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Abstract. A two-dimensional hydrodynamic code has been developed for numerical studies of stellar
collisions. The motivation for the study has been the suggestion by Colgate that collisions among
stars in a dense galactic core can lead to growth of stellar masses by coalescence and thus to an
enhanced rate of supernova activity. The specific results reported here refer to head-on collisions
between identical polytropes of index 3 having solar mass and radius. If the polytropes were initially
at rest at infinity, then about five percent of the combined mass is lost by ejection following collision.
The volatilized mass fraction rises to about 18 % for an initial relative collision velocity of 1000 km
s~1 at infinite separation, and to about 60%, for the 2000 km s~! case. Since the initial kinetic and
gravitational energies balance for a relative velocity of 1512 km s~1 at infinity, it may be seen that
net coalescence persists to velocities somewhat in excess of this figure. Mass ejection takes place
in two ways simultaneously: (1) by a rapid sideward expulsion of fluid in a massive lateral sheet
normal to the collision axis, and (2) as a result of two recoil shocks which lead momentum flows
backwards along this axis. The lateral effect has similarities to the expansion of gas into a vacuum;
that is, shocks are not involved. However, the ejection of material from the rear colliding hemisphere
due to the recoil shocks predominates at low collision velocities. As the velocity increases, both
effects strengthen, but the lateral expulsion intensifies more rapidly than the recoil shocks.

1. Introduction

Until lately, there has been very little theoretical investigation of the physics of stellar
collisions. This may be attributable to the complexity of the hydrodynamics involved.
However, it is probably also partly due to the realization that stellar collisions within
our own galaxy must be exceedingly rare. More recently, it has been realized that
stellar collisions may be responsible, though indirectly, for very energetic processes
that are sometimes observed in association with distant galaxies and quasars. Very
strong radio galaxies are usually observed to have extremely bright point-like centers,
where the density of stars must be extremely high. Similarly, high densities seem to
exist in quasars, which appear to have masses of galactic order associated with
volumes having radii of at most a few parsecs. This mass may be present mostly
as stars in the general range of one solar mass with a smaller amount of associated
interstellar gas of relatively high density.
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In such dense systems, stellar collisions must occur frequently. It has been suggested
by Woltjer (1964), Gold et al. (1965), and by Spitzer and Saslaw (1966), that stellar
collisions may be the principal sources of energy input required to account for the
tremendous energy emissions from strong radio sources and from quasars. In these
cases it was suggested that the stellar system was sufficiently dense and massive so
that the collisions would occur at a very high velocity and hence, be essentially
disruptive. The high stellar velocities would result from the very deep gravitational
potential well in which the stars move, the basic source of energy to the system being
gravitational in origin. On the other hand, Colgate (1967) has pointed out that an
equally high energy input may be obtained from many fewer collisions in less dense
stellar systems, where the impact velocities are much slower so that the collisions
are most often amalgamative. In this case the collision products would tend to build
up large masses (~50 M) through successive coalescence.

The basis for Colgate’s theory is the assumption that the dense stellar system is,
in fact, the core of a larger system which has evolved with the production of a density-
distribution cusp at the center. Such evolution takes place through relatively close
stellar encounters which redistribute the energies and momenta of the stars in the
system, feeding some of them towards the center where eventually they will be
destroyed by collisions. However, Colgate envisions a different end point; viz., before
the stars attain Kinetic energies sufficient to disrupt one another, they undergo
collisions which instead lead to coalescence. Under conditions where typical stellar
velocities are estimated to be ~800 km s~ !, he has imagined that a collision between
two stars of roughly solar mass should be highly inelastic, leaving more than 509
of the combined mass in a single final object. As stars evolve inward in the stellar
system, they will be largely engulfed in such amalgamative collisions before the stellar
density at the center of the system becomes high enough for the local stellar velocities
to reach the disruptive range. Thus, stars of roughly solar mass may coalesce into
larger bodies, say of the order of 50 solar masses, which then evolve quickly to the
supernova state and shortly thereafter release great quantities of energy.

This paper presents some initial calculations designed to clarify the question of
coalescence resulting from a stellar collision. The intent has been not only to determine
the coalescent mass fraction as a function of initial approach velocity, but also to
uncover physical characteristics of the collision process with a view towards gaining
additional insight into the hydrodynamics involved. Recently, numerical capabilities
have been developed which allow head-on collisions of stellar bodies to be handled
within the framework of multi-dimensional hydrodynamics. Careful treatment has
been necessary since stars are self-gravitating bodies with free-moving boundaries
and include many orders of magnitude of density change between center and photo-
sphere. Moreover, the gaseous stellar configurations undergo extreme distortions
during a collision process; so, it seemed natural to use an Eulerian rather than
Lagrangian representation. This means that a stellar model together with its large
density gradients must be able to move during the calculations across an Eulerian
finite-difference network without developing appreciable spurious distortions. The
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problem becomes much more tractable when limited to head-on collisions between
identical stars; the symmetry thereby introduced enables the basically three-
dimensional spatial problem to be handled by only two independent space vari-
ables.

A previous attempt to calculate the effects of relatively slow head-on collisions
between identical solar-type stars has been made by Mathis (1967). Because of
practical limitations, he was unable to adopt a fully two-dimensional approach, but
introduced an approximation in which the forward and lateral motions of fluid were
decoupled to some extent. The collisions were imagined to take place between a
largely unperturbed star and an immovable rigid plane, the plane of mirror symmetry
normal to the collision axis of the colliding stars. A typical star was sliced by planes
that were passed through it parallel to the mirror. Stellar gas between any two suc-
cessive planes was in the form of a disk, which could approach or recede from the
mirror and simultaneously expand laterally, but only in a way that the disk did not
bend. Using this model, Mathis carried out one-dimensional hydrodynamic calcula-
tions of fluid motions along the direction of collision, and coupled these to one-
dimensional motions perpendicular to the collision axis. Certain results of his highly
approximate treatment agree with our own calculations. In particular, when the
colliding stars started from rest at infinite separation, Mathis found that roughly 7%
of the total mass escaped from the system following the collision. Moreover, relatively
little sideward expansion occurred, most of the ejected material being thrown back
along the collision axis. Another interesting result — somewhat to be expected — is
that the effects of collision-enhanced nuclear burning and radiation flux were found
to be relatively small.

In another series of investigations involving stellar collisions, Sanders (1970) as
well as Spitzer and Saslaw (1966) have made rough estimates of mass loss per collision
including off-axis collisions between stars of unequal mass. Although ingenious, these
estimates made use of certain simplified models proposed by Spitzer and Saslaw
(1966) which are even more approximate than that introduced by Mathis.

Collisions at much higher relative velocities have been discussed by De Young
and Axford (1967) and by De Young (1968). Here gravitational effects were neglected;
and, the ensuing collisions were completely disruptive. Extremely high ejection
velocities following collisions were achieved, particularly back along the collision axis.
However, their objectives were totally different than ours, being rather to study the
possibility of producing relativistic ejecta.

In this paper we first give a brief account of our model and the numerical method
for handling it; details of the method are relegated to the Appendix. We then consider
a series of computer runs on head-on stellar collisions using three different initial
collision velocities (zero, 1000 km s~*, and 2000 km s ! relative velocities at infinite
separation); and, the results are displayed in proper time sequence by means of
machine-generated pictures. From these we are able to gain some insight into the
hydrodynamic mechanism of the collision process. Finally, the main results are
presented : the mass fraction at three different collision velocities that escapes from
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the gravitational field of a final object. Some remarks about the convergence of the
numerical method appear in the Appendix as well as a detailed discussion of the
computational errors.

2. Method

Considerable attention was given to the numerical method although only an ap-
proximate model was assumed for the colliding stars. Such emphasis seemed justifiable
because certain features of the difference scheme were new, and subtle errors are
sometimes obscure in nonlinear numerical calculations. On the other hand, the errors
introduced through use of standard approximate stellar models are widely recognized.

Prior to collision, the stars were assumed to be polytropes of index 3.0; but, as
the collision process proceeded, all changes were imagined to take place according
to the equation of state for an ideal gas, i.e.

eE =P/(y - 1), )]

where ¢ denotes fluid density, E internal energy per unit mass, P total pressure, and y
the effective ratio of specific heats, which was set equal to 3. Equation (1) is a sensible
approximation when the gas pressure greatly exceeds the radiation pressure, as in
the Sun. 7

Polytropes comprise a family of self-gravitating spherical fluid masses in hydro-
static equilibrium (Chandrasekhar, 1939) where pressure P is simply related to ¢ [i.e.,
P=Ko"*V/" n being the index]. Those of index 3.0 have been widely used to ap-
proximate stars in which energy transport is due mainly to radiation, a condition
largely valid for the Sun. It was convenient in our case to normalize the model by
setting its radius and mass equal to that of the sun, the values for Ry and M, being
taken from Allen (1963), viz., Rg=6.9598 x 1071° cm and My=1.989x10%3 g.
Then, assuming the gravitational constant to be G=6.668 x 10~2 dyn-cm?* g2, it
followed from well-known relations (Chandrasekhar, 1939) that the central density
and central pressure for the normalized polytrope of index 3.0 are 9.=76.3 gcm ™3
and P,=1.242x10'7 dyn cm~2 respectively. These values are somewhat less than
the density and pressure currently believed to exist at the center of the sun. The
gravitational binding energy of the normalized polytrope is also readily attainable
and turned out to be 5.685 x 10%48 erg, as compared to some 7.4 x 10*® erg for the
Sun.

The initial configuration (or machine-zero configuration) involved two identical
polytropes approaching each other head-on at a prescribed velocity. Obviously the
system had a high degree of symmetry which persisted throughout a calculation. The
principal symmetry, of course, lay about the line of approach; but, there was also
a central lateral plane of symmetry perpendicular to this axis at the center of mass
of the system. Because of the axial symmetry, it was appropriate to use cylindrical
coordinates r and z, the z-axis coinciding with the line of approach and r being
measured normal to this axis. Due to the additional symmetry about the central
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lateral plane, only one quadrant of the physical space had to be handled formally,
where the actual physical space considered was a cylindrical region symmetric about
the z-axis and of height equal to diameter — either 6.4 R by 6.4 R or 12.8 R by
12.8 R depending upon the number of finite-difference steps per Ry. Incidentally,
the initial configuration afforded an opportunity to test the accuracy of the numerical
calculations for gravitational potential (cf. Figures 2A and 3A of the Appendix), since
at any point the field produced by two or more undeformed polytropes can be cal-
culated from exact equations (Chandrasekhar, 1939).

The numerical calculations were carried out on the IBM 360/95 computer at the
Goddard Institute for Space Studies, New York. The machine program, summarized
below, has been set up to handle initial-value problems which involve compressible
self-gravitating fluids moving in three-dimensional space and subject to cylindrical
symmetry. Eulerian coordinates are used. The fluids have free-moving boundaries
and may evolve shocks; the latter must be allowed to play a role in stellar collisions.
The difference formulas are based on local conservation of mass, momentum, and
energy, and include an equation of state [Equation (1)]. They are developed to second-
order accuracy in the small quantities Ar, Az, At. The gravitational potential is
obtained from a numerical analogue of the integral satisfying Poisson’s equation;
expressed in terms of cylindrical coordinates r, z, 8, and time ¢, the 6-dependence
vanishes due to symmetry so that

V()
&(r,z,t) =G
Ir

o(r',z', 1)
(r',z') —x(r, z)|

where @ (r, z, 1) denotes the gravitational potential at the point r, z, ¢; and, V() is
the space including all non-zero values of the density ¢ (+', z’, ). Since the calculations
are formally restricted to one quadrant, @ (r, z, ) must be computed so as to yield
the physically-correct field consistent with the complete model. Note that this integral
method avoids any need for the explicit matching of Laplace and Poisson solutions
at free-moving surface boundaries.

Free-moving boundaries, however, have caused difficulties, and at present are
handled by a direct but approximate approach. Accordingly, the dependent variables
are always calculated from the complete set of difference formulas; but, whenever
the computed density ¢ at an arbitrary point falls below a certain small value, all
dependent variables including ¢ are immediately set to zero at that point. If the ¢
cutoff is sufficiently small (e.g., 10~ of the initial central density of a stellar model),
negligible loss in mass results and only a slight depreciation in energy. Since the
procedure allows considerable freedom of motion, spurious fluctuations often appear
at the leading and trailing edges of moving boundaries where the density is both
very small and changing rapidly. However, such fluctuations can be suppressed by
means of artificial dissipation.

Two types of artificial dissipation are used: (1) The first type (flow-bias) affects
values of the flow terms in the difference analogue of the divergence and slightly

dv (v, z/, 1), 2)
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modifies their values in the direction of upstream values, the amount of change being
proportional both to the local fluid velocity and the time step At. (2) The second
type is an artificial viscosity consisting of two parts, one like that introduced by von
Neumann and Richtmyer (1950), the other similar to certain third-order terms
‘proposed by Lax and Wendroff (1960). When suitably applied, all artificial dissipation
is very small except (1) around shock fronts, (2) about large fluctuations, and (3) at
the center of impact during compression. Besides damping spurious fluctuations, the
artificial viscosity acts to induce very nearly the correct entropy jump across nu-
merically simulated shocks. More is said about this last effect in a paper by von
Neumann and Richtmyer (1950).

At prescribed intervals, the mass and total energy are summed over all netpoints.
These sums do not enter directly into the difference calculations but serve as a control
on the running of the program; i.e., a run is automatically terminated whenever either
the overall mass or overall energy differs from its initial value by more than a certain
percent. Both (1) the conservation of mass and (2) the conservation of energy in
the large are necessary for the correctness of our calculations as well as for numerical
stability. Conservation of mass generally remains very precise since the finite-difference
scheme itself satisfies this exactly — except for a trivial mass loss at moving boundaries
due to the density cutoff. Conservation of total energy is less precise; but, it often
can be improved by small adjustments of the constant factors in the expressions for
the flow-bias [cf. Equations (A35) and (A39), Appendix]. Such adjustments have been
made whenever considerable changes were introduced in the starting conditions, as
the three widely different initial collision velocities, or in the Courant factor f relating
the time steps A4z and the mesh width Ar=4z=#h [cf. Equation (A70), Appendix].
This procedure is a bit disturbing in that just sufficient artificial dissipation, including
flow-bias, should be added to control spurious fluctuations at the moving boundaries
and during maximum impact but not enough to appreciably affect the course of a
calculation. However, despite the need for readjustment, the current form of flow-
bias apparently caused little error in our principal numerical results (cf. Section 8
of the Appendix).

Besides total mass and energy, another quantity is determined at prescribed
intervals; this is the volatile mass, a measure of the total material having sufficient
local energy to escape gravitational binding. The volatile mass is calculated at an
arbitrary time by summing all mass elements whose outgoing kinetic energy plus
internal energy exceed their gravitational energy. The process is handled in the
difference program as follows: Let # and w denote respectively the r and z components
of fluid velocity, ¢ the fluid density, and 7 the outgoing kinetic energy. The spatial
net-points are identified by the indices i, j, and the time steps by a superscript »
(n=1,2, ---); e.g., in difference notation the equation for internal energy per unit
volume at the point r;, z;, t" becomes [cf. Equation (1)]

(CE);,; =Pl;/(y —1). (3)

The machine instructions which determine the ouzgoing kinetic energy T; ; at the

© Kluwer Academic Publishers * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1972Ap%26SS..15...44S

p&SS. C15. T A4S0

rTI72A

50 F.G.P.SEIDL AND A.G.W.CAMERON

space point r;, z; for time ¢=¢" are equivalent to the formula

0 if u;; <0
T, = 0 if wi,<0 (4)
of ;[(u} ;)* + (W!)*]/2, otherwise.

