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ABSTRACT

The critical mass for stability against radial pulsations in rotating, homogeneous main-sequence stars is
found to be greater than in the case of no rotation. Analytic and detailed numerical models show that the critical
mass rises steeply with increasing concentration of angular momentum to the center of the star. For uniform
rotation near breakup velocity at the star’s equator the critical mass is ~850 M, if an electron-scattering
opacity is used, or ~ 5000 M, if the opacities of Cox and Stewart are used. For nonuniform rotation with a
constant ratio of centrifugal force to gravity in the star, the critical mass becomes “infinite” long before breakup
velocity is attained. The relevance of the present results to several observational problems is noted.

Subject headings: interiors, stellar — massive stars — pulsation — rotation, stellar

I. INTRODUCTION

Theoretical models of nonrotating stars are known
to be violently unstable to radial oscillations energized
by nuclear reactions in the core if the stellar mass is
sufficiently high. Most observed stars of high mass are
fast rotators, however; and some of them appear to be
rotating at equatorial breakup velocity. Therefore, a
realistic attempt to determine the critical mass for
pulsational stability must take into account the inter-
action of rotation with pulsation. How rotation affects
the critical mass of homogeneous main-sequence stars
is the subject of inquiry in this paper.

1I. BASIC EQUATIONS

Three simplifying approximations in the treatment
of rotation are made here. First, rotational distortion
of the star’s shape is ignored. Second, the radial heat
flow is assumed to be unmodified by the neglected
distortion or by circulation currents. Third, the mean
centrifugal force acting on each layer of the star is
computed by taking an appropriate average over
angles. The resulting equations agree with those of
Faulkner, Roxburgh, and Strittmatter (1968), who
carefully reduced the exact equations for a uniformly
rotating star to the same form as for a spherical star,
except that those authors obtained an additional factor
(very close to unity) which multiplies the flux in the
radiative transfer equation. We retain our present
approximations, however, since we wish to consider
other rotation laws in addition to uniform rotation.
In general, the neglected terms are of second or higher
order in the rotation parameter A (defined below).

At each mass point in the star, the centrifugal force
is

Srot(F, 8) = Q% sin @, ¢

where r is the distance from the stellar center and Q is
the angular velocity about the rotation axis, with

which the r-vector makes an angle 6. The appropriate
mean centrifugal force on a spherical layer at r is

Jrar) = AGM(r)/r? ¥))
= 20%3GM(r) . 3)

where

Thus the gravitational force is effectively weakened by
the centrifugal force, by an amount (1 — A). Formally,
we may replace Newton’s constant G by (1 — A)G in
the ordinary equilibrium equations of stellar structure.

For the pulsation equations, we shall employ a
linearization of the perturbed equations of motion of a
spherical star, and shall consider radial motions only.
The equations for the nonrotating case have already
been given by Schwarzschild and Harm (1959). In the
rotating case, we assume that each mass element con-
serves its angular momentum during the pulsation
(Ledoux 1945), so that, at each mass point,

Qr?sin% # = constant . “)
Accordingly, the perturbed rotational quantities are

A or
E——Q,T and T—-——7’ (5)

The inclusion of rotational terms changes only equa-
tion (2) of Schwarzschild and Harm’s paper.' This
equation then reads

o4 (32
dx\ P

3P w? \ X3 A dr
el )T () e

where the usual nondimensional Schwarzschild (1958)
variables have been adopted. The nondimensional
1 Note the misprint, a minus sign, in their equation (2).

Their paper contains a number of other misprints and minor
errors in the equations.
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pulsational eigenfrequency « is defined by w? =
a?R3|GM, where o = 2n/Period. For opacities other
than Thomson scattering by free electrons, equation
(5) of Schwarzschild and Harm’s paper must also be
changed to

S8L(r)

L(r)

L % ST  ..dr d (ST
_47—a7+(4+7))7+Td—Ta—r(T)’ @)

where the thermodynamic derivatives of opacity are
defined by = 0In«/0Inp and y = —0lnk/0InT.
We shall ignore energy losses at the surface of the star
due to mass ejection and to running waves in the
atmosphere.

