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Abstract. The degree of convective instability as expressed by the growth rate w of linear modes, is
calculated for a plane parallel polytropic atmosphere in the presence of radiative damping, without
using Boussinesq approximation. A comparison with the results based on the Boussinesq approxima-
tion reveals that the use of the Boussinesq approximation leads to an overestimation of the radiative
damping. The computation of w as a function of the horizontal wave number yields a wavelength of
maximal instability under a variety of conditions. For reasonable choices of physical parameters
appropriate to the solar atmosphere, the fastest growing wavelengths turn out to be in the range
600-1200 km, and their e-folding times are in the range 200-2000 s.

1. Introduction

The problem of convective instability of a fluid layer heated from below has for a long
time been the subject of investigation largely in the framework of the Boussinesq
approximation. This approach is demonstrably valid (Spiegel and Veronis, 1960) only
when the depth of the layer under consideration is much smaller than any scale-height.
Clearly, for a possible application of the study of convective instability to stellar
atmospheres where the density variations are certainly not inappreciable we must take
into account the full effect of compressibility. Historically, the basic theory for the
problem was first set up by Lord Rayleigh (1916) who studied an homogeneous, in-
compressible atmosphere with the density variations taken into account only when
they were coupled with the gravitational acceleration through the buoyancy force. It
was later shown by Jeffreys (1930) that Rayleigh’s formulation could be applied to a
compressible medium provided the temperature gradient is replaced by the corre-
sponding superadiabatic gradient and the specific heat at constant volume, ¢, is
replaced by the one at constant pressure, cp.

A considerable effort has since been directed to the investigation of polytropic
atmospheres (Lamb, 1945; Skumanich, 1955). These are the simplest inhomogeneous
atmospheres with a linear variation of the temperature with height for which the growth
rates are found to be a monotonic increasing function of the horizontal wave number
in the absence of viscosity and heat conduction. It then becomes clear that unless
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some damping mechanism was taken into consideration, the large wave numbers
would always remain the most unstable. This prompted Bohm and Richter (1959) to
include a radiative damping term in the study of a polytropic atmosphere and indeed
their calculations yielded a maximum growth rate at somewhat large values of the
wave number. But it was pointed out by Spiegel (1964) that the work of Bohm and
Richter was based on the Eddington approximation which is valid for the disturbances
that are optically thick and that it overestimates the radiative damping at large wave
numbers. In fact, the quantitative behavior is found to be significantly changed when
the radiative exchange in a polytropic atmosphere is treated more accurately.

Spiegel (1965) has explored several computational procedures for the study of
convective instability in a compressible atmosphere by setting up hydrodynamical
equations for an ideal gas with constant coefficients of viscosity and thermal con-
ductivity. He was able to show that for a fluid layer of extremely small vertical extent
the problem of convective instability is essentially similar to the Boussinesq approxi-
mation with the modification suggested by Jeffreys and even though the changes
brought about in the flow field by density variations are qualitatively similar to those
obtained by Skumanich for large-scale motions in an inviscid, non-conducting atmo-
sphere, it is the small-scale flow pattern which is grossly modified by dissipative
mechanisms. The study of idealized polytropic atmospheres with constant viscosity
and thermal conductivity was extended by Unno et al. (1960) by including the pressure-
fluctuation term in the linearized equations. Their variational calculations provided
reasonable estimates of the critical Rayleigh number for marginal stability in the case
of a variety of density variations over the fluid layer.

The foregoing investigations of idealized models are indeed the first step towards
our understanding of the full theory of turbulent convection. There have been attempts
notably by Malkus and Veronis (1958), at more sophisticated levels, to examine the
instability for the perturbations of higher order in the case of finite amplitude con-
vection, of which some results have been verified experimentally (Townsend, 1959).
One of the most heroic efforts to calculate the growth of disturbances by perturbing a
fully-turbulent steady-state model of the solar hydrogen convection zone of B6hm-
Vitense (1958) was made by Béhm (1963). His extensive calculations indicated that
the growth rates increased approximately linearly with the wave number much faster
than the corresponding rates for a polytropic atmosphere, with no apparent cut-off of
the unstable modes due to the radiative damping. However, Spiegel has emphasized
that the growth rates probably increase even faster at large wave number because of
the overestimate of the radiative exchange in higher layers on the diffusion approxi-
mation.