If AV, ; denotes the finite-difference volume element properly associated with the
netpoint , j [cf. Equation (A27), Appendix] and @} ; the gravitational potential at
the nth time step, then a mass element g} ;4V; ; is stored as a volatile mass element
labeled (g;, ;4V;, ;)*, whenever

T+ Pll(y = 1) > g} ;91 ; )

otherwise, (g; ;4V; ;)* is set to zero. Hence, the volatile mass M, at a time
corresponding, say to the nth time step is given by

i,J
while, the total mass M", which should remain constant for all n, can be written

M"=2nY o ;4V; ;, (7
1, J
During a typical collision calculation, M, was found to stay essentially zero until
some time after maximum impact when it increased rapidly at first, later more slowly,
approaching and leveling off at a value which thereafter remained largely constant
(cf., Figures 12, 13, and 14). The leveling-off value, M,°, is a measure of the mass
which escapes gravitational binding; the ratio

F =M;/M" ®

might be called the mass-escape fraction. The principal objective of the present study
was to investigate this mass-escape fraction F as a function of the initial approach
velocity in head-on collisions.

A test which the difference program must satisfy in order to be correct is discussed
in Section 7 of the Appendix. In addition, checks on the gravitational-field routine
are described at the end of Section 5 of the Appendix.

In order to display calculated results, two types of machine generated pictures are
employed. The first type exhibits full configurations and density distributions at preset
intervals during the course of a calculation. Two levels of shading are introduced
thereby allowing the representation of gravitationally bound and unbound regions
of fluid. Darker regions are gravitationally bound, lighter regions are volatile. The
density distributions are indicated by means of contour lines connecting points of
equal density; viz., g/o.=1.0, 0.5, 0.1, 0.01, and 0.001, g. being the central density
of the undistorted stellar model. A final density contour is, in fact, formed by the
outer boundaries where the shading ends and ¢/¢. equals the density cutoff, usually
107°.
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The second type of display exhibits the fluid-velocity field. Arrows are generated
at evenly-spaced points over only one quadrant of the cylindrically symmetric flow.
Each arrow is a scaled-down velocity vector, being proportional to the fluid velocity
at the point from which it stems and pointing in the direction of the flow. Here
again density contours and two levels of shading are used.

TIME = 0 SECONDS CUTOFF = 0.1E = 05 MACHINE-ZERO VELOCITY = — 580 KM/SEC 04/09/69

Fig. 1a. Machine-zero configuration showing contours of equal density. Here the contours for

o/oc = 1.0 are merely points at the centers of each object. Proceeding outwards g/¢. =0.5, 0.1, 0.01,

0.001, and along the outer boundaries g/gc = 10-6. Note that this and the following configurations
are rotationally symmetric around the vertical axis. g. denotes the initial central density.
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3. The Collision Process Numerically Represented

Head-on collisions were investigated for three initial velocities of approach: (1) zero,
(2) 1000 km s~ *, and (3) 2000 km s~ ! as measured center-to-center at infinite separa-
tion. Incidentally, the kinetic energy of two colliding polytropes at infinite separation
equals the sum of their gravitational binding energies if their relative initial velocity
is 1512 km s~ *.

Figures la through 1f illustrate the collision process in the center-of-mass frame
for an initial relative approach velocity of 1000 km s ™. The collision axis is vertical.
Figure la shows the machine-zero configuration, viz., two undistorted polytropes
separated by 2.2 R, and approaching each other with velocities of 580.2 kms™!
relative to their common center of mass. Gravitational distortion at a separation of
2.2 R, or more has been neglected. The real time elapsed between Figure la and
If is about 40 min. Near the point of maximum impact (the configuration of Figure

TIME = 801 SECONDS CUTOFF = 0.1E = 05 MACHINE-ZERO VELOCITY = = 3580 KM/SEC 04/17/69

Fig. 1b. Early stage of a head-on collision involving an initial relative velocity of 1000 km s—1
at infinite separation. The lateral sheet of ejected fluid (shaded light) has begun to form. Regions
shaded lightly are capable of gravitational escape.

© Kluwer Academic Publishers * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1972Ap%26SS..15...44S

p&SS. C15. T A4S0

rTI72A

A STUDY OF COALESCENCE IN HEAD-ON COLLISIONS OF IDENTICAL STARS 53

TIME = 1218 SECONDS CUTOFF = 0.1E = 05 MACHINE-ZERO VELOCITY = — 580 KM/SEC 04/17/69

Fig. 1c. Maximum compression in the course of a head-on collision between solar-like polytropes
initially approaching at 1000 km s—t. The innermost density contour (viz., ¢/¢c=1.0) encloses a
spheroidal region where density and temperature exceed initial values at the centers
of the stellar models.

TIME = 1700 SECONDS CUTOFF = 0.1E = 05 MACHINE-ZERO VELOCITY = — 580 KM/SEC 04/22/69

Fig. 1d. Unloading phase soon after the two recoil shocks have broken through the upper and

lower surfaces (1000-km s—* case). The density contours correspond to ¢/¢. =0.1, 0.01, and 0.001,

while, as in all these pictures, g/ = 10~¢ along the outer surface. Gravitationally escaping material
is shaded lightly.
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TIME = 1817 SECONDS CUTOFF = 0.1E = 05 MACHINE-ZERO VELOCITY = — 580 KM/SEC 04/23/69

Fig. le. Appearance of characteristic shapes, viz., (1) upper and lower prominence due to effects
of the two recoil shocks and (2) an extensive equatorial bulge caused by the lateral ejection of fluid
(1000-km s~1 case).

1c) the fluid density exceeds the initial central stellar density ¢, throughout the oblate
region bounded by the density contour ¢/g.=1; and, the temperature is appreciably
higher here than the initial central stellar temperature (cf. Figure 4).

Figures 2 and 3 compare configuration changes due to different initial approach
velocities. At machine zero, the separations were 2.2 Ry and the velocities (1) 294.3
kms™! and (2) 1042.4 km s~ ! relative to the center of mass of the system; these
velocities correspond respectively to zero and 2000 km s ™! center-to-center at infinite
separation. The increase in lateral ejection of fluid with collision velocity is remark-
able. This lateral fluid sheet is reminiscent of the behavior found when a liquid drop
splashes against a rigid plane (Harlow and Shannon, 1967). The amount of com-
pression at maximum impact likewise intensifies with approach velocity, as may be
seen by examining the innermost density contours. Figure 3 contrasts configurations
resulting from low and high-velocity collisions at times appreciably after maximum
impact. The configuration of Figure 3a represents the state of the low-velocity
collision 3668 s in real time after machine-zero; that of Figure 3b exhibits the high-
velocity collision 1450 s following machine-zero, the shorter time interval demon-
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Fig. 1f. Growth of the prominences arising from the recoil shocks (1000-km s~ case). The upper

and lower extremities should trail off beyond the frame of the picture in a manner suggestive of

plumes; however, the top and bottom edges indicate effects of the rigid boundary imposed on the

domain of calculation. At this time some 18 % of the total initial mass is calculated to be escaping
from the gravitationally-bound central object.

strating a greater speed of interaction. Note that the density contours appearing in
Figure 3b are for ¢/g.=0.01 and 0.001 proceeding outwards from the center.

For the 1000 km s™! collision process, the temperature and density at the center
of impact are plotted in Figure 4 as a function of time over a period including
maximum impact. The temperature was obtained from numerical values of P/g by
means of an equation of state [viz., T=(P/g)/(k/pH )] corresponding to an early
solar-type star whose core has undergone little hydrogen depletion. The numerical
values came from a calculation using a mesh width of 2= R/40. It should be noted
that the temperature determination before the time 500 s is not physically significant
as indicated by the absence from coarser-zoned runs of certain peaks shown here;

© Kluwer Academic Publishers * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1972Ap%26SS..15...44S

p&SS. C15. T A4S0

rTI72A

56 F.G.P.SEIDL AND A.G.W.CAMERON

TIME = 1904 SECONDS CUTOFF = 0.1E = 05 MACHINE-ZERO VELOCITY = — 294 KM/SEC 01/03/69

Fig. 2a. Configuration (rotationally symmetric) at maximum compression as calculated for a head-
on collision between solar-like polytropes starting from zero relative velocity at infinite separation.
Maximum velocities of lateral ejection are determined to be ~ 780 km s—1.

TIME = 761 SECONDS CUTOFF = 0.1E = 05 MACHINE-ZERO VELOCITY = — 1042 KM/SEC 02/14/69

Fig. 2b. Configuration (rotationally symmetric) at maximum compression for a head-on collision
involving two solar-type polytropes initially approaching one another at 2000 km s—!. Here the
maximum velocities of lateral ejection are calculated to be ~ 2500 km s~1. Accompanying the higher
lateral velocities, there is an extensive toroidal region where material is potentially capable
of gravitational escape.
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Ui

Fig. 3a. Last stage (rotationally symmetric) in the head-on collision of two solar-like polytropes

nitially having zero relative velocity at infinite separation. Material escaping from the gravitationally-

bound central object is shaded lightly, and is still streaming outwards through the upper and lower

edges of the picture. Densities in this unbound region are of the order g x 10~% and velocities

~ 1000 km s~L, The slight lateral spreading along the top and bottom edges is due to the artificial
rigid boundary on the domain of calculation.

the latter are attributed to the action of artificial damping in regions of very low
density. Extrapolation by the method described in Section 8 of the Appendix indicates
that the temperature at center of impact reaches 52 x 106K ; but, the time interval
during which temperature and density are appreciably elevated above central solar
values is too short to sustain an increased release of nuclear energy comparable with
the energy involved in the hydrodynamic interactions (cf. Mathis, 1967).

Changes in the fluid-velocity field and the shock fronts are displayed by the second
type of machine-generated picture, Figures 5 through 8. Here the collision axis runs
vertically along the lefthand edge of the picture, while the lateral plane of symmetry

© Kluwer Academic Publishers * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1972Ap%26SS..15...44S

p&SS. C15. T A4S0

rTI72A

58 F.G.P.SEIDL AND A.G.W.CAMERON

TN 450 BCNS VIR 0L () ; : £3589

Fig. 3b. Late stage (rotationally symmetric) in the head-on collision between two solar-like poly-

tropes initially closing at 2000 km s~1. The lateral expulsion of fluid is much greater than for the case

of zero initial collision velocity. Also, a much smaller gravitationally-bound remnant (shaded darker)
is left behind.

forms the bottom edge. The fluid-velocity field is depicted by a field of small arrows
drawn from every fourth netpoint; and, for velocity calibration a horizontal arrow
of length denoting either 1000 km s~*, 2000 km s~*, or 5000 km s~! is included in
the upper righthand corner of each picture. All velocities are measured with respect
to the center of mass of the system. The position and curvature of a shock front
at any time is clearly discernible by means of a very narrow strip in which the velocity
vectors abruptly change length and direction.

Summations of kinetic, internal, and total energy over all mass elements are plotted
against time in Figures 9, 10, and 11 for the three initial approach velocities, the
results being obtained from calculations using as mesh width A=R/40. The con-
stancy of total energy is a necessary condition for the validity of a calculation, while
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changes in total kinetic and internal energies are interesting aspects of the collision
process. The peak in internal energy generally occurs just slightly before the minimum
in kinetic energy, the lag of kinetic energy being attributed to the net deceleration
of fluid still falling in after the highly compressed regions near the center of impact
have begun to unload. Using the method of extrapolation described at the end of

Section 8 in the Appendix, the peak internal energy for the 1000 km s~! collision
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Fig. 4. Density and temperature vs. time at center of impact for a head-on collision between two

solar-like polytropes initially closing at a relative velocity of 1000 km s~1. g, denotes the initial

central density. The dashed portion of the temperature plot is largely the result of intense artificial
damping and is not physically significant.

(Figure 10) is estimated to reach 2.1*3:2 x 10*4° erg; thisis 1.5 x 10**° erg more than
the total initial internal energies of the two polytropes, and may be compared with
twice the initial gravitational binding energy of a solar-type polytrope, viz., 1.14 x
10*4% erg. Disruption does not occur, of course, because at maximum impact the
gravitational binding energy has been sufficiently enhanced due to compression. Total
energy, on the other hand, should remain constant with time although Figure 10
shows a slight fall-off for this run; at 1=2275 s or after 1840 machine steps, the total
energy has dropped by an amount equal to 79 of the total initial internal energy.
However, the discrepancy can be accounted for by the cumulative loss in kinetic
energy accompanying the loss in mass caused by the density cutoff, which was
introduced to handle the free-moving boundaries.

When two polytropes start to collide, sonic disturbances should propagate away
from the regions which first make contact and travel back through the oncoming
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Fig. 5a. Head-on collision configuration at machine zero, viz., when two solar-like polytropes are

2.2 R apart. The collision axis runs vertically, and only the upper righthand quadrant of the

complete picture is shown. Fluid velocity is represented by a field of arrows, arrow length being
calibrated by the horizontal arrow in the upper righthand corner.

fluid except that, in all cases considered here, the oncoming material is falling in
supersonically with respect to the center of impact. More particularly, the local sound
speed ¢ decreases monotonically outwards along the radius of a solar-type polytrope
of index 3.0 and y =3 [cf. Equation (1)]; starting with a central maximum of ¢=521
kms™?, it drops to ¢=278 km s~ ! at a distance from the center of Ry/2, and to
c=163kms™ ! at 3 Ry/4, etc. In contrast, even for the lowest-velocity collision at
the instant when the centers are 2.2 R apart, the material velocity of each center is
294.3 km s~ ! relative to the center of impact or center of mass of the system; and,
shortly thereafter, higher velocities (e.g., 2400 km s~!) occur where the leading
edges first touch and the sound speed is less than 163 km s~!. Meanwhile, along the
lateral plane of symmetry, which divides the system evenly at the center of impact,
there is a sharp pressure build-up causing intense lateral acceleration of fluid in a
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Fig. 5b. Configuration at the instant of maximum total internal energy for the case of a head-on

collision starting from zero relative velocity at infinite separation. As calculated, this configuration

occurs 31.9 min after that of Figure 5a. Heavy lines are density contours, viz., from the center out

e/ec=1.0, 0.5, 0.1, 0.01, and 0.001. Sparsely dotted regions are where the local outgoing kinetic
plus internal energies exceeds the gravitational energy.

way similar to the expansion of gas into a vacuum, no shocks being involved in this
phenomenon (cf. Zel’dovich and Raizer, 1966; Sakurai, 1960; etc.). The lateral
ejection of fluid assumes the form of a circular sheet of appreciable thickness; and,
the outermost edges soon acquire outgoing velocities in excess of escape velocities
(cf. Figures 1b and 1c).

While no sonic disturbances are able to travel upstream along the collision axis
and no lateral shocks diverge from the center of impact in a direction normal to
this axis, the pressure close to the lateral plane of symmetry very quickly reaches
the point where it can produce two recoil shock fronts. These move away from the
symmetry plane in opposite directions, one on either side, and propagate upstream
against the fluid material still falling in on both directions along the collision axis.
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Fig. 5c. Configuration soon after maximum impact. The recoil shock front can be identified as

the narrow region where the velocity arrows abruptly change direction. This and all other pictures

in Figure 5 result from a calculation of the zero initial-velocity case using a mesh width of 60 steps
per Rg.

The shock fronts tend to be formed parallel to the symmetry plane but immediately
assume a concave shape when viewed from the unshocked regions. The concavity
can be understood by realizing that shocks gain in strength as they propagate through
material of decreasing density and vice versa (cf. p. 852ff., Zel’dovich and Raizer,
1967; Sakurat, 1960; etc.).

It can be seen from plots of fluid velocity vs. z for various r and at different times
(such plots are not included here) that very soon after maximum compression all
portions of the recoil shock fronts have traveled past the centers of the colliding
polytropes which have merged at the center of impact. From this point on the fronts
are free to propagate down negative density gradients, and consequently gain rapidly
in strength. The jump in values across the shock fronts becomes most intense for
material furthest from the center of impact; yet, all along unshocked material is not
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Fig. 5d. Here the recoil shock is shown to have progressed nearly to the rear of one of the colliding

polytropes. Immediately behind the shock lies a lightly shaded region where the combination of

outgoing fluid velocities and temperature are sufficient for gravitational escape. Since this picture

represents only a quarter of a meridional cut through the colliding system, there is a similar recoil
shock below.

merely slowed down as it encounters one of these shocks but strongly accelerated
back in the direction from which it came (cf. Figure 5). The more intensely shocked
material located outside the strongly-bound central region acquires a velocity suf-
ficient for gravitational escape.