III. NUMERICAL RESULTS

Equilibrium models for homogeneous main-sequence
stars have been calculated with the input physics de-
scribed in Stothers and Simon (1970) but modified by
the rotational term given in § II. Two opacity repre-
sentations have been adopted: (1) Thomson scattering
by free electrons, and (2) Cox-Stewart opacities as
represented by the interpolation formula in the paper
just cited. Two rotation laws have been considered:
(1) uniform rotation with Q = constant, and (2) non-
uniform rotation with A = constant. These two laws
can be expressed in terms of the central condensation
parameter p.[{p> as Ap/A, = p,[{py and Q7/Qz* =
pcl{p>, respectively. Here R refers to the surface and ¢
to the center of the star,

In order to check the accuracy of our results based
on the simplifying approximations of §II, the uni-
formly rotating models computed with the more exact
equations of Faulkner et al. (1968) by Sackmann and
Anand (1970) for 15 Mg with Az = 0 and Ay = 0.3007
(in our notation) have been recomputed with our
program for the same chemical composition, opacity
representation, and rate of nuclear energy generation
as were used by those authors. Our results for the
basic quantities log L/Ls,, log R/R, (mean radius),
log T,, and log p. are virtually identical to theirs, to

Vol. 192

three significant figures, even for the extreme case of
Az = 0.3007, at which centrifugal force just balances
gravity at the star’s equator.

Pulsational stability or instability of the rotating
models with respect to the fundamental radial mode
has next been determined in the quasi-adiabatic
approximation by using the prescription of Schwarz-
schild and Héirm (1959) with the modifications men-
tioned in § II. The critical masses separating stable
from unstable models are listed in table 1, along with
several other quantities of interest (the relative radia-
tion pressure is 1 — B). The (hydrogen, metals)
content is taken to be (X, Z) = (0.70, 0.03).

The critical masses for the zero-rotation models
based on Thomson scattering and on Cox-Stewart
opacities are those derived originally by Schwarz-
schild and Harm (1959) and by Stothers and Simon
(1970), respectively. It is seen that rotation tends to
stabilize the models pulsationally, since the critical
mass rises steeply as A is increased. For a fixed value
of Az, nonuniform rotation (with the angular velocity
increasing toward the rotation axis) is clearly more
effective than uniform rotation in stabilizing the star.
For nonuniform rotation with A = constant, the
critical mass becomes ““infinite” when A ~ 0.2 (see
§IV).

A curious phenomenon occurs in the case of uni-
form rotation with A = 0.3 and with Thomson scat-
tering opacity. From 850 M, up to roughly 1200 M,
the sequence of models alternates between marginal
stability and instability. The destabilizing effect of
higher radiation pressure at the larger masses is
delicately balanced in this case by the stabilizing effect
of the centrifugal force, which increases by just the
right amount the central condensation of the models.
Above ~1200 M, the models are unstable in the
usual way.

IV. ANALYTIC RESULTS

a) Uniform Rotation

For a slow uniform rotation of the star, Ledoux
(1945) showed that the square of the pulsational

TABLE 1

CRITICAL MASSES FOR THE PULSATIONAL STABILITY OF MASSIVE ROTATING STARS
wiITH (X, Z) = (0.70, 0.03)

Rotation

[

Opacity M|Me B. pellp> w

Thomson ........ Zero 0 54 0.65 21 3.0
Uniform 0 82 0.57 25 2.8

0 161 0.44 33 2.6

0. ~ 850 0.22 69 2.3

Nonuniform* 0. 119 0.52 22 2.7

Cox-Stewart ...... Zero 0 106 0.51 29 2.8
Uniform 0 209 0.39 37 2.6

0 800 0.22 71 2.3

0 ~ 5000 0.09 161 2.2

Nonuniform* 0 540 0.29 36 2.4

* X = constant.
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eigenfrequency is given approximately by
o? = (T1) — (=W + (5 — KTONUD),
®)

provided that the central condensation of the star is
not too high. Here (I';) is a weighted mean of the first
adiabatic exponent, W is the total gravitational poten-
tial energy of the star, J is the total angular momen-
tum, and 7 is the total moment of inertia with respect
to the center. Introducing the relation J = 2IQ and
the reduced expression for o2 given in the Appendix
for the case of no rotation, we rewrite equation (8) as

2 _ Xl —4 p,
= —2711‘_—1—‘ ) + (5 = XI))Ag, €]

where n is the effective polytropic index. Unless <T';> is
very close to 4/3, the first (gravitational-energy) term
is always much larger than the second (rotational-
energy) term, which we shall henceforth neglect.