The aim of the present work is to explore the influence of a large density variation
and that of radiative exchange on the degree of convective instability. The complete
stability problem with viscosity and thermal diffusivity investigated in the past, has
been confined to the study of marginal stability of the convective modes. The principal
thrust of the present investigation is to undertake exact calculations of the growth
rate as a function of the horizontal wave number in a polytropic atmosphere. The
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motivation arises partly from the hope to find a maximum growth rate, in the presence
of radiative damping, at not too large a value of the wave number in accordance with
the observed spectrum of the solar granulation and partly to bring out the fact that the
information about the convective modes yielded by a full treatment of the com-
pressibility effect differs significantly from that obtained using the Boussinesq equa-
tions. The present work will hopefully serve as a basis for attempting the more general
problem which includes the effect of the variation of the radiative conductivity with
depth and the penetration of the convective elements into the bounding layers.

2. Equations of the Problem

2.1. GOVERNING EQUATIONS

Our main task is to calculate the degree of instability from the linearized hydrody-

namic equations in a polytropic atmosphere with a given variation of the physical

quantities. We therefore consider a compressible, inviscid, optically thick fluid layer

of infinite horizontal extent governed by the following set of hydrodynamical equa-

tions: '
Momentum:

ov
Q(6—t + (v-grad) v) =—grad P + gg.

Continuity:

0
% 4 div(ev) =0. )
ot

Energy:

oT 0P 2
oc, —at—+v-gradT — E-l—v-gradP = KV°T.

State:
P = ZoT.

Here we have assumed the coefficient of thermal conductivity K, the gas constant %,
the specific heat at constant pressure ¢p to be constants, thus neglecting any change
in the degree of ionization.

2.2. UNPERTURBED STATE

We measure z downwards in the direction of the constant gravity and choose the level
where the temperature would vanish as z= —a, so that the fluid layer is bounded
between z=0 at the top and z=4d at the bottom. We shall assume the unperturbed
state to be in static equilibrium i.e., v=0. The unperturbed physical field for constant
thermal conductivity is then prescribed by a polytropic law thus:
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Z m
Pe=Pe(0)<1 +_> ’
a
z m—1
Qe = Q¢ (0) (1 + ;) > (2)

T, = Te(0)<1 + Z)

P,(0), 0,(0), T,(0) are evidently the values of the physical variables at the top
surface; and m is the polytropic index. Equilibrium in the unperturbed state requires
that:

ga
"7 AT,y

2.3. PERTURBED EQUATIONS

We shall neglect any perturbations in the thermal conductivity arising from the
motion and linearize the equations by expressing any physical variable as:

q=4q.(2) + q,(z) exp (vt + ik, x + ik,y),
to get:
o.wv = — grad P; + ¢,g1,,

wg; + div(g,v) =0, (3)
0.cp (00 + WT,) — wPy + 0,c,W — WP, =

dz

d2
=K<—E —k2> 0, P,= R0+ Ro,T..

Here P,, 0,, and 0 are the perturbations of the pressure, density and temperatures
respectively, W is the z-component of v. The subscript e denotes the equilibrium
quantities and 1, is the unit vector along the z-axis. In order to complete the specifica-
tion of the problem we must prescribe the boundary conditions at the top and bottom
surfaces, which we take to be free-surface conditions, i.e.

W=0, =0 at z=0

W=0, 6=0 at z=d. (4)
It is convenient at this stage to introduce the following definitions:
k*=kI+k;,
o =ka,
P,(0)
2 e
Wy = s 5
° 0.(0)d’ ©
-1
ga
G,= -
g9 60(2)

© Kluwer Academic Publishers ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1973SoPh...30..309C

356Ph; C.7307 Z300T

rt

CONVECTIVE INSTABILITY IN A COMPRESSIBLE ATMOSPHERE 313
G Ka™2
K= <>
‘%Qe (O) (1)0
p=? S
= (5)
z
{=-.
a

Further, when we express distances in units of @, timescales in units of w, ', and
pressures, temperatures and densities in units of P,(0), T,(0) and ¢.(0) etc., all in a
consistent way, the relevant equations reduce to the following dimensionless form:
Qo0 = — iar Py
Qv = — i, Py, (6)
0. 0W =— DP, + G,0;,

(?Y——l) 0. (w0 + WT,) — (0P, + WP}) = G (D> — o*) 0,

and
Py =00+ 0T,
where y=cp/cy.
After a certain amount of manipulation these equations can be reduced to a set of

two coupled second-order linear differential equations for the vertical velocity compo-
nent W and the perturbed temperature 6:

G¢D*0 = (%) 0.(wb + WT.) — wP, — WP, + o*0, (7)
'}J —_—
and
P, — 0.0
P,wD*W = g,0W + D,P, + G, (1?9), (8)
where
0. T.w
P,y = R
Wt 4+ 0P

0w — 20.DW + &; - et 0l + o 2 Do
¢ ¢ T, T? T.