As the collision process proceeds towards later stages, fluid elements in outer
regions continue to stream away from the center, while a readjustment and settling
down take place within the more dense gravitationally bound central regions (cf.
Figures 6d, 7f, and 8d). It is significant that, for all three initial collision velocities
investigated, the total mass of gravitationally unbound material (viz., volatile mass)
is found to approach a constant value, thus enabling us to make a sensible estimate
of the mass-fraction which escapes coalescence.
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Fig. Se. In this picture the recoil shock has broken through the rear surface leaving an extensive
region of violently expanding hot fluid, which subsequently assumes the forms of Figures 3a and
6d. The real time elapsed since the configuration of Figure 5a amounts to 38.2 min. Moreover,
according to Figures 3a and 6d, for lowest-velocity collision, the lightly shaded material shown at
the lower righthand corner must cool during lateral expansion so as to again
become gravitationally bound.

4. Mass-Escape vs. Collision Velocity

The numerical results of physical significance were obtained from the runs listed in
Table I. All but one of these were initialized by supposing that at machine zero two
undistorted solar-like polytropes separated by 2.2 R, were approaching each other
head-on at a prescribed velocity. If a much larger machine-zero separation had been
assumed the machine running time would have been greatly increased as well as the
cumulative build-up of errors. The one calculation started from a machine-zero
separation of 4.2 R shows little if any indication of change in the calculated mass-
escape fraction F. Generally speaking, runs made on the larger finite-difference
network (128 by 128) are the most important.
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TABLE 1
Head-on colliding polytropes: physically significant runs
Initial relative Density Finite Size of Nature of artificial dissipation
velocity at infinite  cutoff difference network in  (cf. Appendix)
separation elec steps per terms of Towebi
km s—1 Ry netpoints 2 ow-bias ko q0
Zero 10-¢ 20 64 by 64 1.00 0.2 3.0
zero 107 20 64 by 64 1.00 0.2 3.0
zero? 10-8 20 64 by 64 0.20 0.2 2.0
Zero® 10— 20 64 by 64 1.50 0.2 3.0
Zero 10— 20 128 by 128  1.00 0.2 2.0
Zero 107 20 128 by 128 1.00 0.2 2.0
ZEero 108 40 128 by 128  1.00 0.2 2.0
zero® 10-6 60 128 by 128  1.00 0.2 2.0
1000° 10-¢ 20 64 by 64 0.60 0.2 2.0
1000 10-6 20 128 by 128 1.20 0.2 3.0
1000 10-¢ 40 128 by 128  1.20 0.2 2.0
2000 106 20 128 by 128  2.00 0.1 3.0
2000 10-6 40 128 by 128  2.00 0.15 2.0
2000" 106 20 64 by 64 1.00 0.2 2.0
20004 10-6 20 64 by 64 2.00 0.15 2.0

& Machine-zero separation was 4.2 R ; in all other cases this was 2.2 Rg,.

b At limited only by 4¢ < 0.5 h/¢; elsewhere, except for the last run, 4¢ was limited both by 47 < 0.2h/
é and @i, /#t1 = 0.6 @:, ;.

¢ Only partially completed.

4 Ar<0.2h/¢ and @i, 7t = 0.0 g3, 5"

Uniform differencing was used throughout any run, the fineness of zoning being
either 20, 40, or 60 netpoints per Rg. The coarser-zoned models (20 netpoints per
R) had more room in the domain of calculation both for translation and the
development of the collision process. On the other hand, those calculations employing
finer-zoned models were better able to represent the collision mechanism. All the
machine-generated pictures exhibited here (Figures 1 through 11) stem from fine-zoned
calculations.

Curves of volatile mass vs. time resulting from the numerical calculations are shown
in Figures 12, 13, and 14. The important property of any such curve from the stand-
point of estimating F, the mass fraction which escapes gravitational binding, is the
maximum value or what is, broadly speaking, the leveling-off value. Upon comparing
the three figures, a marked increase in volatile mass with initial collision velocity is
immediately evident. In addition, the following extraneous effects appear: (1) The
leveling-off values of volatile mass depend upon mesh width, Ar=A4z=~h. (2) Once
the leveling-off condition is achieved, the volatile mass falls off slowly and continually
with time. (3) There is a slight increase in the leveling-off value as the density cutoff
is lowered.

The variation with mesh width is attributed to discretization errors (errors due
to the replacement of a largely continuous system of differential equations by equa-
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Fig. 6a. Shortly after maximum impact and 2118 s after machine-zero (viz., the configuration of

Figure 5a) for the case of a head-on collision starting from zero initial velocity at infinite separation.

This figure is due to a calculation employing a mesh width of 40 steps per R and may be compared
with the finer-zoned results of Figure 5c.

tions involving discrete differences; also called truncation errors; (cf. Richtmyer and
Morton, 1967; Forsythe and Wasow, 1960; etc.). In our current program such errors
are generally of second order with respect to the small quantities Ar=A4z=#h and
At. Moreover, since empirical evidence shows that machine round-off and other
random errors are negligible in our results, the total computational errors should
consist almost entirely of discretization errors. The lowest-velocity collision (Figure
12) exhibits the most clear-cut dependence on 4. Results of the 1000-km s~ ! collision,
on the other hand, seem largely insensitive to 4 (Figure 13); while, in the 2000-km s™*
collision (Figure 14), the sign of the variation of volatile mass with %4 is opposite
that for the lowest-velocity collision, thereby implying dependence of the discretiza-
tion error on collision velocity.
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Fig. 6b. Shows the development of a volatile region immediately behind the recoil shock (case
of zero initial collision velocity and 40 steps per R). The above configuration corresponds to 2196 s
after machine-zero.

The slow fall-off in the leveling-off value of volatile mass and its dependence on
the density cutoff both arise from the discard of finite-difference mass elements
whenever their calculated density drops below a certain prescribed lower limit. A
quantitative estimate of the slow decrease has been made as follows: It is noted that
the outermost regions of fluid generally have a density close to cutoff [ (cutoff) =¢],
and late in a collision calculation they are diverging at some average speed v. These
regions are located at some mean distance R from the center of impact; and, as they
continue to expand, the fluid density of the outermost regions drops below ¢ resulting
in the discard of mass at a rate roughly equal to 4nR*Ve. This rate of mass loss is
in agreement with the curves of Figure 12. The effect is most noticeable in the lowest-
velocity collision since the volatile mass increases faster with collision velocity than
does mass loss due to the cutoff; all of which suggests that the volatile mass depends
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Fig. 6¢c. Soon after the recoil shock has broken through the rear surface, 2358 s after machine-zero
(case of zero initial collision velocity and 40 steps per R).

more on the initial kinetic energy, while the cutoff mass loss is more nearly propor-
tional to initial collision velocity.

An examination of the errors in our numerical calculations — especially for volatile
mass — is given in Section 8 of the Appendix, which includes the following: (A)
machine round-off errors; (B) errors due to the low-level density cutoff (as above);
(C) effects of artificial dissipation; and (D) discretization errors. It is shown there
that on the basis of empirical evidence round-off errors must be negligible. Moreover,
use is made of numerical results to determine the errors arising from the low-level
density cutoff in the three cases of initial collision velocity. The effects of artificial
dissipation, particularly on calculated values of volatile mass, are inferred to be either
negligible or of O (h?), like the discretization errors. Finally, a method for estimating
the combined effect of discretization errors and artificial dissipation is described; it
makes direct use of the observed dependence of the leveling-off value of volatile mass on
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Fig. 6d. Shows the manner of mass escape in the case of zero initial collision velocity (40 steps per
Rg). This is the condition 3010 s after machine-zero.

mesh width 4 (e.g., Figure 12). The particular considerations found necessary for
each of the three initial collision velocities are summarized below.

In the case of zero initial collision velocity at infinite separation, the procedures
given at the end of Section 8 of the Appendix have been applied both to obtain a
best value for the volatile mass and to correct for mass loss caused by the density
cutoff. In this case the variation of volatile mass with mesh width 4 is clear (Figure
12), and so Equation (A133) of the Appendix could be used to improve our results
by carrying out a partial extrapolation to zero mesh width (Richardson’s method;
cf. Forsythe and Wasow, 1960, and elsewhere). The improved value of volatile mass
was then multiplied by an empirically-determined number (viz., 1.070) to compensate
for mass loss due to the density cutoff. The relative computation error in the final
value of volatile mass was assumed to be approximately the same as relative computa-
tion errors worked out for the three quantities whose variations with 4 were investi-
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Fig. 7a. Display of the velocity field at the instant of maximum total internal energy in the case

of a head-on collision starting from a relative approach velocity of 1000 km s~1. This figure cor-

responds to Figure 1c, which is the instantaneous configuration 1218 s after machine-zero (machine-

zero is shown in Figure 1a). All pictures in Figures 1 and 7 stem from the same calculation using
a mesh width of 40 steps per R,.

gated in Section 8 of the Appendix [cf. Equation (A135), particularly M, (early)]. Thus,
the volatile mass for zero initial collision velocity at infinite separation has been
calculated to be

M, =0.0081+3-992%  machine units
and the mass-escape fraction which follows according to Equation (8) is
F =0.052%5:913

In transferring this result to Table II, the error limits were expanded slightly to allow
for small uncertainties in our corrections and interpretation.
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Fig. 7b. The 1000-km s~* collision 1389 s after machine-zero (40 steps per R). The recoil shock
has moved about halfway through the oncoming polytrope. Lateral ejection velocities reach 1370 km
s~1 (cf. calibration arrow in upper righthand corner).

TABLE II

Coalescence resulting from the head-on collision of two
polytropes of solar mass and radius

Initial collision velocity F, mass fraction which
center to center at escapes coalescence
infinite separation

+.00153
Zero 0.052_¢.005
1000 km s 0.180 £ 0.0152
2000 km s—1 0.60 4-0.052

a2 Numerical errors
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Fig. 7c. The 1000-km s~ collision 1442 s after machine-zero (40 steps per Rg). A broadening
volatile region appears immediately behind the shock.

The error limits are not so clearly defined for collision calculations involving
1000 km s™! and 2000 kms~! initial relative velocities. In these instances, the
leveling-off values for finer-zoned runs were never quite achieved (Figures 13 and
14), as the calculations could not be completed before outward-moving fluid began
to strike and rebound from the artificial boundaries imposed on the domain of
calculation. The effect was greatest for the 2000-km s~ * collision. There was more
room for expansion in the coarser-zoned runs where the initial stellar model took
up a smaller fraction of the available computational space. The difficulty could have
been overcome if there had been additional time for re-coding; i.e., an efflux of fluid
through the boundaries would have been permissible if the amount was calculated
and corrections introduced for any gravitational perturbations. However, despite
certain weaknesses, the present results appear sufficient to meet our main objectives.

For the initial relative collision velocity of 1000 km s~ at infinite separation, our
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Fig. 7d. The 1000-km s~! collision 1506 s after machine-zero (40 steps per R). The recoil shock
front has just broken through the rear surface.

best value of volatile mass was largely determined by the leveling-off value of the
run having a 128 by 128-point network with mesh width A=R/20 (cf. Figure 13).
The principal correction used was that for mass loss due to the density cutoff. Error
limits were estimated by considering the greatest possible positive and negative
corrections. It was even allowed that there could be an error which was correlated
with imperfect energy conservation, although a more plausible explanation for the
small drop in total energy (e.g., Figure 10 shows an overall energy decrease equal
to 4.4%; of the total gravitational binding energy at infinite separation) is to associate
the effect with kinetic-energy loss accompanying the mass loss caused by the density
cutoff. The greatest possible positive correction included (1) an upwards adjustment
to counteract the small fall-off in total energy, assuming that this is not due to the
density cutoff and indicates a corresponding fall-off in volatile mass, and (2) the
largest possible compensation for mass loss due directly to the density cutoff. On
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Fig. 7e. The 1000-km s~1 collision 1701 s after machine-zero (40 steps per .Rg). This picture cor-
responds precisely to Figure 1d. The density contours shown are, from the center out, g/gc=0.1,
0.01, and 0.001.

the other hand, the lower limit was obtained by using the least possible correction
for density-cutoff mass loss and by assuming that a dependence upon /4 existed, and
that this dependence was the only factor causing the slight decrease observed in
calculated values of volatile mass as the mesh width 4 was dropped from ~=R/20
to h=Ry/40 (Figure 13). The consequent partial extrapolation to zero mesh width
was carried out by means of Equation (A133) of the Appendix. The results of these
considerations are set out in Table II. Incidentally, the procedure for making ad-
justments because of small deviations in energy conservation is discussed briefly
below.

Suppose the volatile mass were correlated with the total energy ¢; then the effect
might be expressed approximately by writing

M, (&) ~ M, (g + d¢) — (dM,/de) Ae 9)
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Fig. 7f. The 1000-km s—1 collision 2360 s after machine zero (40 steps per Rg). Velocities in the

gravitationally-bound central region (shaded darker) are approaching quiescence. Velocity changes

and darkening at the very top of the picture arise from impact against the artificial rigid boundary
of the domain of calculation.

where Mg, denotes the value of volatile mass corresponding to &, the initial total
energy of the system. From six runs on the 1000-km s~ ! collision (not all of which
are listed in Table I) pairs of values were obtained for M,(g) vs. ¢ at the time of
the final point on the R /40 curve in Figure 13. When these values were plotted, the
points fell reasonably close to a straight line; hence, an approximate value for d M de
could be determined empirically. This quantity was then available for correcting the
leveling-off value of volatile mass according to Equation (9).

Our estimate of volatile mass in the case of 2000-km s~ ! relative velocity at infinite
initial separation is again based largely on the leveling-off value of the calculation
employing a 128 by 128-point grid with mesh width #=R/20. Two corrections were

© Kluwer Academic Publishers * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1972Ap%26SS..15...44S

p&SS. C15. T A4S0

rTI72A

76 F.G.P.SEIDL AND A.G.W.CAMERON
e
an S000 KM/SEC
Rg
2 ——
| —+—
[ [/7 A7
Fof 7Aoo
L /.44?///////
II ]2 R l3
0

Fig. 8a. Velocity field 81 s after the point of maximum internal energy or 842 s after machine-zero

for a head-on collision where the initial collision velocity was 2000 km s~1 at infinite separation.

The machine-zero configuration was like that shown in Figure 1a. Lateral ejection velocities at this

time are as high as 2460 km s (cf. calibration arrow in upper righthand corner). Calculation em-
ployed a mesh width of 40 steps per R.

introduced: (1) an adjustment for mass loss due to the density cutoff and (2) an
attempt, in view of the apparently unambiguous dependence on 4 (cf. Figure 14),
to partially extrapolate the results to zero mesh width 4. An upper limit for the first
correction is immediately available from the small overall losses incurred by the total
mass of the system; but, the second correction is not well-determined, since the run
with 4 =R /40 did not extend far enough to reach the leveling-off region. Any effects
associated with imperfect energy conservation must be negligible in the 2000-km s~ *
case for two reasons: On comparing calculations using #=R/20 with one where
h=R/40, the discrepancies found for total or kinetic energy of the system versus
h do not correlate with the observed dependence of volatile mass on 4. In contrast,
such a correlation (spurious or otherwise) does appear in results calculated for the
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Fig. 8b. The 2000-km s collision 923 s after machine-zero (40 steps per Rg). Fluid in lightly
shaded region has sufficient energy to escape gravitational binding.