In a uniformly rotating star the parameter A, which
equals Az{p>/{p(r)>, is virtually negligible everywhere
except near the surface, because {p(r)) increases very
rapidly below the surface. The deep interior of the
star is thus practically unaffected by the rotation. The
loosely bound outer layers are, however, distended by
centrifugal force. The change in mean stellar radius is
obtainable, for example, from the first-order perturba-
tion theory of Sweet and Roy (1953), who considered a
rotating Cowling model constructed with Kramers
opacity and the CN cycle of energy generation. From
their results, it follows that

S log (p[<p>) = 0.472g. (10)

Eddington’s (1926) standard model of a star pro-
vides a relation between <I';> and stellar mass. The
standard model is a nonrotating polytrope of index
n =3, for which p,/{p> = 54 and B = constant.
Since I'; is a unique function of B, it is necessary only
to solve Eddington’s quartic equation in order to find
I’y from the stellar mass M and mean molecular
weight w:

(M[Mo)u? = 18(1 — B)Y38~2. (1D

This equation may be used for a uniformly rotating
standard model since its derivation depends very little
on the outer layers of the star.

The critical mass for pulsational stability of homo-
geneous stars fueled by the CN cycle is known to be
characterized by w? ~ 3 (§ lII; Simon and Stothers
1969). This criterion and equations (9), (10), and (11)
allow us to calculate the critical mass for any value of
Az. We find, by simple inspection, that uniform rota-
tion raises the critical mass primarily through the
increase of central condensation. As is well known, a
higher central condensation induces smaller pulsation
amplitudes in the core and therefore less nuclear de-
stabilization. To overcome this, the relative radiation
pressure must be increased, and so a higher mass is
required.
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b) Nonuniform Rotation

Only the simplest rotation law, A = constant, will
be considered here. In a straightforward modification
of Ledoux’s (1945) work on uniformly rotating models,
QJ in equation (8) can be replaced by 2E,, for any
moderate distribution of angular velocity, where E,.;
is the total rotational energy of the star. The virial
theorem in the present instance gives E,o; = —(A[2)W.
We then obtain in place of equation (9):

2 _ BT =4+ 6 = KID)A p,
of = T G U2

Since the ordinary equilibrium equations of stellar
structure remain unaltered by the present rotation
law except for the replacement of G by another con-
stant (1 — A)G, the central condensation of the star,
i.e., p./{p, is also unchanged. Adopting Eddington’s
standard model as before, we must rewrite the quartic
equation for an altered value of mean effective gravity:

(M[Mo)p? = 18(1 — BY2B=2(1 — 1)%2 . (13)

With the aforementioned criterion for vanishing pul-
sational stability w® ~ 3, the critical mass may be
derived from equations (12) and (13) for any value of
A. In the present case, rotation is found to increase the
critical mass directly through the total rotational
energy (or, equivalently, the total angular momentum)
of the star and through the reduction of the relative
radiation pressure.

In the limit of very high masses, our analytic ap-
proximation predicts that «2 x 11X, The detailed
results of § IIT predict that an “infinite” critical mass
would be characterized by «? < 2.3. Since realistic
stellar models are close to Eddington’s standard
model as the mass becomes very large, it follows that
pulsational instability will disappear at all masses
when A ~ 0.2 (or possibly a somewhat lower value).

V. CONCLUSION

The critical mass for stability against radial pulsa-
tions in rotating, homogeneous main-sequence stars
has been determined. Simple analytic models show
that rotation raises the critical mass over the non-
rotating value. Part of this increase is due to the
change in the equilibrium model alone, and part to the
interaction between the pulsation and the rotation.
In the case of uniform rotation (Q = constant) the
increase is brought about primarily by the change in
central condensation of the star. In the case of non-
uniform rotation with a constant rotation parameter A
[i.e., Q oc M(r)'/2r~3/2] the increase arises primarily
from the high angular-momentum content of the star
and the drop in the relative radiation pressure. For a
fixed value of A at the stellar surface, nonuniform
rotation produces a higher critical mass than does
uniform rotation. It is likely that nonuniform rotation
with a constant angular momentum per unit mass
(Q oc r~?) would produce an even higher critical
mass than does rotation with constant A.
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Detailed numerical models computed with a purely
electron-scattering opacity show that the critical mass
rises from 54 M, for no rotation to ~850 M, for
uniform rotation near breakup velocity at the star’s
equator. If the “hydrogenic™ opacities of Cox and
Stewart are adopted, the critical masses are 106 Mg
and ~ 5000 M, respectively. For nonuniform rota-
tion with A constant throughout the star, the critical
mass becomes “infinite” when A ~ 0.2, i.e., before
breakup velocity is reached.