(¢ + 0?)/T,0
The system of Equations (7) and (8) thus take the general form:
D*W = A,W + A,DW + B,8 + B,D6,
D0 = C,W + C,.DW + Dof + D, D6, ©)
where 4., 4,, By, B, Cy, C;, Dy, Dy, are all well determined functions of z and of the
unknown eigenvalue w. The foregoing system of equations together with the free-free

boundary conditions allows for the determination of the degree of convective in-
stability as measured by the growth rate w if k, and k, are prescribed.

e e

D1P1=_
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3. The Method of Solution
Together with the four homogeneous boundary conditions

W=0, 0=0 at (=0 (10)
and
W=0, 6=0 at {(=dla, (11)

Equations (9) define a characteristic value problem for w, when all other parameters
are specified.

Let (W, ) be the unknown solution of (9), satisfying (10) and (11) and Q be the
corresponding unknown proper value of w. We can write:

W=CW + CuWy (12a)
and
9 = CIOI + CIIOH (12b)

where (W, 0)) is the solution (say I) of (9) satisfying the modified boundary condi-
tions:
(W=0, 6=0, DW=1, DO=0 at z=0), (13)

and (W, 0y) is the solution (say II) of (9) satisfying another set of modified boundary
conditions:

(W=0, 6=0, DW=0, D§=1 at z=0). (14)

The solutions I and II are linearly independent, and each of them satisfies (10), so that
the solution (W, 0) given by (12) also satisfies (10). The conditions (11) however, are
not satisfied by (W, ) in (12), except by appropriate choice of C; and Cy;.

For satisfying (11), C; and C;; must satisfy

d d
Cl = |+ CyWy| - ) =0
a a

and s (15)

d d
CIGI - + CIIGH -] = 0
a a

This is possible, nontrivially, only when:

(ol na(g o

This last equation defines the ‘proper’ value of w. To find the proper value of w for a
specified set of values of o and other parameters, the following numerical method was
employed.

A function F(x) is defined as the left-hand side of Equation (16), where W;(d/a),
Wu(d/a), 6\(d/a) and 6,(d/a) are obtained through numerical determinations of
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solutions I and II, by substituting x for w in the expressions for coefficients 4., 4,
etc., in (9). The numerical determination of the solutions I and II is simple and
straightforward, since the boundary conditions (13) and (14) are one-point boundary
conditions.

A simple numerical iterative method of finding the zeroes of a given function is
then used to determine the root of the equation F(x)=0. This root is obviously the
required ‘proper’ value of w.

4. Results and Discussion

The coupled system of Equation (9) is solved numerically by the method described in
Section III, and Tables I, II, III, IV summarize the dimensionless growth rates (ex-
pressed in units of w,; cf. Equations (5)) as a function of the (dimensionless) horizontal
wave number ax=ka for a variety of values of the radiative exchange parameter Gy,
and for given values of the polytropic index m and the ration of specific heats y. In all
computations the value of d/a is tentatively taken as unity. The tables give an over-all
dependence of w on «, Gy, m and it is quite clear that for every choice of the param-
eters Gk, y and m, (allowed to vary in the range applicable to the solar atmosphere)
there exists a horizontal wave number a=0,,,, for which the growth rate w attains a
maximum.

It is instructive and illuminating to compute the growth rate of instability as a
function of the horizontal wave number also in the framework of the Boussinesq
approximation. Following Danielsen (1961), and neglecting viscosity and electrical
resistivity, the equation for the fundamental growth rate expressed in units of w, for
free-free boundary conditions comes out to be:

2
Ggm

@+1)ow +(———1—9?/cp)

(®+1)Y 0w-Go*=0.