1000-km s~ ! collision. Secondly, although some small decrease in total energy gen-
erally occurred during a 2000-kms~! run, this can be readily attributed to the
kinetic-energy loss associated with the mass loss due to the density cutoff. Thus,
only discretization errors remain as a source of the observed changes with mesh
width 4; and, certain components of these errors must depend upon collision velocity
in order to explain the shift from a decrease in volatile mass as & decreases to the
reverse behavior, which has been found when the initial collision velocity was zero
(cf. Figures 12 and 14).

By invoking first one then the other of two extreme correction procedures, bounds
are placed on the value of volatile mass following a 2000-km s~* collision. To
estimate a probable upper bound, no reduction is made in the value of volatile mass
to correct for the 4 dependence, and the maximum possible compensation is allowed
for volatile-mass loss due to the density cutoff. In estimating a probable lower bound,
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Fig. 8c. The 2000-km s~! collision 1075 s after machine-zero (40 steps per Rg). Proceeding from
the center out, the density contours are g/g.=0.1, 0.01, and 0.001. Outward streaming velocities
near the collision axis are as high as 4600 km s—1.

the least possible correction was introduced for the density-cutoff mass loss; while,
on the basis of the numerical results available, the 4 dependence of volatile mass
was extrapolated to the leveling-off region where Equation (A133) of the Appendix
was used to provide an estimate of the value of volatile mass at zero mesh width.
Thus, the mass-escape fraction for the case of 2000 km s~ ! initial relative collision
velocity was found to lie between F=0.66 and F=0.55; it was therefore sensible
to quote F=0.60+0.05 as being representative of our numerical results.

5. Conclusions

For a relative initial collision velocity at infinity of 1512 km s~ the initial kinetic
and gravitational-binding energies are equal, and the system is energetically capable
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Fig. 8d. The 2000-kms~! collision 1451 s after machine-zero (40 steps per Rg). Proceeding

outwards from the center, the density contours are g/g. =0.01 and 0.001. Compared to Figures 6d

and 7f, the residual gravitationally-bound object (shaded darker) is much smaller. At the extreme
top and right, influences can be seen of the rigid boundaries of the domain of calculation.

of complete disruption. By interpolation (linear or quadratic) of the results shown
in Table II for head-on collisions, we estimate that 35 or 409 of the total mass would
be ejected at this collision velocity; thus, the collision process exhibits a strongly
inelastic behavior. If the three values of F from Table II are plotted against the
square of the initial collision velocity, the points lie on a straight line well within
the error limits quoted. On this basis, the point where the central remnant has half
of the total mass occurs for a collision velocity in the vicinity of 1800 km s™*. We
therefore conclude that stellar collisions where the relative collision velocity is less
than this value (such as in galactic cores) will be amalgamative and lead to the
formation of more massive stars by coalescence, at least for the case of head-on
collisions.
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Fig. 9. Variations with time of internal, kinetic, and total energies for a system involving a head-
on collision between two solar-like polytropes starting from zero relative velocity at infinite separation.
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Fig. 10. Internal, kinetic, and total energies vs. time for a system which represents the head-on
collision of two solar-like polytropes initially closing at a relative velocity of 1000 km s~1,
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Fig. 11. Internal, kinetic, and total energies vs. time for a system in which two solar-like polytropes
collide head-on starting from an initial relative velocity of 2000 km s~! at infinite separation.
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Fig. 12. Volatile mass vs. time following a head-on collision involving two solar-like polytropes

starting from zero relative velocity at infinite separation, where the volatile mass at any time is the

total mass energetically capable of gravitational escape. The appreciable dependence on mesh width
Ax is attributed to discretization errors.
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Fig. 13. Volatile mass vs. time following a head-on collision between solar-like polytropes initially
having a relative velocity of 1000 km s—! at infinite separation. Here the variation with mesh width
Ax is relatively small.
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Fig. 14. Volatile mass vs. time during late stages of a head-on collision between two solar-like
polytropes initially closing with a relative velocity of 2000 km s~1 at infinite separation. In contrast
to the case of Figure 12, the calculated volatile mass appears to decrease as mesh width Ax is reduced.
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The 5% §:2% mass loss, found for the collision between polytropes with zero initial
relative velocity at infinity, compares reasonably well with the seven percent mass
loss found in the calculation by Mathis (1967).
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APPENDIX

Numerical program (cylindrical symmetric) for handling compressible self-gravitating
Sfluids with free boudaris

F.G.P.SEIDL

1. Introduction

The present numerical program is designed to handle problems of compressible self-
gravitating fluids, which can have free-moving boundaries and may involve hydro-
dynamic shocks. The gravitational field calculations make use of the integral formula-
tion for the solution of Poisson’s equation, an approach which results in straight-
forward answers in the neighborhoods of free-moving boundaries. The hydro-
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dynamics of such boundaries are treated approximately by allowing the set of
difference equations complete control unless the density ¢ drops below some small
prescribed value [g]; i.e., whenever ¢ <|¢| at some point, ¢ and all the other dependent
variables are set to zero at that point. This procedure is likely to be acceptable for
certain stellar calculations where the densities near moving boundaries are less than
those in stellar interiors by many orders of magnitude. All current calculations are
limited to cylindrically symmetric cases, the independent variables being the spatial
variables r, z and the time .

An Eulerian representation is used since otherwise it is difficult to allow for suf-
ficient freedom of fluid motion and change of shape; i.e., the fluid is assumed to
move with respect to the cylindrical coordinate system. Moreover, there must be
room in the finite-difference network for some translation of the stellar models. As
a consequence, only a limited number of netpoints are available for defining the
density distribution of a star. In order to reduce the necessary netpoints per stellar
radius and yet handle a large range of density (e.g., at least a range of 10°), a second-
order difference scheme is employed, viz., accurate to second-order in the small
quantities 4r, Az, At.

The difference scheme resembles Richtmyer’s (1962) and Richtmyer and Morton’s
(1967) two-step modification of the Lax-Wendroff method (1960, 1964). One step
involves calculating variables at intermediate netpoints which then are used in a
second step where the variables at primary netpoints are evaluated to full precision.
A significant part of the procedure, as Lax (1957) and Richtmyer and Morton (1967,
p. 305) have pointed out, is that the space differencing be carried out directly on
equations written in so-called conservation form (Lax 1954, 1957), a feature which
makes the difference equations themselves obey the conservation laws exactly. But
perhaps even more important, the Lax-Wendroff method afford a rather elegant
means of choosing dependent variables which are consistent with the shock-jump
conditions determined by physical principles. The introduction of the gravitational
field forces some departure from strict conservation form. However, if the gravita-
tional potential @ is differentiable with respect to the space variables (the assumed
physical model meets this requirements), weak solutions can be shown to exist which
properly involve the dependent variables in the physically correct jump conditions.

In the case of nonlinear equations such as are involved here, the jump conditions
have to be supplemented if a unique solution is to be obtained for a particular problem,
e.g., by the so-called ‘entropy’ condition (Lax, 1957). It is conjectured that in the
present work the necessary supplementary condition comes about through the
artificial viscosity (von Neumann and Richtmyer, 1950; Lax and Wendroff, 1960),
a device also needed for damping certain oscillations in the difference solutions which
are not representative of actual fluid behavior. By way of justification, it may be
noted that, for a locally one-dimensional system, the correct solution is the one where
the entropy of a fluid particle increases as it crosses a shock front (Lax, 1957); and,
the artificial viscosity, when applied in the right way, induces very nearly the correct
entropy jump across a simulated shock (von Neumann and Richtmyer, 1950).

© Kluwer Academic Publishers * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1972Ap%26SS..15...44S

p&SS. C15. T A4S0

rTI72A

A STUDY OF COALESCENCE IN HEAD-ON COLLISIONS OF IDENTICAL STARS 85

Although considerable success has been achieved in establishing the validity of
the numerical solutions of linear differential equations (cf. Lax’s equivalence theorem
as discussed by Richtmyer and Morton (1967); see also Kreiss (1964, 1966, 1968,
etc.), uncertainties remain in the case of quasilinear equations, such as employed
here. The problem concerns the convergence of the numerical solutions to those of
the differential equations. A simple experimental test has been made (cf. Section 7),
but this remains insufficient. The nearest thing we know to mathematical justification
is a theorem due to Strang (1964) on difference approximations for quasilinear
hyperbolic initial-value problems. He has demonstrated convergence for explicit
difference schemes under the following conditions: (1) The equations and the exact
solution possess a sufficient degree of smoothness to make Taylor expansion meaning-
ful. (2) There are limits on the domain of dependence which are assured by stipulating
hyperbolicity. (3) The first variation of the difference scheme is stable. And, (4) the
difference scheme is consistent with the basic differential equations. Consistency is,
of course, a formal way of requiring that the difference operator approach the
differential operator as Ax, 4t—0. Strang’s treatment shows the immense importance
of consistency and stability for convergence — two conditions which we endeavor
to satisfy. However, our program must allow shocks, and thus the solutions belong
to a class (weak solutions) more properly determined by the integral version of the
conservation laws and which in the large does not possess the smoothness necessary
for Strang’s proof.

2. Basic Equations

The equations set out below are the divergence formulation of the conservation of

mass, Newton’s second law, and the conservation of energy expressed in terms of

the cylindrical coordinates r, 0, z, where all derivatives with respect to 6 vanish due

to symmetry. The tangential velocity v and associated inertial forces are included

here for completeness. However, these quantities are zero in the current colliding-

star calculations; and, hence, will be omitted from the subsequent difference equations.
The formula derived from the conservation of mass is

1
0 == (rou), — (ew), == V-oU (A1)

where ¢ denotes fluid density and U the fluid velocity vector
U=u-e +ve+we, (A2)

e,, €, €, being unit orthogonal vectors attached to the local cylindrical coordinate
frame; u is the radial, v the tangential, and w the axial velocity component.
Conservation of momentum yields the following equations:

UZ

1 1
(ou), = — - (rgu2 + rP), — (ouw), + ¢ — + . P + 09, (A3)

© Kluwer Academic Publishers * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1972Ap%26SS..15...44S

p&SS. C15. T A4S0

rTI72A

86 F.G.P.SEIDL AND A.G.W.CAMERON

1

(ev), =— - (rovu), — (ovw), — ¢ u;” (A4)
1

(ew), == - (rewu), - (ew® + P), + 0P, (A5)

where P denotes fluid pressure and @ gravitational potential. Since @ is always dif-
ferentiable with respect to r and z [cf. Equation (A6)], the use of (ou), (ov), (ow)
as dependent variables rather than u, v, w leads directly, according to the theory of
weak solutions (cf. Lax, 1957; Courant and Hilbert, 1962), to a momentum jump
across a shock front that satisfies Newton’s second law. Otherwise, Equations (A1)
through (AS5) and (A7) are equivalent to the standard Eulerian fluid-dynamic equations
(e.g., Landau and Lifshitz, 1959).

The gravitational potential @ (r, z, t) is obtained from the integral
140
Q(r,z,t) =G J

e(r,z,1)
I — x|
V() denoting the volume within which ¢(r, z, t) is non-vanishing. Equation (A6)

1s, of course, the well-known integral expression for the solution of Poisson’s equation.
Application of the conservation of energy leads to the equation

dv (v, z') (A6)

(0E), =— % (roEu), — (¢Ew), — P C (ru), + wz>, (A7)

where E denotes the thermodynamic internal energy per unit mass of fluid. While
the above equation has advantages of simplicity, the conservation of energy is perhaps
more properly expressed in terms of the total energy per unit volume excluding
gravitational, viz., e=[(ou)*+(ow)*]/20 +0E; then, since @ is differentiable, the
theory of weak solutions readily yields the physically correct jump conditions across
an arbitrary shock front. Such considerations are important because different jump
conditions are obtained across a shock discontinuity depending upon the form of the
governing differential equations (e.g., Kasahara and Houghton, 1969), and a form
must be chosen that results in the proper jump conditions corresponding to physical
principles. However, the use of Equation (A7) is to some extent justified as follows:
An integral version of the physical relationship expressed by Equation (A7) states
that the time rate of change in internal energy of a small fluid element [viz., [,(¢E),dV
+$,. 0Ev-dS] is approximately equal to the negative of an average pressure multiplied
by the rate of change of the element’s volume [—P §,,v-dS]. Let us apply this
interpretation to a very thin flat element of fluid containing a portion of a shock
front. The flat dimensions of the element are parallel to the front, and the element
as a whole moves with the fluid in the Lagrangian sense. The time rate of change
in internal energy of the fluid within the element is then

5(02E; — 01Ey) — 0,E,w, + 01E Wy
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per unit area of the front, where s denotes the shock speed, w the fluid velocity normal
to the shock front, and the subscripts 1 refer to conditions ahead of the shock,
subscripts 2 refer to conditions immediately behind. On the other hand, the rate of
change in the volume of the fluid element is w, —w, per unit area of the front, thus

5(0:E; — 01Eq) = 0,E;w; — 0,Eqwy + P (w2 — wy). (a)
By comparison, the physically correct jump condition for internal energy ¢F is
5(0:E; — 01E1) = 0:E,w; — 0 Eywy + [(Py + Py)/2] (w2 — wy). (b)

The similarity of Equations (a) and (b) supports the view that Equation (A7) is valid
about shock fronts; while, elsewhere the validity of Equation (A7) is not in question.

To complete the definition of the system, an equation of state is necessary ; currently
that for an ideal gas is used, viz.,

0E =P/(y - 1) (A8)

y being a characteristic constant of the fluid. If this value for E is substituted into
Equation (A7), an equation for P results

== (P), = (). (= D P (1 (), + wz) (A9)"

Besides the above relations, it may be desirable to imagine an artificial viscosity
included in the basic system of differential equations. This can be done by adding
the following term to the pressure P in places where the latter is engaged in doing
work (von Neumann and Richtmyer, 1950; Richtmyer and Morton, 1967)

q_{qohzg(VU)z if V-U<0

0, if v.-Uu>=0, (A10)

where 4 is a characteristic length (e.g., h=A4r=4z) and ¢, a constant of order unity.
The introduction of ¢ means adding —g, and —g¢q, to the righthand sides of the
momentum equations (A3) and (AS5) respectively; while, Equation (A9) becomes

Po=— L (P, = (Pu).= = ) (P4 0) [ ()4 w) @

An alternate form of artificial viscosity (Lapidus, 1967) is discussed later under
controls needed for stability (cf. Section 6).

3. The Finite-Difference Network and Its Boundary Conditions

A rectangular network is employed with basic spacings Ar=A4z=h, where r and z
are cylindrical coordinates. There is a primary lattice of netpoints and two secondary
lattices staggered with respect to the first both in space and time. One secondary

* This equation may be written in conservation form: (PY/?); + 1/r(ruP/v), + (wP1/?), = 0. Howeyver,
then the resulting jump conditions would not be physically correct.
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lattice is shifted by #/2 to the right of the primary lattice; the other is shifted upwards
by 4/2; and, these determine a system of secondary mesh points. Variables evaluated
at the secondary points are used in the determination of values at the primary points
where the full second-order accuracy is obtained. The current calculations employ
a network of 128 by 128 primary points.

Variables determined at the primary points are written X;";; the radial cylindrical
index being i=1, 2, ... I; the z-axis index is j=1, 2, ... J; and the time index n.
Consequently, the r-coordinate of the point i, j is

r;=(i—1)h (A12)
while the z-coordinate is

z;=(j—1)h. (A13)
Variables at secondary netpoints are written X;%\}%* ; and X;"7!13, (cf. Figure Al),
thereby implying that they are evaluated at intermediate times such as "*1/2 =
L("*1 +1), where t"~1 =0.