Nonrotating stars composed of pure hydrogen are
known to have higher critical masses than do non-
rotating stars of normal composition (Boury 1963).
Therefore, our present results for rotating stars cast
some doubt on (but do not rule out) the often quoted
idea that an early generation of massive pure-hydrogen
stars could have evolved by ejecting mass as a result of
pulsational instability, and thereby could have pro-
duced most of the helium observed in the Galaxy. Our
results suggest, further, that rotation is capable of
-stabilizing even supermassive stars against radial
pulsation, and this may affect various galaxy and
quasar models that invoke a pulsating central super-
massive star (or stars).

No stars are definitely known to have masses ex-
ceeding ~ 60 M, (Stothers and Simon 1968), although

such stars could be disguised in various ways (see the
review by Talbot 1971). This fact raises the question
of whether very massive stars are prevented from
reaching a main-sequence state by high radiation
pressure during their formative stages, which could
impose a limit on how much mass is eventually
accreted (Eddington 1926). Larson and Starrfield
(1971) have examined additional mechanisms for
limiting the mass, viz., radiative heating of the proto-
stellar material, formation of an H 11 region, and the
constraint imposed by the collapse time scale itself.
We suggest here that these mechanisms are aided,
perhaps crucially, by fast rotation. Conservation of
angular momentum during the collapse phase of the
original gas cloud could prevent the formation of very
massive individual stars if fission of the cloud and
equatorial spin-off of material from the fragments
(Jeans 1928) are efficient. Not enough is yet known,
however, about these early stages to predict a meaning-
ful mass limit for pre~-main-sequence stars.

The computer program used in the present work to
determine the pulsational properties of the models is
a modified version of one kindly provided by Dr.
Norman R. Simon for nonrotating models.

APPENDIX

The fundamental eigenfrequency of radial pulsa-
tion in a nonrotating star, o, obeys the inequality
(Ledoux and Pekeris 1941)

o? < (KT = H(=WID),

where, in the usual notation,

{TyPav e f G]\{(r) Y

Iy =~W ’

I =fr2dM(r).

A convenient reduction of the ratio of integrals W/I
begins with the introduction of the variable {p(r)> =
3M(r)/4=r? into the definition of W, and then follows

with the replacement of {p(r))> by its maximum value
pe- Thus

—W < (4=/3)Gp,I .
By adopting w? = 0?R3/GM, we then obtain
w? < (KD — Hp/<p> -

A better approximation to »? results from fitting an
expression of this type to detailed solutions for poly-
tropes of index x (see table 12 of Ledoux and Walraven
1958). We find, forn < 3,

w? & (3T — D2n — 1) pc/<p> .

Extension of these results to rotating stars is given in
the main text.
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ABSTRACT

Sizes of starspots on flare stars can be derived from the author’s convection-cell hypothesis. The sizes are in
fair agreement with those observed on YY Gem, CC Eri, and BY Dra by Bopp and Evans. The hypothesis
predicts that periodic brightness variations due to starspots are restricted to stars brighter than a critical absolute
visual magnitude. A convective model of a starspot on YY Gem has been computed, assuming that the missing
flux is in the form of Alfvén waves. It is found that the surface field must exceed 10* gauss, and is probably less
than about 3 x 10* gauss. With a surface field of 2 x 10* gauss, the effective temperature of the spot is in the
range T, = 1590°-1890° K, depending on the field gradient. These figures are to be compared with 7, = 2000° K
estimated from observations by Bopp and Evans. Efficient dynamo action is shown to be a possible mechanism
for generating such large surface fields. There is a possibility that tidal effects may influence starspot formation.

Subject headings: flare stars — hydromagnetics — late-type stars — magnetic stars