TABLE I

The dimensionless growth rate  as a function of the non-dimensional horizontal wave number
a = ka for series of Gg with m=2.5, y =1.5. The numbers in the parentheses are the dimensionless
growth rates yielded by using the Boussinesq approximation

\x 1 2 3 4 5 6 7
Gk

0.1 0.210 0.374 0.504 0.507 0.583 0.513 0.472
(0.141) (0.346) (0.421) (0.398) (0.343) (0.285) (0.236)
0.5 0.056 0.133 0.159 0.160 0.136 0.108 0.056
(0.028) (0.069) (0.084) (0.080) (0.068) (0.057) (0.047)
1.0 0.028 0.068 0.085 0.080 0.068 0.056 0.046
(0.014) (0.034) (0.057) (0.040) (0.034) (0.028) (0.023)
1.5 0.018 0.046 0.057 0.052 0.048 0.038 0.032
(0.009) (0.023) (0.038) (0.026) (0.024) (0.019) (0.016)
2.0 0.014 0.034 0.042 0.040 0.034 0.028 0.019

(0.007) (0.017) (0.022) (0.020) (0.017) (0.014) (0.012)
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TABLE II

The dimensionless growth rate w as a function of the non-dimensional horizontal wave number
a = ka for a series of Gk with m =1, y=1.5. The numbers in the parentheses are the dimensionless
growth rates yielded by using the Boussinesq approximation.

a 1 2 4 5 6 7

0.1 0.082 0.165 0.214 0.231 0.221 0.205 0.178
0.056)  (0.138)  (0.168)  (0.159)  (0.137)  (0.114)  (0.094)
0.5 0.022 0.053 0.066 0.062 0.055 0.042 0.023
0.011)  (0.028)  (0.034)  (0.032)  (0.027)  (0.023)  (0.019)
1.0 0.011 0.027 0.034 0.032 0.027 0.023 0.019
0.006)  (0.014)  (0.023)  (0.016)  (0.014)  (0.011)  (0.009)
1.5 0.007 0.018 0.023 0.021 0.018 0.015 0.013
0.004)  (0.009)  (0.015)  (0.011)  (0.009)  (0.007)  (0.007)
2.0 0.005 0.014 0.017 0.016 0.014 0.012 0.008

(0.003) (0.007) (0.011) (0.008) (0.007) (0.006) (0.005)

TABLE III

The dimensionless growth rate w as a function of the non-dimensional horizontal wave number
a = ka for a series of Gk with m =2.5, y = 1.15. The numbers in the parentheses are the dimensionless
growth rates yielded by using the Boussinesq approximation

Y 1 2 3 4 5 6 7
Gk

0.1 0.297 0.545 0.701 0.797 0.844 0.859 0.602
0.190)  (0.468) (0.569) (0.538) (0.462) (0.385) (0.318)
0.5 0.207 0.422 0.531 0.574 0.568 0.536 0.483
(0.038) (0.094) (0.114) (0.107) (0.091) (0.077) (0.063)
1.0 0.141 0313 . 0.395 0.406 0.383 0.359 0.289
0.019)  (0.047) (0.057) (0.054) (0.046) (0.038) (0.032)
1.5 0.104 0.244 0.306 0.305 0.277 0.259 0.203
0.013)  (0.031) (0.038) (0.038) (0.031) (0.025) (0.021)
2.0 0.082 0.195 0.244 0.242 0.215 0.199 0.156

(0.009) (0.017) (0.028) (0.027) (0.023) (0.019) (0.016)

TABLE IV

The dimensionless growth rate o as a function of the non-dimensional horizontal wave number
a = ka for a series of Gx with m=1, y =1.15. The numbers in the parentheses are the dimensionless
growth rates yielded by using the Boussinesq approximation

N\ @ 3 4 5 6

AN 1 2 7

0.1 0.184 0.351 0.445 0.492 0.508 0.497 0.475
0.076)  (0.187)  (0.227) (0215  (0.185)  (0.154)  (0.127)

0.5 0.086 0.195 0.242 0.243 0.234 0.190 0.160
0.015)  (0.037)  (0.045  (0.043)  (0.371)  (0.031)  (0.025)

1.0 0.048 0.114 0.142 0.139 0.121 0.102 0.080
0.007)  (0.019)  (0.023)  (0.021)  (0.018)  (0.015  (0.013)

1.5 0.033 0.080 0.097 0.094 0.082 0.082 0.057
0.006)  (0.012)  (0.015  (0.014)  (0.012)  (0.011)  (0.008)

2.0 0.025 0.060 0.074 0.071 0.061 0.052 0.043

(0.004) (0.009) (0.011) (0.010) (0.009) (0.007) (0.006)
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This quadratic equation in w was solved for the same sets of values of the parameters
G,, G, a and y as before, and the values of the positive root of the quadratic are given
in the parenthesis in Tables I-1V.