The fixed boundary conditions arise chiefly from (1) cylindrical symmetry about
the z-axis, and (2) mirror-like symmetry across the plane perpendicular to this axis
at z=0. Because of this symmetry only one quadrant of a three-dimensional physical
space has to be included in the domain of calculation (cf. Figure A2). Since the

A .
Lit/2
l\ n+/2

\ W2,j+‘/2
|
2
h w\ Wn-f-/

< 3,jtY%2
Un+'/2

|
n+/.
\‘7'6\ i=3,]j \*UT :
72,]
‘1 \

AXIS OF ~ ]
SYMMETRY

Fig. Al. Basic finite-difference cells.
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boundary conditions are strongly defined along the z-axis and the plane of symmetry,
primary netpoints are located at these places.
The domain of calculation is assumed to be bounded by rigid walls on the right

where r=(I—1)h and on the top where z=(J—1)h. During development of the
program, it seemed easier to satisfy the conservation laws if such artificial rigid outer

z

Domain
of
Calculation

-

GRAVITATIONAL GRADIENTS

Location |Meaning of A "A® (exact) [*AD (numerical)
! D o3 — Py ,, |0065 5149 1 0.064 748
| <I>!’23 - ®1,24 0.089 719 0.089 026
2 @20,23— ®2l,23 0.065 7015 | 0.065 922
3 ¢|,42 - d;>|‘43 0.067 4130 | 0.067 638
4 <I>|.32 - ¢>|’33 0.234 3510 | 0.234 830
5 D s D3 0.206 4985 | 0.206 884
6 CIDI,4 —CIDI,3 0.022 5892| 0.022 664
| CI>|,23 - @2'23 0.078 0257 | 0.076 846
7 q’xo,z3" @II'R 0228 559 | 0.229 079

l. POLYTROPE OF INDEX 3. 2. Ry INCLUDES 20 MESH POINTS

Fig. A2. A comparison of numerical and exact calculations of the gravitational gradient for a
coarsely-zoned case of 20 zones per Rg.
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boundaries were imposed. At a later time, it might be advantageous to change this
assumption allowing an outflux of mass and energy.

Along the axis of symmetry where r=0 and i=1 the radial component of fluid
velocity is assumed to vanish as well as the radial derivative of certain variables; i.e.,

up; =0,

up 2 =0, (19
and at r=0

(X-w), =0, (A15)

where w denotes the axial component of fluid velocity and X represents any of the
variables g, ou, ov, ow, or pressure P. Moreover, in order to gain greater smoothness
near r=0, the second derivative of w with respect to r may be allowed to vanish
(viz., w3 ;=w} ; and wh' {3, =w!"1/00). A final useful assumption along the axis

of symmetry is that, at r=0,
P.=0. (A16)

On the plane of symmetry where z=0 and j=1, the z-component of fluid velocity
vanishes; i.e.,
Wz 1= 0 »

n+1/2
Wiv1/2,1 = VY.

(A17)

Also, because of the mirror-like symmetry across this plane, the z-component of
velocity must obey the relation

w(r,z) =—w(r, — z), (A18)
while for all other variables
X(r,z)=X(r, — 2). (A19)

Similar boundary conditions apply across the upper rigid boundary at z=z(max)=
(J—1horj=J;ie.,

w;,:;;;z":j _ 0_’ (A20)
Moreover, across the boundary at j=J

w(r,z)=—w(r,z), (A21)
where z' =2-z(max)—z; and, for all other variables

X(r,z)=X(r,z). (A22)

Of course, excursions beyond the boundaries of the domain of calculation only occur
in setting up boundary relations for the difference scheme and never extend by more
than a few steps.
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On the rigid cylindrical boundary at r=r(max)=(/—1)h and i=1

n
uI,j=O,

n+1/2 __
ug 412 =0.

(A23)

In addition, for arbitrary z it is imagined that the radial component of flow at a
small distance inside this boundary is equal and opposite to a virtual radial flow
at an equal distance outside the boundary, viz.,

n+1/2 yn+1/2  _ n+1/2 yn+1/2
Tre12Ur+1/2, j87+1/2,5 = — Fr-1/2%r-1/2, j31-1/2,j» (A24)

where 7., =(I—1%)-h and r;_;,, =(I—3)"h. Except for the radius factor, Equation
(A24) is analogous to the conditions across the lateral planes z=0 and z=z(max),
where the surfaces may be imagined to behave like rigid walls undergoing elastic
collisions with the fluid.

4. Difference Equations

Imagine that each primary netpoint is enclosed in a small tapered cell with rectangular
sides (Figure Al). A difference analogue for the divergence of a vector quantity XU
at an arbitrary point i, j is obtained by calculating the outflow rate across the walls
of the surrounding cell and dividing the result by the cell volume: i.e.,

1 7l+1/2 Ae ” AR
P (rXu), L = m?ﬁ dt [riv 12X (2, D 1y2 ¥ (25 i 1j2 —
tn Zj-1/2
— 112X (2, )imqjp u (2, t)i—qy2] dz (A25)
and n+1 Fi+1/2
[(Xw),]151? = 49 dt [X (r,1); w(r, t); -
z i, j AV;jAt,H.l/z s V)j+1/2 s V)j+1/2
|36 ri-1/2
— X (r,)j_qaw(r, t)j—yp2] rdr (A26)

where 4V; ;/A40, the cell volume per unit angle, is

h*/8 when i=1

(i-1)h for i>1. (A27)

In practice it is convenient to construct the divergence from intermediate terms
ApflZ ; and BP%Y/E,, which can be worked out from Equations (A25) and (A26)
in accord with the boundary conditions of Section 3. Thus,

1 . ] . |
m(AiI}/é,,- AR, 0 l<i<I
1 n+1/2 g |
[; (rXu)r] = + th%Tzl,/jZ , lf l = 1 (A28)
i, j
msfl?fiﬁ,,-, for i=1I
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it being understood that Equation (A24) is used when i=1; and,
(Bitlz, —BIt12)), if 1<j<J and i>1

1
[(XW)Z]?,‘}”Z=(l._l)h3 +2BI5Y2, if j=1 and i>1 (A29)

8 )
[(Xw),]1? = i 2B1HF, if j=1 and i=1 (A30)
—~2B1HY3,, if j=J and i=1
where ML 2
n+1/2 1 [ [
112,50 = i de Fiv12X (2, )i 12 (2, t)ir1pdz (A31)
m th1/2
and tn+l ri+1/2
n 1 ) [
Pt = ot dz X(r, )jer2w(rs 1)y rdr (A32)
:" "i:‘l/z

In Equation (A31)it should be understood thatfor j=1,z;,,,, = +h/2,z;_;,, = —h/2;
also, the relations expressed by Equations (A18) and (A19) apply; similarly at j=J.
Since A} {/7 ; and B] %17}, are evaluated at secondary mesh points which are nested
between primary points, the range of i for A7} {/5 ;is i=1, I—1; while for B}*}/7,
Jj=1toJ—1. When i=1, r,_;,, in Equation (A32) is taken to be zero.

Except for possible small damping terms (cf. Section 6), A7/ {/7 ; and B/ %1/}, are
calculated by the following approximate formulias:

?:11/22,1' >~ hriy 12 [(Xu)?ff/f’j(l — &) e (Xu) ]+
%I[(Xu)?:f/g,j+1 - 2(Xu)§':'11/22’j + (Xu)?ff/,?,j—l , it 1<j<J
+ hricqs 1—12[(Xu):'f:11/222 - (X“)?:f//:fl , if j=1. (A33)
lflz[(X”)?:ll//iz,J—l - (Xu)ilill//gj , if j=J

The dominant term here is (Xu)!{{/3 ;=Xii1/3 ;ui{i/5 ;- The special subscript x

equals either i or i+1 depending upon the direction of flow; viz.,

. . n n
{1, if 7y qUivq,;+ g ;=0

i+ 1, if rpquiyy,;+ru; ;<0 (A34)
and
r un . Atn+1/2
8:’j — 80 X I x,]l (A35)
Fitv1/2 h

&y 1s termed the ‘flow-bias’ factor, its value being 0<eg,<2. The optimum value of
&y (viz., from the standpoint of preserving overall energy conservation) is found by
trial and error; it appears to depend upon the average values of 4¢ and (u* +w?)'/?/c,
c denoting the speed of sound. Flow-bias originates from a view that the flow across
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an arbitrary surface element during the interval As"*1/2=¢"*1 — " is affected by the
values of variables at the slightly earlier time ¢* on the upstream side (cf. suggestion
attributed to Lelevier, p. 292, Richtmyer and Morton, 1967). On the other hand,
additional terms like (1/24) [(X u)ii1/7 ;o1 —2(X w)ii i3 ;+(X w}il/3 ;-] correct
for variations along the z-direction, the direction perpendicular to the component
of flow represented by A77!/7 ;. The quantities like (X w)if}/7 ;= X150 utt iz
later (Xw)rt42,=Xp 412, witi/e,, involve the variables determined at secondary
netpoints.

In setting up expressions for By ;17 , it is assumed that at r =0 (viz., i=1) certain
first derivatives with respect to r vanish [cf. Equation (A15)]. Hence, for i=1

Bn:l-l{?i/z -5 [(X )'1l+j1-l{21/2 (1 - ST,y) + 8'11,,)’()(“))'{,)7] +

2
+ 7 [(XW)Z:leﬁ/z - (XW)T#%/Z . (A36)
Otherwise,
B = b [(Xw) 53 (U —efy) + &b, (Xw)i ] +

ﬂ[riﬂ (XW)?:f,/}+ 172 — 2r; (XW)?,J;'i/f/z +ri4 (XW)?:L%,/JZ'+ 1/21»

+ h if 1<i<I
_17[7'1 1 (XW)'II+i{3+1/2 — Ty (XW);,ﬁleJr/f/z , for i=1I (A37)
where ]
y=1P B M= (A38)
J+ 1, 0w +w ;<0
and ,,
g =gy il A (A39)
i,y — ©0 h .

Here the dominant term is (Xw)!%1/7,; and, for i=I it is assumed that r;,,

X W)?H/3+ 1/2=7r-1 (x W)?H{i} 1/2-

The advance in time of variables at primary netpoints is determined by difference
formulas derived from the conservation of mass, momentum, and energy, use being
made of the difference analogue for the divergence. Let us begin with the formula
for advancing the density o

Q:til — sz Atn+1/2 % (V QU)n+1/2 _Q;t’] _ Atn+1/2 x

L]} o

After computing density, the device which controls the free-moving boundaries
is applied; i.e.,

ottt =0,
n+1
ul =0’
if oftt<lel,y o)) (A41)
Wi, j =0,
prtt =0
i, J ’
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The density cutoff |e| is usually set to 10~ ¢ in units where the initial central stellar
density is one; this value strikes a balance between machine running-time and mass
loss. The effect on running-time comes about as follows: When |¢| is changed from
107° to 1077, the number and size of spurious velocity fluctuations increase in
certain regions of lowest densities (107°2¢>1077). The larger velocity peaks cause
smaller time steps 47 due to the Courant condition, which is necessary for stability
[cf. Equation (A70)]. On the other hand, the device of Equations (A41) aids in
decreasing running-time because it serves as a criterion for defining the active regions
where the fluid density is nontrivial, and beyond which the difference calculations
need not be extended.

The calculation of the von Neumann-Richtmyer artificial viscosity g ; 1/2 is carried
out according to the expression
nt1/2 _ 0, if (V- U)nH/Z 0 (A42)
i + qoh*gl N P [(V-U);5?]*  otherwise.

The constant g, lies in the range 0 <q,< +3.
Pressure is advanced by means of an equation based on the local conservation of
energy [cf. Equation (A11)]

Pin—i:l =Pn i— Atu+1/2
X [(V PU)n+1/2 + (’)’ 1) (Pn+1/2 n+1/-) (V U)n+1/2 , (A43)

where P]'-'Jr 1/2 js set to zero whenever the above equation yields a value less than zero.
The quantity P7*'/? is an average computed from

1
+1/2 +1/2 +1/2 +1)
4 P+ P+ P + P 1/2+

Pn+1/2 Pn+1/2

;+1/261 6; 1/2, ,>, i l<i<l
l__
sn+1/2
L T o (a4
+ P{ii + Pijle ) for i=1,
4 4
L= "+1/2 n+1/2 n+1/2 .
3 [_1 PI J+1/2+PI_] 1/2 for i=1.

These relations apply for all j, 1 <j<J, if it is understood that P!} /{>=P/'%}J* and

Py, =Py 1T, [of. Equations (A19) and (A22)]. The top expression in Equation
(A44) results from the cylindrically weighted average of quantities assumed to vary
linearly between netpoints. The first part of the middle expression (i.e., for i=1) was
derived by fitting a second-degree polynomial through values of P at i=3 and 3
subject to the condition that P,(0)=0 [cf. Equation (A16)].

It is significant that —g}%"/?(V-U);""? >0 in Equation (A43). Thus, g acts only
to increase the internal energy, which is given by ¢E=P/(y—1) per unit volume.

In this way, when g and other small dissipative terms are properly adjusted, they
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work to induce very nearly the correct entropy jump across a simulated shock front
(von Neumann and Richtmyer, 1950).
The gravitational potential @ is calculated (cf. Section 5) by a summation like

O3 =Y 0l Gitim (A45)
where Lm

gdit,jtm =9i,0,5,m = 9i, 1,k if |jj—-m|=|j—-ml=k-1.
The g, ; ; are calculated in advance and stored for subsequent use. When only one
quadrant of the physical space is handled by the difference scheme, the calculations
of gravitational field must, of course, be adjusted to yield results corresponding to
the complete space. In this case, the above equation takes the form

L 4

45;"‘;1 ZQI m=19i,1,k=j +ZIQI m (gl Lk=|j—m|+1 + 9di,1,k"=j+m— 1)

2 (A46)

The g;,,,,» belong to sources lying above the lateral symmetry plane and the g; ; s~
below. In Equation (A46) the summation over source points /, m of non-zero density
must be carried out for each active netpoint 7, j. Since this is a time-consuming
process, the summation subroutine has been optimized (Paul Schneck) using basic
assembly language.

