed in the A solu-
tions and g, b, ¢ fixed in the B solutions. Schematically
these iterations might be represented as

A—->B->A—->B—A4,etc.,

with the output from A being the input to B, and vice
versa. One finds in this way an enormous improvement
in convergence, with the only expense being a doubling
of the number of computer runs. In fact, total computing
time is unaffected or slightly reduced because the
individual runs are shorter. Should some concern
develop as to whether the solution achieved is unique,
one can always start from a different point in parameter
space. In our experience, for TX Cnc and other
cases, the solutions have always been unique. One
minor problem remains. The probable errors computed
by standard least squares procedures for the subsets
will be unrealistically small because they do not account
for correlations with parameters in the other subset.
However since the probable errors are insensitive to
precise parameter values, one may, for practical pur-
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Fig. 6. Computer generated “pictures” of TX Cnc at phases 0.00, 0.05, 0.10, 0.20, 0.25, 0.35, 0.40, 0.45 and 0.50, corresponding to our mode 1

solutions. Notice the small degree of geometrical over-contact

poses, adopt the probable errors given by the last
iteration for the full parameter set [a, b, ¢, d, e, f]
or even make a special final iteration for the entire set,
from which only the computed probable errors (not
the correlations) will be used. These two procedures
are essentially equivalent.

The final parameter values and their probable errors
are listed in Table 4. We also computed absolute masses
and dimensions, incorporating the spectroscopic results
by WWM, but these are so close to those given by
WWM that we have not listed them. These absolute
masses and dimensions disagree with those given by
Yamasaki and Kitamura (1972), which are based on
different spectroscopic observations. Figure 6 shows
computer generated “pictures” of TX Cnc at several
phases, according to the final mode 1 solutions.

We can now inspect Table 4 to see if the epoch-to-epoch
changes in g and A4 are in intuitive accord with the
epoch-to-epoch changes visible in Figs. 2-5. Compari-
son of epochs I and II shows no significant changes in
g or A. This is not surprising because the graphs for
epochs I and II are very similar, with the only exception
being a slight differénce in depth at the very bottom of
secondary eclipse. In fact, at the beginning we considered
combining epochs I and II. They were separated to
see if the least squares process would show significant
differences, and it did not. If we compare the epoch I
and III light curves we see that the overall amplitude
differs by a few hundredths of a magnitude, with III
smaller. Table 4 shows that g is smaller and A4 larger
in epoch III, mode 1. Since the effects of both smaller
g and larger A reduce the photometric ellipsoidal
variation, we then except a smaller amplitude of varia-

tion, as observed. The situation is more complicated
in the epoch III, mode 3 solution, where g and A are
both smaller. Detailed comment on this case probably
is not warranted. Naturally one should keep in mind
that time dependent changes in such quantities as g
and 4 may actually be providing information on star
spots and similar phenomena rather than gravity
darkening and albedo.

The epoch IV light curve is decidedly unlike any ever
observed for any other contact binary. A comparison
of the observations with the solution curve in Fig 5
clearly illustrates their strange nature. Evidently WWM
observed this unusual W UMa system at a time of
particularly unusual behavior—perhaps at a transition
between two quasi-——equilibrium states. However it
must be said that a certain “permanent peculiarity”
seems to be associated with the bottom of secondary
eclipse, since none of our solutions for any epoch in
either mode quite represent the run of observations
near phase 0.50, nor does the solution by WWM.
Because of the peculiarity of epoch 1V, it is not clear
whether or not any significance should be attached
to the “convective” value of the gravity exponent
(0.324+0.07) or the formally negative albedo found for
this light curve. However if this number shows a real
effect of variable g, oscillations between different de-
grees of thermal contact are indeed suggested by the
data, as proposed by Lucy (1975).

In comparing our Figs. 2-5 with Fig. 3 of WWM,
note that their phases differ by half a cycle from ours.
This is not true for their Fig. 2, however. Note also that
their convention for designating components 1 and 2
is reversed from ours.
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IV. Discussion

Our results for mass ratio and inclination are very close
to those by WWM. The agreement is particularly
remarkable in view of the fact that all of the light
curves of TX Cnc show asymmetries and transient
effects to greater or lesser degree. It thus seems
reasonable to conclude that the departures from good
fits shown by our Figs. 2-5 and by Fig. 3 of WWM are
due to perturbations from a normal contact binary
model and not to any shortcomings of the fitting
process. This conclusion is emphasized by the parti-
cularly strange light curve of epoch IV (Fig. 5). WWM
did not solve for a photometric mass ratio, but their
spectroscopic value of 1.61 +0.05p.e. is in virtual coinci-
dence with our photometric value of 1.66+0.02. Their
inclination is 63°14+072 compared to our 62°440°3.
There is a significant difference in degree of contact,
in that they find 21% overcontact against our 5% and
8% in modes 1 and 3, respectively. Since their solutions
were similar to our mode 3, the latter figure (8%) is the
proper one for comparison. Note that precise agree-
ment is not to be expected because the observations
treated were not the same in their work and ours,
although some of the V observations were in common.
The slight overcontact agrees with the same finding for
RZ Comae (Wilson and Devinney, 1973), another
W-type system, and for several W-type systems analysed
by Lucy (1972)%). Our photometric elements are in
rough agreement with those by Yamasaki and Kita-
mura (1972).