The Boussinesq approximation (B.A.) discards the stabilizing effects of the zero
order density stratification. Therefore, in the absence of the radiative damping, the
use of the B.A. may be expected to yield growth rates higher than those obtained
without using it. However, from Tables I-IV one finds that the growth rates (wg 4.)
obtained by using the B.A. are always smaller than those (w) obtained without B.A.
Hence we conclude that the B.A. leads to an overestimation of the stabilization by the
radiative damping. This conclusion is also supported by the fact that the ratio wg 5 /@
decreases with increasing G, when other parameters are held constant. For small Gy,
the overestimation of the radiative damping in the B.A. leads to smaller estimates
of the fastest growing wavenumber «,,,. For example, the B.A. reduces «,,,, from 5
to 3, for Gy~0.1 in Table 1.

It has been realized for quite some time that the Boussinesq equations, even though
they may embody the essential features of the theory of convection, lack several
characteristics that are typical of stellar convective transport of energy. We have
shown here that the resulting growth rates are quantitatively modified, in a significant
manner, with the introduction of compressibility and thermal conductivity.

Admittedly we have tackled an idealized problem with the fluid layer confined be-
tween rigid boundaries, thus making no allowance for the penetration of convection.
We have also not taken into account the dependence of thermal conductivity and
specific heat on the state variables, particularly on the temperature. We also expect
the variation of the thermal conductivity with height to have a non-negligible effect
on the values of the growth rates. The corresponding refinements are intended to be
made in a subsequent investigation.

For comparison with the properties of the observed inhomogeneities in the solar
atmosphere we must determine appropriate values of the parameters a, d, g, K, m and
y. The idealized Formulae (2) cannot be satisfied exactly and simultaneously by
P(z), ¢o(z) and T(z) from any computed model of the mean stratification. Hence the
parameters a, d, m can be determined only approximately. The ‘mean’ values of K and
y also can only be chosen crudely, somewhat arbitrarily. From the Harvard-Smith-
sonian reference atmosphere (HSRA, Cf. Gingerich et al., 1971), we have P~1.3 x

x10°dynem™2, 0~x3.2x107 " gmcm ™3, and T~6.4x10°> K at the surface t=1.

This surface is also the boundary of the stable and unstable regions, and is taken as
z=0. Assuming a layer-thickness equal to one-density scale height, and using Spruit’s
model (Spruit, 1972) of the convection zone, we obtain d= H,~620 km. Spruit’s
model is preferred since it fits smoothly with the HSRA. From this model, P~ 2.8 x

x 10% dyncm ™2, 0~8.0x 1077 gm cm ™3 and T~ 1.5 % 10° K at z=d. From this data
we estimate a~ 600 km, yielding w,~10"% s~ !, and m= 3. For estimating m we used
o-variation, since P-variation has very steep gradients near 7=1. Thus, for the present
comparison, we choose values from Table I or III. The parameter G¢ varies by over
three orders of magnitude from ~5 at z=0 to ~1073 at z=d. However, we attach
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more weight to the largest values of G corresponding to the uppermost layers, since
here the development of the mode being slowest, the corresponding phase of develop-
ment will take most of the time required for e-folding. Thus we take G~ 1. The
mean value of y is also very difficult to determine; but values 1.15 and 1.5 seem
acceptable. From Tables I and III, we notice «,,,,~3 to 6 for Gxy=2 to 0.5, and the
corresponding ®,,,, ~0.05 to 0.6 times w,. This gives the fastest growing modes with
wavelengths A, ~600-1200 km, and with e-folding times w,.~160-2000s, for
various values of Gg.

The values of 4,,, are in good agreement with the observed sizes of the normal
granulation cells (Namba and Diemel, 1969). The e-folding times are of the same
order as the observed lifespans of normal granules (Bahng and Schwarzschild, 1961).

From the spread of values of w,,,, and «,,,, in Tables I-IV, it is tempting to conclude
that the observed spread in the sizes and the life-spans of normal granules is due to
the variations in the thermal fields experienced by each granule during the course
of its development.

5. Conclusions

Convective instability in a plane parallel polytropic atmosphere has been investigated
in the presence of radiative damping. The results are in qualitative agreement with
those of B6hm and Richter (1959). Quantitatively, the results are in good agreement
with the observed scales of the normal solar granulation. The investigation points to
the fact that the Boussinesq approximation leads to an overestimation of the radiative
damping effects.
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