The formulas for advancing the momentum components gu and gw are set out

below nt1/2

wor =ten, - a2 L +on] stz

i, J

1 +1/2 +1/2 Pi""jl/z +1/2 +1/2
+h|: Q:I,J / X (hé )n / "il +%(q7+1,/1 _q:' 1,/] :I} (A47)

and 1 n+1/2

(@5 = (@t = aer 2 owa, |+ L0 + P4

i, j
L[ 5 @R - ) a0 } (A%%)

where o

o5 =4 (eb! + b y) (A49)

2 = (O BT ) (A50)
and nt1/2 n+1/2 n+1/2

P’ —29; + P77
hd n+1/2 _ 1 ¢n+1/2 _ ¢n+1/2 i+1,j i-1,j . A51
( r)l,] ( i+1,j ) 12(1 _ 1) ( )
n+1/2

The latter comes from the cylindrically weighted average of quantities (viz., @} ;’;
dX‘j” %), which are assumed to vary linearly between netpoints.
Finally, values of the fluid velocity are obtained as follows:

n+1_(Qu)n+1 :l";l

and (A52)

n+1 — (Qw)n+1 n+1
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Next, consider the variables at secondary netpoints nested midway between the
primary points along both the r and z directions, the primary variables being X} s
the secondary variables X/\'\7 ; and X['517},. The latter are evaluated at inter-
mediate times "*1/2=1("*! +¢") using difference formulas derived from the con-
servation laws. The starting values X} ,,, ; and X} ;.,,, in these formulas are ob-
tained by averaging values of X' ; [cf. Equations (A62) and (A63)]. The secondary
variables constitute the first step in obtaining primary variables to second-order
precision. The procedure is consistent with a two-dimensional difference scheme
proposed by Lax and Wendroff (1964). However, the stencil of netpoints is not quite
the same as for Richtmyer’s two-dimensional two-step method (cf. p. 361ff., Richt-
myer and Morton, 1967), where provisional values are obtained at the intermediate
times ¢t"*1/? from starting values like

12, =X X 1 F X+ X254 1/2)-

Two sets of formulas are given below, one for the variables Xi"++11/22, j» the other for
the X{f“}i/f/z; their combined evaluation corresponds to the first step of Richtmyer’s
method. However, before they are calculated it is found that smoother values result

if the von Neumann-Richtmyer artificial viscosity is advanced; i.e.,

" 0, if (5U)§’,j>0
q;,; = " v a2 . u (AS53)
QOQi,j[(‘SU)i,j] , if ((SU)i,j <0
where
(=) @iy = (=D @] [ . 7
(i=3%) +1/2’J, (=3 i uyz. Wij+1/2 — Wi j—1/2
(-1
or or
(5U)§"j = + (A54)
_3
—21_7;ﬁ?_1/2,1, if i=I "‘2W;:J_1/2, if j=J
To simplify the equations involving momentum let

E=ou and (=gw. (ASS)

Then the equations for the X7/ ; variables are
Atn+1/2
n /2 __ En

fi:f/z,j = Cit1/2,j — “on

; i1 (WE)iv 12, j+12 — WENiv1/2,j-1/2

X\ Ui, G, — UG | 200828, T =1 +
11— =3 —=\n . .
l - 2(WC)i+1/2,J—1/2 if j=J
+ Py i+ qiv1,;, —Pi—aqi;— Oi+1/2,; (Pis1,; — D )i s (AS6)

where 1 <i<I—1. In the case of the z-momentum component, for 1 <j<J,
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n+1/2
§n+ 1/2 __ #n _ At x
i+1/2,7 = Si+1/2,j — T A7
i 12,7 /12,] 2h

i i — 1
n on n e¢n —Z\n —Z\n
X {—i T Wi+, 0i+1,5 ——i 1 u; 65+ (Wz)i+1/2,j+1/2 - (WZ)i+ 1/2,j-1/2 T
—1 —1

2
+ (P+ @iviya, 12— P+ @iv1y2,j-1/2 —

— G172, (Pivjz, 412 — i+ 1/2,j—1/2)}> (A57)
whereas {J1 /7 ;=0 for j=1 and j=/J.
n+1/2
P_n+1/2 . =P_"+1 a i — L
i+1/2,j i 12, 2h

; . (WP)?+1/2,1'+ 12— PP )ik 1y2,5-1)2
X i—_—%‘u?ﬂ,,‘ in+1,j_@u?,jpi,:j+ +2(W1j)?+1/2,3/2 if j=1 +
_ - Z(WP)?+1/2,J—1/2 it j=J
+ (= 1) (Plhija,;+ div12,;) X

-n -
Wiv1y2,j+1/2 — Wit1/2,j-1/2

] i—1 o
X i1 1 Uity j— i1 upj+ | +2W1p,3, i j=1 (AS8)
- — 2 - . .
= 2Witqy2,0-12 H j=J
where we set P/,{/7 ;=0 whenever the calculated value is less than zero.
The equations determining the X}’ J;-i/lz/z are
n+1/2
n+1/2 _ zn At
éi,j+1/2 = fi,j+1/2 - 2h X

l - 2 _ i - % -z
X { i (@)iv 12, j+1/2 — P (@)i-1/2, 4172 + Wi j418 41 — Wi ;&L +

+ (F + q.)?+1/2,j+ 1/2 — (F + 4)?—1/2,j+ 1/2 —

- @?,j+1/2 (§?+1/2,j+1/2 - 5?—1/2,,41/2)}, (A59)
where 1<j<J—1; while &*%}/},=0for i=1 and i=1I.
n+1/2
gz _ATT
i,j+1/2 =6i,j+1/2 2
i —1 om i—3 . 1
ug ); . — — (UG );- .
1 ( C);+1/2,1+1/2 1 ( C) 1/2,j+1/2
x + 4(0)3)2, ;412 if i=1 + Wil e — Wi G+
-3 . e
-2 m (uC)I—i/z,jH/z if i=1I
+ P+ 4 jv1— P — ;i —0i 12 (DL jer — D) > (A60)
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A tn+ 1/2
2h

n+1/2 __Pn
iLj+1/2 — L, j+1/2 T

i1
i—1
x 1| +4@PY s o1yp if i=1 +
-3 .
—Zﬁ(uP)§_1/2,j+1/2 if i=1I

- -3
(uP)?+1/2,j+1/2 i i (uP)i—l/z,j+ 1/2

n n n n D =
+ WPl —wi Pl + (v — 1) (Pl 1102 + i j+1/2) X

(1 3 N
i 2 _p L 2 -n
i——— 1 Uiv1/2,j+1/2 — l%— 1 Ui—1/2,j+1/2
X +4L_lg/2’1+1/2 If i=1 +W:‘,J+1 '—W:’,J ) (A61)
-3
~n . .
—27_71141—1/2,”1/2 if i=1I
AN — /

where P’ 117, =0 whenever the value calculated by the above equation is less than zero.

The calculations of all secondary variables start from average quantities; and, the
formulas for the several kinds of averages are set out below. In deriving these formulas
the variables are assumed to vary linearly between successive netpoints. Moreover,
along the r-direction averaging is of the form

)2=fx(r)rdr/frdr,

Formulas for the averages are [cf. Equations (A44) and (A51)]:

_ Xi+1,j — Xi,j
Kiv1ja,; =% (Xigp ; + xi,j) + D6 (A62)
Xijr12 =3(x joq + xi,j) (A63)
and
Xit1/2,j+12 = (X + Xq, + Xiv1,j+1 T xi,j+1) +
Xiv1,; T Xi1,5+1 — Xi,j — Xi j+1 (A64)

24i — 12

5. Numerical Representation of the Gravitational Field

Calculation of the gravitational field is based on an integral formulation for the
solution of Poisson’s equation [cf. Equation (A6)]. This approach affords a straight-
forward treatment at moving boundaries as well as elsewhere. Moreover, it apparently
results in smaller spurious fluctuations near moving boundaries than was found in
attempts using difference analogues of the Poisson differential equation. The main
difficulty with the current method lies in its considerable use of machine time.
According to the integral representation, the gravitational potential @ at any
primary netpoint is the sum of contributions from all parts of the physical space
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where the density is non-zero. The source elements of the field are extensions of cells
such as in Figure Al, generated by rotation around the z-axis. Hence, except for
the innermost ones, which consist of small cylinders, the source elements are con-
centric rings having the thickness Ar=A4z=h. It is assumed, moreover, that inside
any ring the density remains constant and can only vary discontinuously from ring
to ring; this differs from the hydrodynamical equations, where linear variations are
imagined to take place between successive netpoints.

When symmetry exists across the lateral plane at z=0, difference operations need
only be applied to points in the first quadrant; but, the gravitational field must be
the same as that arising from all four quadrants. The field is determined in this case
by associating two rings with each netpoint i, j; the first contains the point itself
and the other, located below z =0, contains the mirror image of the point. Throughout
the first ring as well as its image the density is assumed to be g} ;; and, both rings are
included in the summation determining the gravitational field [cf. Equation (A46)].

A numerical procedure for computing the gravitational potential @ at an arbitrary
netpoint , j can be derived from an exact expression for the approximate model:

Vn

b b t"
A
Ir — l'ijl

LJ ris1/2 Zm+172 27

z J i o(r,z, ") rdodz dr

[ + 12 — 2rr,cos (0) + (z — 2" T2

dv (r,z) =

LY
ri-1/2 Zm-172 6=0

I,J FI+1/2 Zm+1/2
"~

rdzdr (A65)
~ 4G 7
Zg“’f [+ + -2y

=1 Fi—1/2 Zm-1/2

dy
X
1 4rri ) 2][/ 1/2»
— sin
L)+ G-z

where the indices /, m identify the source point and the ring containing this point.
Evidently, the expression consists of a time-dependent and time-independent part.
The latter includes an integral over y which is the well-known complete elliptic
integral of the first kind.

Comparing the above expression with Equation (A46) it is apparent that

ri+1/2 Sk+1/2 n/2
rd{ dr dy
ik = 4G , A66
9i,1,k J- [(r+ "i)z +C2]1/2 J‘ 4rr, ., 1/2 ( )
ri-1/2 {x-1/2 o |1— m Sin \ﬁ

where { has replaced z—z;. When the source point /, m lies above the lateral symmetry
plane at z=0, {=|z—z;|=|m—jlh=(k—1)h; while, for the mirror image below
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z=0, {=z4z;=(m—1+j—1)-h=(k—1)-h. Hence, either k=|m—j|+1 or k=m+
j—1, the index k being used to reduce the number of g coefficients.

Since the g, ; , are time-independent, they can be calculated beforehand and stored
for subsequent use. However, in practice the computing facilities must have con-
siderable storage and rapid data-handling capabilities. As an example, the required
number of g coefficients equals 72+ (2J—1), where I and J are the numbers of primary
netpoints in the r- and z-directions respectively. Currently, /=J=128; hence,
I*-(2J—1)=4177920 words.

The g; , ; are calculated in one of four ways depending upon the relative locations of
the source point /, m and the field point i, j. The various procedures are set out below.

The first way of calculating the g coefficients is employed if the field point lies
on the z-axis, viz., r;=0. In this case, Equation (A66) can be integrated exactly
resulting in closed forms valid for all / and £.

Secondly, suppose the source element /, m is centered on the z-axis (viz., r;=0)
and the field point lies elsewhere. Then the g; , , are calculated by a series expansion
in terms of even Legendre polynomials; i.e.,

e ]

h 2 h 2n+1
gi>1,1=1,x = 2nG <2> Zau (5) P2n(ﬂ), (A67)

n=0
where s=[r} +(z,,—z;)*]"*=(r} +{%)"/* denotes the radius vector extending from
the center of the source element to the field point 7, j; and, u={/s is the cosine of
the angle subtended by the radius vector and the z-axis. The values worked out for
the coefficients a,, are as follows:

o= a,0 = +0.088955965
a,=+1/12 a,,=—0.31663161
a,=—7/40 a,, =—0.175077305
ag=—27/448 ay6 = +0.66999907

ag=+0.18663194  a,4=+0.40349981 etc.

The third method is applied when r;> 0 and the field point coincides with the center
of the source element (viz., both r;=r, and z;=z,). A series expansion has been set
up for this case; i.e.,

.. (T 1 (h\? m\*
gii1=Gh"In{—-])[2——{|—] —0.001204426|—| —
T h 24\ r; ¥;

m\® h\®
— 0.000059 581 (—) — 0.000007284 3 (—) :I +

r,— ri

h 2 h 4
+ Gh? [6.281 23393 — 0.098 61039 () — 0.001 498 36 <—) —

r; r;

h\° n\®
— 0.000056 322 (—) — 0.000006 5377 <1> ], (A68)

¥ ¥;

which is valid when r; >k (viz., i > 2).
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7

of
Calculation

2.2Rg

-~

- ! ]‘

D (numerical)| D (numerical)| D (numerical) | P (exact)

20 zones per Re| 40 zones per Rg| 60 zones per Rg

5.70399 5.702994 5.70277 5.70259
2 .66044, 1.65628 . 6555!1 . 65490
3 2.8345!1 2.82774 2.82647 2.813164
4 .54146 .53761 . 53689 l. 53632
5 2.74890 2.74236 2.741134 2.74016
6 3.00477 2.99759 | 2.99625 | 2.995I7
7 2.15315 2.147774 2.14677 2.14597

two polytropes of index 3.0 separated by 2.2 R.

Numerical and exact calculations of the gravitational potential @ for a configuration of
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If none of the above conditions apply, the fourth way is used, which involves
numerical integrations over the region 7. ;,=2r>r_1,5, Zpt12=222py—12- The
number of points per integration decreases with the increase in the separation of i,
j and [, m; i.e., 49-point integration, 16-point integration, and 1-point integration.
The weighting factors of the points are obtained by standard methods (e.g., Isaacson
and Keller, 1966). In particular, Lagrange interpolation polynomials are used to
determine the weighting factors in 49-point integrations.

The gravitational-field routine, as described above [Equations (A46), (A66), etc.],
was checked as follows: For an undistorted polytrope the gravitational potential as
well as the gravitational energy is given by exact equations (Chandrasekhar, 1939).
In particular, the total gravitational potential @ can be determined analytically at
any point inside of or in the vicinity of two undistorted polytropes separated by
2.2 Ry (the usual machine-zero configuration for stellar-collision calculations).
Figures A2 and A3 show how well the numerically-determined values of & and the
gradient of @ approach the exact values as the mesh width h decreases. Furthermore,
machine-zero values of the total gravitational energy have been found to agree with
the exact values to within nearly 0.1% provided the mesh width is #=R/40 or less.

A second check of the gravitational-field routine was obtained by comparing two
stellar-collision runs identical in every way except for the method of calculating ®.
The one run always employed the integral method based on Equation (A46). The
other only made use of the integral method along an outer rectangular boundary
and everywhere within this boundary resorted to a five-point difference analogue of
Poisson’s equation. From time to time the rectangular boundary was adjusted so
that it always enclosed all regions of non-zero density. The difference analogue of
Poisson’s equation was solved by a standard line-iterative over-relaxation method.
Although the numerical results were found to be highly consistent, the method which
employed the integral exclusively was superior both from the standpoint of energy
conservation and machine time. Regions near the moving fluid boundaries (not to
be confused with the overall rectangular boundary) were subject to greater spurious
fluctuations when the field was partly determined by the difference analogue of
Poisson’s equation; and, since the fluctuations involved peaks in fluid velocity, the
difference program was automatically forced by the Courant condition [Equation
(A70)] to go to smaller time steps Az.

6. Controls Needed for Stability

In order to attain stability using the current program, it is necessary both to limit
the size of the time steps 47 and add another form of artificial viscosity besides that
first used by von Neumann and Richtmyer (1950). The latter is not sufficient, with
our present difference equations, to prevent spurious fluctuations from building up
at certain points along a moving boundary.

Effective additional smoothing is provided by terms introduced by Lapidus (1967)
to approximate the artificial viscosity suggested by Lax and Wendroff (1960). In the
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present instance, this means subtracting small damping terms from A}7}/7 ; and

n* 1%, the quantities used to form the difference analogue of the divergence [cf.
Equations (A33) through (A39)]. Formulae demonstrating the procedure are set out
below; the first expression holds when 1<i</—1 and 1<;j</J, the second and third
for 1<j<J—1:

n+1/2 _ n n n _ n
i+1/2,j = undamped 4 — ’Cohri+1/2|ui+1,j - ui,jl( i+1,] Xi,j)

2
B’{j'jlﬁ/z = undamped B — K, glw’{,ﬁl — wh, (X1, 41 — 1.j), for i=1 (A69)

+1/2 ; o
B %17, = undamped B — kohri|w} ;11 — Wi 1(X7 ;40 — X15), if i> 1.

The constant k,, is fixed at some optimum value in the range 0.1 <#x,<0.2.

The necessary limitation of time steps is carried out by two controls. The first
and most important is a form of the stability condition due to Courant ef al. (1928).
The second merely restricts 4¢ so that no decrease in density from cycle to cycle
ever exceeds, say, 40%,. A quantitative formulation of the first A¢ control is

At = th/s, (A70)

where & denotes the mesh spacing, §={max; [(u} ;)*+ W} ;)*+P? ;/of ;1}'/% and f
is an empirically determined constant somewhat less than unity.

Equation (A70) ensures that the domain of dependence of the difference scheme
shall include that of the basic differential equations, particularly as the difference
steps 4x, At approach zero (cf., Courant et al., 1928). In one respect this requirement
is already satisfied; viz., the numerical method for calculating the gravitational field
depends upon the values of density g at all netpoints within the domain of calculation.
However, the treatment of the hydrodynamic variables (i.e., g, ou, gw, and P ) remains
to be examined. Consider small portions of the domains of dependence for both
difference and differential systems starting from an arbitrary point x, t**! and going
back a small interval to time ¢". For the difference scheme, the values at x, r**?
depend upon values at netpoints included in the range approximately (x+4x, x")2
2 (x,t") 2 (x—A4x, "), where " =¢"*1 — At"*1/2_Similarly, going back another time step
to "1, the values at x+4x, t"; x, t"; and x—A4x, t" depend upon netpoints lying
approximately in the region (x+24x, "~ 1) (x, " 1) (x—24x, 1"~ 1), etc. Thus, in
the difference scheme the domain of dependence for the point x, "*! seems to be
contained within a conoid drawn downward from x, t"*! in x — ¢ space, where x may
represent more than one space dimension (e.g., ¥ and z). An analogous concept should
exist for the domain of dependence of the differential system. Anyway, at the slightly ear-
lier time " the domain of dependence for the point x, " ** in the differential system can-
not extend over an appreciably greater range of x than x+4"*12[(u® +w?)!? +¢],
u and w being the components of fluid velocity and ¢ the sonic velocity (e.g., in
an ideal gas ¢*=yP/g). This view implies that the system is essentially hyperbolic
and that variations are propagated at a maximum speed of (u?+w?)*? +c. Hence,
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the local domain of dependence of the difference scheme is expected to be sufficiently
large if
Ax > At[(u® + w2 + ] (A71)

Courant ef al. (1928), Lax and Wendroff (1964), Isaacson and Keller (1966, p. 485),
as well as others have discussed this idea more carefully.