The main distinction between the present results and
those of WWM lies in the temperature difference
between components. However there is no discord be-
tween their numbers and ours when the comparison is
made with our mode 3, in which the second temperature
is a free parameter, as in their approach. Actually
direct comparison is not possible because the obser-
vations they solved correspond to our epoch II, but
our epoch II solution was constrained to agree with
with epoch I in regard to i,  and g, while their solution
was not. However, a straight average taken from our
epochs I and II shows the photometric primary (the
mass secondary) to be hotter by 173+ 35 °K, in approxi-
mate agreement with WWM, who find it hotter by
125+ 10 °K. Now the main object of this paper is to
find if the W-type (i.e. occultation primary eclipse) light
curves of TX Cnc can be reproduced just as well by a
relatively large gravity effect as by a relatively high
temperature for the lower mass star. On the basis of
Table 4, it is probably reasonable to conclude that
TX Cnc is fitted essentially as well in mode 1 (4T fixed
by the gravity field) as in mode 3 (AT a free parameter).
Of course, since mode 3 has one more degree of
freedom than mode 1, its solutions must fit the ob-
servations at least as well as mode 1. Let us first

2) An equivalent reference is Lucy {1973).

consider the epoch I solutions, since they are for the
full parameter set. Notice that the values of the sum of
the squares of the weighted residuals, Zwr?, in Table 4
show that the mode 3 solutions are not very much
better than those of mode 1, even though T2 is a crucial
parameter for bringing eclipse depths into agreement.
Certainly one would be unable to discern, by visual
inspection, any difference in the quality of fit between
modes 1 and 3, for epoch L. In other words, the degree
of freedom provided by T2 adjustment offers only a
very marginal or negligible improvement. For epochs I1
and IIL, there is a sensible reduction in Zwr? in mode 3,
and one can actually see a slight improvement in the
fit by eye inspection of the appropriate graphs (not
shown in Figs. 2-5). However one must remember
that i, © and g were not allowed to adjust at epochs II
and ITI, so that T2 is one of the few parameters available
to respond to any transient effects. To illustrate this
point by an extreme example, suppose our two cases
(i.e. mode 1 and 3 solutions) consisted of adjusting no
parameter at all (mode 1) or T2 only (mode 3). Ob-
viously, the mode 1 solution, having no degrees of
freedom, would be unable to improve the starting
solution, while the mode 3 solution might be expected
to effect a noticeable improvement—not because a
real correction in T2 was in order, but because T2 was
able to mimic the effects of other parameters. Thus it
seems best to judge the significance of including T2
by means of the epoch I solutions, which included the
full set of parameters.

If one cannot decide between the hypotheses of a hotter
lower mass star and relatively large gravity darkening
on the basis of the fit to the light curves, how can one
decide? Of course, the gravity darkening explanation
is simpler, due to having one fewer parameter, and
might be preferred for that reason. However one
further criterion does exist. This considers the agree-
ment, or lack of agreement, between the derived values
of the gravity darkening and albedo parameters and
the theoretically predicted values. Unfortunately it is
not so clear what theoretical values should be assumed,
since essentially classical values are advocated by some
and “convective” values by others (Lucy, 1967; Rucinski,
1969). However the situation is not too bad, since we
have only two values of each parameter to be re-
cognized®). That is, g should be either 1.0 (classical) or
about 0.3 (convective) and A should be either 1.0 (classic-
al) or about 0.5 (convective). Inspecting the mode 3
results in Table 3 for consistency in g and A, we find
no clear pattern, in that g and 4 are not consistently
near to either the classical or the convective values.
For mode 1, however, epochs I and II show a high degree
of self-consistency in that both the gravity and albedo

3) Smith and Worley (1974) show that g can have nearly arbitrary
values for suitably chosen laws of differential rotation and radiative
atmospheres. However, they did not calculate an albedo, so that no
comparison can be made here.
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parameters are close to the classical values. Epoch IV,
which is strikingly different from a normal W UMa-type
light curve, and Epoch 111, which is very asymmetrical,
do not show this consistency and perhaps should be
regarded as perturbed epochs. Thus none of the four
epochs is consistent with either classical or “convec-
tive” theory under mode 3 analysis, but at least the two
most normal appearing epochs are in excellent agree-
ment with classical theory under mode 1 analysis. This
seems to be a valid reason to prefer mode 1, in which
the W-type light curve is explained by TX Cnc having
the relatively large von Zeipel gravity darkening and
unity albedo. As shown by Tables 3 and 4, the lower
mass star (component 1) is then about 25 to 35 °K cooler
at its poles than is its companion.

Naturally we do not claim that no W type W UMa
stars are to be found with hotter lower mass compo-
nents. Perhaps in their oscillations these systems have
hotter (mass) secondaries for intervals of time. However
we note that the only two systems (RZ Com and TX
Cnc) which have been analysed from a “mode 17
approach have yielded good consistent solutions. There-
fore one might expect this to happen for many or
even most other W-type light curves, and that the
secondaries are not, in general, the hotter components,
but rather the cooler components. We thus conclude
that the observations analysed to date do not provide
evidence for different entropy constants in the two
convective zones.
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