I. INTRODUCTION

Dark starspots have been proposed as an explana-
tion for periodic brightness changes in certain red
dwarfs (Kron 1952; Chugainov 1966; Krzeminski
1969; Evans 1971; Torres, Ferraz Mello, and Quast
1972; Chugainov 1973; Bopp and Evans 1973; Bopp
1973). The stars involved are all now known to be
flare stars. Estimates of the sizes of the spots are de-
ducible in those cases where the stars happen to be in
binary systems, such as BY Dra, CCEri, and YY
Gem. (It is not clear whether or not there is a relation-
ship between membership in a binary and flare
activity; see Gershberg 1970, the English translation
of which is hereinafter referred to as GT.) Thus, in
YY Gem, the spot cannot extend more than 60° in
longitude (Bopp 1973); in CC Eri, spots at different
times extend 30°-60° in longitude, and 40°-60° in
latitude (Bopp and Evans 1973); and in BY Dra,
spots extend 45°-105° in longitude, and 25°-50°
degrees in latitude (Bopp and Evans 1973). For the
latter two stars at least, the extent of the spots depends
on the effective temperature assumed for the spots. If
the spots are cooler than the assumed 7, = 2000° K,*
the size of the spots would decrease, although there
are constraints on the range of parameters which can
be used (Bopp and Evans 1973).

Starspots are also thought to exist in two subgiant
stars, AR Lac and RS CVn (Kron 1952). In AR Lac,
the primary component is spotted, while in RS CVn,
the secondary is spotted. The spectral types of the
spotted stars are G2 and G8, with masses of 1.32 and
1.40 M., and radii of 1.8 and 4.00 R, respectively
(Popper 1967). In AR Lac, up to 20 percent of the
area of the surface can be covered with spots, with
individual patches covering 3-5 percent of the area
(Kron 1947). Although we are mainly interested in red
dwarfs in this paper, it must be kept in mind that
apparently subgiants may also be spotted. That the

1 See note added in proof.

spots on AR Lac are indeed not dissimilar to sun-
spots, and to those on flare stars, is perhaps indicated
by the recent discovery of radio emission from AR Lac
(Hjellming and Blankenship 1973), perhaps associated
with a radio burst similar to the emission from regions
surrounding sunspots.

The giant stars HD 209813, « Aur, and A And are
also possible candidates for spotty stars. They share a
certain feature with the dwarfs of BY Dra type,
namely, they exhibit photometric variations which
have a different period from the binary spectroscopic
period (Blanco and Catalano 1970). The spectral
classes of the components in these systems are GO III,
G5 111, KO III, and FIV.

By analogy with sunspots, starspots may be sup-
posed to be associated with locally strong magnetic
fields in the star, and these fields are presumably re-
sponsible for providing the necessary energy for flare
activity. In support of this idea, one may cite the
example of EV Lac, where in a certain observing
period, all of the observed flares occurred during the
passage of a dark spot over the surface (Cristaldi et al.
1969). As a further example, periodicity in flare
activity (Andrews 1966; Chugainov and Korovya-
kovskaya, quoted in GT, p. 207) is best understood in
terms of the rotational modulation of visibility of an
active region moving across the stellar disk. The
active region is presumably a region of enhanced
fields, if the analogy with the solar case is valid. The
analogy between sunspots and starspots is used by
Bopp and Evans (1973) to support their choice of
effective temperature in the starspot, and they believe
that the analogy even extends to the magnetic field
strengths in starspots. Their results seem to indicate
that field strengths in starspots are comparable to
those in sunspots (about 2 kilogauss). This last
analogy, however, breaks down when their field
estimates are corrected by multiplying by a factor of
8w (Evans 1974).

In this paper, we wish to consider other aspects of
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the analogy between sunspots and starspots. We
indicate how starspot diameters might provide useful
information on the depth of convection zones in red
dwarfs, since it appears that spot diameters are con-
sistent with a recent suggestion (Mullan 1973b) to the
effect that spots are convection cells of some sort
penetrating throughout the entire depth of the con-
vection zone. We also present a detailed model of a
starspot on YY Gem, using the author’s method for
computing sunspot models (Mullan 1974). Effective
temperatures in the spot are indeed found to be about
2000° K, as Bopp and Evans require, but only if the
surface fields are as high as 20-30 kilogauss. Indirect
evidence suggests that these are plausible field
strengths at the surfaces of flare stars. Finally, we
speculate briefly on the origin of such large fields, and
on the possible effects of tides on the appearance of
starspots and flare activity.