Before describing the results of an empirical determination of the constant f
appearing in Equation (A70), consider an approximate analytic treatment which
examines the stability of difference solutions against short-wavelength fluctuations
in regions where point-to-point changes are relatively small. Excluded are the trouble-
some boundary regions largely controlled by the artificial damping terms of Equations
(A69) etc. The treatment involves the first variation of the difference scheme expressed
as a system of linear equations for the variations [i.e., ¢, 6P, d (ou), and & (ow)] of
variables defined at primary netpoints. All variations at secondary netpoints and that
of the gravitational potential are eliminated by means of their determining equations
[viz., Equations (A56) through (A61) and (A46)]. The variations or fluctuations, when
they appear, seem to be unwanted parts of solutions of the difference equations
themselves.

Imagine that, in the small, the fluctuations are linearly related by the system of
first-variational equations and that an arbitrary fluctuation is expandable in a Fourier
series (von Neumann and Richtmyer, 1950; Richtmyer and Morton, 1967); e.g.,

0X =&y 0Xoexp {ifa(r —ro)+ B(z — 20)1}- (A72)

Time dependence enters by means of the factor &, s and the component o, f will
not build up if

1€, 5l < 1+ O(41). (A73)

This is the so-called von Neumann condition, which we take as a measure of stability.
Moreover, since on the linear view no wavelength smaller than the net spacings can
be represented by the difference scheme, no oscillation or fluctuation determined by
the difference equations can include a component of wavelength A less than twice
the smallest net spacing; i.e., 1> 4(min)=2h or «(max)=p(max)=2z/1(min)=n/h.
It is, in fact, just the A(min) component which is found to dominate most numerical
instabilities.

To simplify the algebra, suppose that (1) the flow-bias is set to zero, (2) all artificial
damping terms are very small, (3) tlie cylindrical curvature effects can be neglected,
and (4) only the A(min) components are appreciable. The last supposition implies
that the variations obey relations like

5@?—:11,1 =€ein(ri+1—ri)/hég;l’j =6eiﬂ5Q?’j- (A74)
Furthermore, in the case of the gravitational potential [cf., Equations (A45), (A46)]

007 ; =gi:, 5,005 ; + IZ Gi1, im0 m = i, j,;00i ;- (AT5)

L#i m# j
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Using the above approximations the equations of first variation become

[€—1—22%(u” + w” + 209)] 8¢ + 44°6P + 42°u &(ou) + 44°w 5(ew) ~ 0
422 (u® + w? + 0g) S0 + [ — 14+ 242 (u® + w® + 2¢%)] 6P +

+ 64%c*u 6(ou) + 62%c*wd(gw) ~ 0
— 22%u (2u® + 2w? + ¢ + 3¢g) 6o + 8A*uSP + (A76)

+[E =1+ 227 (4u® + w* + c?)] 6(ou) + 6A°wu 5(gw) ~ 0
— 222w (2u® + 2w? + ¢* + 30g) S0 + 8A’w P +

+ 62%uwd(ou) + [€ — 1 + 247 (u® + 4w? + ¢*)] 5(ew) ~ 0
where, A =A4t/h and c* =7yP/g. A non-trivial solution of these equations requires that
the determinant of the coefficients shall vanish; this in turn determines the allowed
values of ¢, viz., the eigenvalues. The object is to find the condition on A=4¢/A such
that the eigenvalues obey Equation (A73).

A first eigenvalue can be separated out easily, leaving a cubic equation whose three

roots yield the remaining eigenvalues. Thus

& =1-=24" (> + w? + %), (A77)
where A=At/h; whereas, for i=2, 3, 4,
(& = 1) + (& — 1)? 222 [4 (u® + w?) + 3¢* — 209] +

+ (&= 1) (222 [3(u® + w?)? + 2¢* — 4 (u? + w®) 0g — 2c%0g] +

+ (24%)° (u? + w?)* (¢* — 209) =0. (A78)
Considerable simplification is obtained if, as is usually true in practice,

0g <. (A79)
Then, with the aid of some numerical work it is found that

h
[4(u? + w?) + 3¢2]°
where ¢ =yP/g. This result may be compared with Equation (A70).

If using Equations (A76) or (A78) one considers the special cases (1) u* + w?*—0 and
(2) u* +w*>c?>pg, it turns out that

I&l<1; i=1,2,3,4; if At<

(A80)

h .
[2(c* — 09)]"*’

h
[3(u® + w?)]Y?
The above relations suggest that the inequality in (A80) may be a bit too severe.
However, a study of regions where u> +w? ~ c? indicates that (A80) cannot be relaxed

if the whole range of (u* +w?)/c? is to be included. It is interesting to compare these
results with what is found in practice.

€Y when u® + w? >0, At<
(A81)
(2) when u® + w? > ¢? > gg, At<
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Numerical stability becomes evident mainly in two ways: (1) the mass and total
energy summed over all netpoints remain nearly constant over many thousands of
time steps; and, (2) whenever large spurious peaks occur, say in fluid velocity, they
are subsequently damped out. In the case of stellar collision calculations, stability
is found to be maintained if

At <0.7h/3, (A82)

which is close to 41<(1 /\/ E)-h/f. The critical value of the Courant factor f is de-
pendent, at least to some extent, upon the level of artificial damping; but, the relation-
ship in our case has not been worked out at this time, except to note that stability
throughout a collision calculation apparently cannot be preserved without the use
of some artificial viscosity.

When stability is marginal, certain characteristic effects appear; e.g., using a
Courant factor just below or slightly greater than the critical value {=0.7, stellar-
collision calculations acquire large spurious peaks in fluid velocity which are most
intense immediately following maximum impact, and at times rise above the average
levels by factors of 100 or 1000. These peaks almost always occur along the trailing
edges of moving boundaries in regions of very low densities and at netpoints located
on or near the axis of symmetry (viz., r=0). If a calculation is stable, the peaks are
subsequently damped out by the artificial dissipation. When §>0.7, the peaks appear
more often, are of greater height, and continue to occur until divergence is triggered.
The time lapse before blowup decreases somewhat as f is increased above its critical
value. However, this interval does not rapidly approach zero as {—1.0 from below
because, acting through the Courant condition [Equation (A70)], the large spurious
velocity peaks always tend to reduce the time steps A7, A related effect due to the
Courant condition appears on comparing runs identical except for {=0.7 and {=0.5.
Having larger time steps initially, the run with greater { allowed the first spurious
velocity peaks to rise higher, thus a marked reduction in 4¢ ensued which in turn
favored the suppression of these peaks. Thereupon, Af again increased to be followed
almost immediately by larger spurious fluctuations with another reduction of A4¢, etc.
The overall result was a run with {=0.7 and highly erratic values of 4¢. On the other
hand, for f=0.5 the time steps were more uniform, larger on the average, and resulted
in faster smoother execution.

7. Evidence for Convergence of the Difference Scheme

The convergence of solutions obtained by the present difference scheme was tested
for the case of uniform translation of an isolated polytropic density distribution.
Such a distribution, of course, is one of a family of possible configurations in which
self-gravitation is balanced by hydrostatic pressure (Chandrasekhar, 1939). Given an
initial uniform velocity and otherwise left alone, the density configuration should
remain unchanged as it moves continuously across the network at the prescribed
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velocity. Any departures from uniform motion or from the initial density distribution
are attributable to computational errors.

The density distribution investigated was that of a polytrope of index 3.0 and of
solar mass and radius — the same model as used in the current stellar-collision studies.
The initial velocities prescribed for the various runs were 213.0 km s~ 12943 kms™1,
580.2 km s~ 1, and 1042.4 km s~ !. Calculations were made with difference zoning of
20 steps per Ry and 40 steps per Rg; the former allowed a greater movement within
the domain of calculation (cf. Figure AS5). Typical numerical results are shown in
Figures A4 and A5, where initial and final density distributions are shown for a
polytrope moving towards the left at 580.2 km s ™.

The numerical transport of the center of mass was handled very nearly correctly.
The most extreme case was a displacement across a distance of about 4.7 Ry (cf.
Figure AS5), involving 4140 time steps, which was calculated correctly to within 0.57;.
In addition, total mass was conserved within one part in 200. However, conservation

of total energy was less precise, there being a slow continual increase in the case of

.2 T T T T T T

’ zero /init_iol
..\ flow-bias n=i B

Q° 0.6
~

0.4 - I.30Ro

0.2

0.0

<«—— Displacement

Fig. A4. An example of the numerical translation of a stellar density distribution (viz., polytrope

of index 3.0, zoned into 40 steps per Ry, and moving at 580.2 km s~2). The final center lies at j = 36.2

compared to the correct value of j = 36.00. Calculated total mass remained constant to better than

one part in 200. Some spurious gain in total energy occurred, ultimately amounting to 2.2 % of the

gravitational binding energy. The dashed outline above the final peak denotes the result when flow-
bias was set to zero; in this case, change in total energy was negligible.
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580.2 km s~1: (1) When the mesh width 4 was Ry/40 and after 720 time steps or
26.0 min of motion in real time, the spurious cumulative energy increase had reached
2.2% of the gravitational binding energy (Figure A4). (2) Using h=Ry/20, after
4140 time steps or 93.1 min of real-time motion across a distance of 4.66 R, (Figure
AS5), the spurious increase in total energy amounted to 7.7, of the gravitational
binding energy. Perhaps the most serious aberration was a continual degradation

|.2 T T T T T T
10 |- initial |
n=1i T
0.8 n=800 i
_final
n=4140

PP,

N
i
—— 466 Rg— 1

|
5Re 4 3
~—7Displacement

Fig. A5. Numerical translation of a coarse-zoned stellar density distribution (viz., polytrope of

index 3.0, zoned into 20 steps per R, velocity 580.2 kms~?). The calculated final center lies at

j=14.9 compared to the correct value of 14.82. No appreciable degradation in total mass was

observed; but, during the calculation the total energy suffered a cumulative spurious gain equal to
7.7% of the gravitational binding energy.

of the density distribution, the most obvious effect being a fall-off in peak height
(Figure A5). As may be seen from Figures A4 and AS, the degree of degradation
might be tolerable for a displacement of ~ Ry, which in almost all our collision
calculations was the distance that the centers of the colliding polytropes had to travel
from their machine-zero positions to where their centers merged at the center of
impact. Evidence that this initial degradation did not appreciably affect our calculated
results is obtained by comparing certain collision runs with an earlier calculation in
which the machine-zero separation was 4.2 R instead of the usual 2.2 R, (cf. Table I).

© Kluwer Academic Publishers * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1972Ap%26SS..15...44S

p&SS. C15. T A4S0

rTI72A

A STUDY OF COALESCENCE IN HEAD-ON COLLISIONS OF IDENTICAL STARS 109
TABLE Al
Calculated quantities with and without flow-bias, case of a uniformly moving polytrope (40 netpoints
per Rg)
Flow-bias Machine Cycle Displacement Total energy Gravitational
factor time number of center summed over potential at
n active region center of star

1.20 0 1 0 0.0242 5.170489"r
1.20 0.904 720 1.30 R 0.030 4.938946
Zero 0 1 0 0.0242 5.170489°
Zero 0.920 1560 1.32 Rg 0.024 5.177887

o Tn these units gravitational binding energy of a polytrope of index 3.0 is 0.271477.
b Exact value is 5.170528.

When the flow-bias was set to zero, both the spurious energy increase and the
fall-off in peak height largely disappeared (Figure A4). As illustrated in Table Al,
it is interesting to note how well the properties of the stellar model as a whole were
preserved in this instance. In collision calculations, however, we currently find that
flow-bias is necessary to maintain numerical stability during the intensely violent
periods when compression and velocity reversal are maximum as well as to conserve
energy in the large (cf. Tables AIV and AV), the more usual artificial viscosity
terms not being enough in themselves. Referring again to Table AI and the case
of zero flow-bias, the high cycle number » needed to reach a certain point in time
is an indication of insufficient damping; i.e., the larger spurious velocity fluctuations,
acting through the Courant condition [Equation (A70)], bring about a reduction in
At and a corresponding increase in n.

In conclusion, there is evidence from these test calculations that our difference
scheme yields solutions which converge to correct solutions. But, our method of
damping or suppressing spurious fluctuations, particularly at moving boundaries,
might be improved.

8. Nature of Errors in Collision Calculations

The primary objective of the present program was to calculate the mass that would
escape from the compound system formed in a head-on collision between two solar-
like stars. The escaping mass, termed volatile mass, was determined by summing the
mass elements about netpoints i, j wherever local internal energy plus outgoing kinetic
energy exceeded gravitational binding energy: i.e.,

)

in which M; denotes the numerically calculated value of volatile mass at time ",
0;, ; the numerically determined values of density, and the AV, ; are fixed volume
elements [the AV, ; here equal the ‘4V; ;/40° of Equation (A27) except for j=1,
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where AV, ;_, =1'AV; ;_,/460’]. Moreover, if the program handles only one quadrant
of space, the summation formula must be adjusted to yield results correspondent
with the entire space. In contrast to volatile mass, which is a partial sum, total mass

M™ is the sum over all elements, viz.,

1,7
M'=2z Y o

i=1,j=1

AV (A84)
In this section the errors in volatile-mass calculations are examined in the following
order: (A) machine round-off errors; (B) errors due to the low-level density cutoff;
(C) effects of artificial dissipation; and (D) discretization errors. The discussion on
discretization errors is largely concerned with justifying the position that

My =M,(t") + a(") h? + 0 (h*), (A85)

where M, (t") denotes the correct value of volatile mass for the system under investiga-
tion and a(¢") h* + O (h*) the discretization error. By writing the coefficient of #* as
a(t") we mean to imply that it is sensibly independent of both the mesh width 4
and the time steps 4¢, a property which allows both an estimation of our discretization
error and the use of Richardson’s method for extrapolation to zero mesh width (cf.
Isaacson and Keller, 1966; Forsythe and Wasow, 1960; etc.).

(A) Round-off Errors are mainly determined by the nature of the computing machine
but can be reduced to some extent by careful programming. In our case, use was
made of double precision, except for the coefficients g; ; ; [cf. Equations (A46) and
(A66)]. Since new round-off errors are introduced at each time step, the cumulative

effect should increase with the number of time steps n, perhaps like \/ n. Tests of
such an effect are available. All our significant calculations have been run through
several times, many runs being identical except for average time step Az and a
simultaneous adjustment of the flow-bias factor ¢, so as to maintain good energy
conservation (cf. Table I). However, as exemplified by Table AII, no dependence
on n has been detected. Because of simultaneous adjustments in flow-bias along with

the changes in At, it is well to note other evidence that round-off effects must be
negligible; viz., the high accuracy with which total mass is preserved in the course
of any calculation, particularly that of Figure AS where a mass distribution was
moved numerically over many times its own diameter. Initially the total mass in
Figure AS was 0.155 machine units; much later at n=3400 and after a displacement
of almost 4 times the initial radius, the total mass was still 0.155; while, after n =4140,
the total mass had dropped to 0.154, a fall-off readily attributable to the effects of
a density cutoff. At the same time, the overall motion of the center of mass was
calculated correctly to within a lag of 0.5%. In view of these tests, it is believe that
round-off errors are negligible.