II. EXPECTED DIAMETERS OF STARSPOTS

The author has suggested (Mullan 1973b) that sun-
spots can be considered as convection cells of some
type extending to the bottom of the solar convection
zone. With depth H, and diameter D, the ratio
D [H, for such cells has a minimum value of 2.04, and
a maximum value which depends on the structure of
the convection zone. (The ratio D,H, refers to
“super” convective cells penetrating to the bottom of
the convection zone. These cells therefore extend over
many scale heights. One must distinguish between
D [H, and D/H, where the latter refers to “normal”
convection cells. According to our assumptions,
“normal” cells extend over 1 pressure scale height,
H = H,. The ratio D/H is a local parameter of the
convection zone, and it varies with depth (see fig. 2),
whereas D,/H, is a global property ascribed to the
entire convection zone.) As was pointed out by
Mullan (1973b), if starspots are indeed analogous to
sunspots, then along the main sequence, at later
spectral types than the Sun, the diameter of the spots
should increase as the depth of the convection zone,
H,, increases. What is needed now is models of the
convection zones of stars at late spectral types.

Osterbrock (1953) computed a model for YY Gem
(mass = 0.63 M, radius R = 0.63 R,, effective tem-
perature 7, = 3600° K). The convection zone was
found to have a depth of 0.33 R. Using Opik’s
cellular convection model (see Mullan 19715), a
model for this convection zone has recently been com-
puted, assuming cell depth equals pressure scale
height, and the depth of the convection zone turned
out to be in good agreement with that obtained by
Osterbrock. (As an aside, this incidentally indicates
that in certain parts of the main sequence, the depth
of the convection zone, H,, is insensitive to the con-
vection model used. Unfortunately, the Sun happens
to lie in a region where H, is sensitive to the convection
model. Another region in which H, is sensitive to the
convection model occurs in the mass range from 0.2
to 0.3 solar masses, where the models are becoming
completely convective.) From our model, the maxi-
mum superadiabaticity is found to be 88/8 = 0.43.

Vol. 192

Using equation (4) of Mullan (1973b), the correspond-
ing value of m can be interpreted according to the
results of Vickers (1971) as setting an upper limit of
2.5 on D/H in this star. The expected spot size on YY
Gem is therefore less than 0.83 R, corresponding to
an upper limit of about 50° in longitude (and latitude)
for the extent of the spot. This is consistent with
Bopp’s (1973) upper limit of 60°.

In the cases of BY Dra and CC Eri, the masses are
known from the binary orbit only to within a factor
of sin® i. It is necessary to use a mass-luminosity rela-
tionship in order to obtain masses of individual com-
ponents of these systems. Recent discussions have
shown that there is a certain amount of scatter about
a mean relationship at the lower end of the main
sequence (Lippincott and Hershey 1972), and in this
paper we have simplified the problems by assuming a
linear relation between absolute visual magnitude M,
and log M/M,. The linear curve is assumed to pass
through the Sun (M, = +4.7), and UV Ceti (M, =
+15.8, Gliese 1969; /M, = 0.108 + 0.008, Harring-
ton and Behall 1973). This leads to the following
relation:

log /My = —0.087 (M, — 4.7). 1))

It must be stressed that this relation is only approxi-
mate, for there is no physical justification for a linear
relation between log M and M, extending over a range
of masses from 0.1 to 1 solar mass. Errors in masses
estimated from equation (1) are likely to be largest at
about the midpoint of the range of M, i.e. at M,, ~ 10.
The errors are such that at M, ~ 10, formula (1) leads
to an underestimate of the mass of a star with a
given M,.

In BY Dra, about 60 percent of the light is con-
tributed by the primary (Bopp and Evans 1973), so
with M, = +7.4 for the total light of the system, we
find the individual values M, = 7.95 and 8.39 mag.
Equation (1) then gives masses of 0.52 and 0.48 %,
i.e., a mass ratio of 1.08. This is not consistent with
the spectroscopic mass ratio of 1.21 (Bopp and Evans
1973). However, the mass ratio can be improved if the
light contributed by the primary is larger than 60
percent. If the contribution were as large as, say, 70
percent, then the mass ratio obtained from formula
(1) would be 1.20. In this case, the individual absolute
visual magnitudes would be 7.77 and 8.73 mag,
corresponding to masses of 0.54 M, and 0.45 Mg,
respectively.

In CC Eri, the companion is at least 2 mag fainter
than the primary (Evans 1959). Hence, with a com-
bined M, = 8.4 mag, the primary has M, < 8.6 mag,
and a mass therefore greater than 0.46 M. In view of
the errors involved in formula (1), these masses must
be regarded as lower limits.

The depths of the convection zones in these stars
can be derived from results of Copeland, Jensen, and
Jorgensen (1970), plotted in figure 1. Copeland et al.
find that stars with /M, = 0.3 are completely con-
vective, although Straka (1971) suggests that the limit
of completely convective stars is about 0.20 W,
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