(B) Errors due to the low-level density cutoff must certainly be present as indicated
by effects on the leveling-off value of volatile mass (Figure 12). In the case of the
lowest-velocity collision calculations, a direct measure of such errors has been ob-
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TABLE AIlI

Calculations of the low-velocity collision for various space and time steps (variables expressed in machine units)

h? f¢ Max density at Max total Early volatile Volatile mass
center of impact internal energy mass?® My® Time n
Qc Time » E Time n M, Time n

Rp/20 02 3.07¢ 1.10 700 0364 1.13 720 0.00120 1.33 850 0.00530 2.16 1260

Ry/20 0.5 3.06¢ 1.08 110 0.362 1.15 120 0.00528 2.06 400
Rp/40 025 3.43° 107 480 0405 1.10 500 0.00388 1.33 700 0.00700 2.02 1720
3.56¢
Rp/60 02 3.65¢ 1.09 700 0428 1.11 720 0.00506 1.33 1120
3.93¢
3.92¢

2 Prior to leveling-off so as to include R /60 run which was only partially completed.

b Ar=A4z=h.

¢ At = fh/s, cf. Equation (A99).

d Relatively large n (viz., number of cycles) due to reduction of A¢ in order to satisfy the condition
Qi,jn+1 =>0.6 oi, "

e Value ati=1,j=1.

fati=1,j=2.

€ at i=1, j=3. Dip in @ at exact center is interpreted as due to locally increased temperature.

tained by comparing runs using the mesh width A=R;/20 and differing only in
density cutoff, either o, x 107 or g, x 10”7, For runs with g, x 1077 the leveling-off
value of volatile mass was found to be 1.07 times larger than for runs having g X
107, In practice, when the cutoff was g, x 10~7, greater spurious fluctuations oc-
curred in the very low-density regions near the fluid boundaries and caused the time
steps 4t to be reduced [cf. Equation (A70)] thereby greatly increasing the machine
running time. Similar runs with different density cutoffs were not made for the higher-
velocity collisions. However, since total mass was always conserved to better than
one percent, the cutoff mass loss could not have exceeded this value. In fact, one
percent of the total mass must be too large for several reasons: (1) In most instances
at the time that the calculated value of volatile mass had just leveled off, the total
mass loss was found to be only about 0.6%. (2) The overall mass loss did not show
any appreciable change with initial collision velocity. (3) Early in a calculation, the
possibility existed of mass losses occurring elsewhere than from the volatile regions.
Thus, we were led to assume for the higher-velocity collisions that, as a result of
the density cutoff, the most likely error in the volatile-mass calculations is a loss
approximately equal to 0.5% of the initial total mass or, in other words, equal to
109; of the value of volatile mass for the case where the initial collision velocity
was zero at infinite separation. By comparison, a lower limit of 79, was actually
found for the cutoff mass loss in the zero initial-velocity case (see above). Finally,
in view of the lack of appreciable change in total mass loss with mesh width 4, the
density-cutoff errors were assumed to be independent of 4.
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(C) Effects of artificial dissipation — The artificial dissipation increases enormously
at points of spurious fluctuations and also about shock fronts as well as at any point
of rapid compression; elsewhere, it stays very small. Stated another way, the artificial
dissipation may be either highly fluctuating in counteraction to the spurious fluctua-
tions or largely reproducible from run to run. Included in the term ‘artificial dissipa-
tion” are the following three forms: (1) the artificial viscosity of Equations (A42) and
(A53), (2) the artificial viscosity defined by Equations (A69), and (3) the flow-bias
as given by Equations (A35) and (A39).

Spurious fluctuations, in the case of stellar-collision calculations, are found most
often between certain netpoints, along a free-moving fluid boundary where the
density is extremely low. These fluctuations recur identically only for runs that are
the same in every way; otherwise, they vary apparently at random from run to run,
even between runs differing merely in the average size of A¢. Use has been made
of this dependence on At to show that the fluctuating components of artificial dissipa-
tion have little effect on our results. Incidentally, sometimes in coarser-zoned calcula-
tions spurious fluctuations appeared at the center of impact, but only late in the
calculations when the fluid velocities in these regions were relatively low and, hence,
the resulting flow-bias and fluctuating artificial viscosity terms also small.

The fact that fluctuating components of artificial dissipation did not appreciably
effect our numerical results is shown by the lack of dependence of these results on
the average size of At or, in other words, on the number of time steps # used to
reach any well-recognized point in the course of a collision calculation (cf. Table
All). This conclusion is substantiated by the fact that the calculated values of total
mass [Equation (A84)] do not depend upon n, even in cases where the flow-bias
was set to zero thereby allowing exceptionally large spurious fluctuations to occur
along the trailing fluid boundary.

In contrast to regions of spurious fluctuations, values of artificial dissipation
surrounding shocks and places of rapid compression such as the center of impact
are largely reproducible from run to run. At least in the case of artificial viscosity
[Equations (A42), (A53), (A69)], any errors which these effects contributed must be
of O (h*) as the defining equations for artificial viscosity imply. The effects of flow-
bias, which are somewhat less obvious, are considered below.

The radial component of the flow-bias term may be written as follows [cf. Equations
(A33), (A34), and (A35)]:

S8 e (u)iiifs; — (eu)s, s
8;- u?+1/2._ u) =h£ (] — " A s J 5 J A86
5 J [(Q ) +1/2,j (Q )x,JJ ) Xx,j ( Xx,]) Fisi)2 %(h _ qu,jl At"+1/2) ( )
where ¢ has been substituted for the generalized variable X and
|1 jl A2 . uy j|
n . = 2 = ? A87
Xx,) h T (§)n ( )

The symbol u denotes the r component of fluid velocity; and, except for small effects
of displacement in the z direction, the quantity (h—|u} ;|4t"*1/?) is the separation
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at time "1/ between the fluid particle located at r;.,,,, z;, "**/2 and the particle
which a very short time earlier was at r,, z;, ", x being either i or i+1 depending
upon the direction of fluid flow. The right-hand side of Equation (A86) has the form

u 0(ou)
m or

flow-bias ~ h'—;—o 1 (1=x (A88)

where
0< x5, (1—n2)<% (A89)

and it is assumed that r,/r; ., ~1. Moreover, due to Equation (A70) an upper bound
may be placed on the flow-bias terms; e.g., in the case of the difference equation
for advancing ¢

|flow-bias| < 2¢&,{|ou]. (A90)

Similar relations hold for the z component of fluid velocity, w.

To assess the level of flow-bias, values of ¢,4¢/2h have been examined for all
physically significant runs, and typical results are displayed in Table AIIl. The values
of h, &, and f were prescribed in advance for any run; while At was determined

TABLE AIII
Factor, eodt/2h, which when multiplied by fluid velocity indicates the level of flow-bias
Initial Mesh Flow-bias Courant Cycle Time in eodt
relative width factor factor number machine 2h
velocity h o i n units mach. units
at infinity
zero R /20 1.0 0.2 2 0.0040 0.0404
520 0.838 0.0085
540 0.865 0.0140
640 1.03 0.0099
660 1.06 0.0114
720 1.13 0.0139
1200 2.03 0.0208
Zero R /20 0.2 0.5 2 0.0040 0.0081
80 0.890 0.0224
100 1.03 0.0142
110 1.08 0.0049
120 1.15 0.0111
380 2.03 0.0027
zero R /40 1.0 0.25 2 0.0040 0.0808
320 0.840 0.0139
340 0.871 0.0280
480 1.07 0.0492
500 1.10 0.0244
1740 2.03 0.0142
Zero R /60 1.0 0.2 3 0.0040 0.0807
520 0.845 0.0432
700 1.09 0.0378
720 1.11 0.0366
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automatically at each time step according to Equation (A70). As apparent from
Table AIll, the values of gy,4¢/2h occurring in practice were such that the flow-bias
was always a small perturbation of the calculated change per time step [cf. Equation
(A33) with (A35), and Equations (A36) and (A37) with (A39)] unless, of course, either
lu| or |w| was much greater than unity.

The survey of our stellar-collision calculations shows that, for the most part, regions
subject to sizable flow-bias effects had low densities (viz., o <g.x 1072, g. denoting
the central density of a solar-like stellar model), and that relative to adjacent terms
the greatest values of flow-bias occurred at points on the outer fluid surfaces where
o~ o (cutoff)< g, x 10~. The only significant exceptions were two surface-like regions
of deceleration located either side of and close to the lateral plane of symmetry, which
passes through the center of impact. These surfaces contained the set of all points
where the gradient of fluid velocity underwent a sharp reversal from steady accelera-
tion towards the center of impact to a rapid deceleration. The surfaces of deceleration
persisted throughout early phases of the collision process and continued past the
point of maximum compression, until the recoil shock fronts had swept by leaving
all fluid elements moving outwards, with the possible exception of elements near the
center of the residual core.

The process that took place along the deceleration surfaces was highly reproducible
from run to run regardless of 4, and involved a component of flow-bias error which
may have affected the calculated values of volatile mass through the domain of
dependence of the hydrodynamic variables. However, it is believed that this source
of error was at worst no greater than of O (h?) for the following reason: Equation
(A86) shows the flow-bias terms to be of O (4); but, in the difference scheme such
terms are paired together so as to contribute errors of order O (h*) at each time step
[cf. Equation (A96)]. This contrasts with the artificial viscosity or better still the
discretization errors which stepwise per pair contribute errors of O (h*). The magnitudes
of the flow-bias terms, on the other hand, are more strongly bounded than those
of artificial viscosity, and are found to be sizable in calculations of concern only
along a small number of surfaces, like the surfaces of deceleration. Because flow-bias
is only sizable along a few surfaces, the number of netpoints thus involved is of
O(R), viz., proportional to a surface of revolution defined by a curve of length O (R)
in r-z space, whereas discretization errors are present at all active netpoints, the
number of these being of O (R?*). Consequently, in mass summations and also in the
cumulative effects which may have arisen by way of the domain of dependence, the
number of points contributing discretization errors was greater than the number
contributing appreciable flow-bias errors by O(R)~ 1/h; thus, the overall effects of
the several types of errors tended to equalize at the same order of 4, viz., O (h*) as
in Equation (A85).

The argument that errors due to the artificial dissipation are of O (h*) combined with
the lack of dependence on the average 4¢ seems to imply that these errors are of the
form

a, ("> + 0 (hY),
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where a; (") does not depend upon either 4 or 4¢; however, there may still be some
question regarding flow-bias. Fortunately, this probably has little importance because
errors caused by flow-bias are apparently much less than discretization errors. The
evidence comes from comparing machine runs which differed in flow-bias.

The high accuracy with which total mass was conserved throughout all runs, even
runs with zero flow-bias (cf. Figures A4 and AS), strongly indicates by itself that
those errors (e.g., round-off) which grow with the number of time steps or vary with

At must have been negligible. While the first two runs of Table AII differed in the
time steps involved, they also differed in the level of flow-bias, as indicated in Table
AIII where properties of the same two runs are set out. Thus, agreement of the first
two runs in Table AII is evidence that the flow-bias has little effect on the calculated
results, particularly on the volatile mass. Similar agreement has been found in the
cases of higher-velocity collisions. Unfortunately, the argument still contains a
weakness; e.g., after almost any reinitialization, the flow-bias [viz., & in Equation
(A86)] had to be adjusted by trial and error until good overall conservation of energy
was obtained in the large ; apparently, some sort of nonlinear relationship exists between
the flow-bias and A¢. The energy degradation shown in Table AIV may be another
example of this relationship.

TABLE AIV

Calculated values for volatile mass with and without flow-bias resulting
from a low-velocity head-on stellar collision

Flow-bias Initial Final Leveling-off
factor total energy total energy value of
volatile mass

0.2 —0.137 —0.137 0.005 302
Zero —0.137 —0.144 0.004802

& Machine units; e.g., 2M, = 0.155 machine units

Further evidence of insensitivity to flow-bias comes from comparing a pair of
runs which had the same initialization except that the flow-bias was set to zero in
one. The case treated involved the head-on collision between two solar-type stars
initially approaching at a speed corresponding to zero relative velocity at infinite
separation. The calculated results are given in Table AIV, where it may be seen that
the run with zero flow-bias suffered a certain amount of energy degradation. The
lowered value of total energy correlates with a smaller value of volatile mass (see
also Table AV). Despite the unsatisfactory energy conservation, it is evident that,
at least for volatile mass, errors due to flow-bias are considerably less than discretiza-
tion errors or errors which depend upon the mesh width A (cf. Table AIl and AIV).
It is, of course, hoped that further insight into the effect of artificial dissipation will
clarify the connection between flow-bias and energy conservation.

Incidentally, the fact that the summations yielding total mass [Equation (A84)]
have been found to be independent of flow-bias (e.g., Figure A4) does not necessarily
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TABLE AV

Numerical values indicating relative effects of flow-bias on (1) maximum density at the center of
impact and (2) maximum total internal energy

Flow- Mesh Courant Values at time of maximum impact?2

bias width factor - B R

co h i Time Centfal Total Kinetic Internal
density energy energy energy

1.00 R/20 0.2 1.13 3.07 —0.135? 0.0581 0.364

0.20 0.5 1.15 3.06 —0.138P 0.0538 0.362

0.00 0.5 1.14 3.25 —0.1440b 0.0563 0.367

1.00 R5/40 0.25 1.10 3.43 —0.130°¢ 0.0654 0.405

1.00 R /60 0.2 1.11 3.65 —0.131¢ 0.0608 0.428

& Values are expressed in machine units.
b Tnitial total energy —0.137.
¢ Initial total energy — 0.136.

imply a similar situation for volatile mass. The reason has to do with the nature of the
terms o} ;AV; ;. Noting that the ¢} ; are calculated according to Equation (A94), it
follows that, except for the initial values Q';’:jl and along the boundaries of the regions
of summation, an overall cancellation of terms takes place upon an i-j summation.
Hence, the values of Equations (A83) and (A84) are determined largely by the time
summation of quantities along the boundaries of the i-j summation regions. This
telescoping of terms involves both the artificial viscosity and the flow-bias. In the
case of total mass, the inner boundaries (lower summation indices) become the axis
of symmetry (r=0) and the lateral plane of symmetry (z=0) where cancellation is
complete, leaving only the quantities on the outer boundary subject to flow-bias error.
Because of the extremely low densities at the outer boundaries, it is understandable
why the total mass is highly insensitive to flow-bias. In the case of volatile mass,
however, the inner boundaries are not such as allow perfect cancellation of terms.
Although the inner boundaries of volatile-mass summations [Equation (A83)]
generally pass through regions of slow smooth flow which should not induce ap-
preciable flow-bias, the boundary values are vulnerable to flow-bias errors through
their domains of dependence.

(D) Discretization errors are essentially those errors which arise in the course of
introducing a discrete or finite-difference representation of a system defined by a set
of differential equations. Expressions for these errors can be derived using Taylor
expansions with respect to an underlying vector function which is close to the limiting
solution of the difference scheme as Ar=4z=h—0 and 4r—0. However, this function
may stop short of the limit in the sense that necessary derivatives must always exist.
The expansions involved are of the form

Xriie,
i, J
or =X (ri z;, ") £ X, (1, 2, V) B2 4+ 120 %
X072 X X (s zjy 7 Y2) R34 £ 130 X (ry 25, € 2)-R38 .. (A9D)
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where X (r, z, t) represents the underlying function, which is very nearly the correct
solution for the model being investigated.

The assumption of differentiability may not be any more demanding than the
arguments used to set up the Lax-Wendroff difference method; i.e., the solution is
imagined to be expandable (Lax and Wendroff, 1960) to the extent that

u(x, t + At) =u(x, t) + At u, + 1/2!(4t)* u,, + 0(4%) (A92)

and, wherever possible ¢ derivatives are replaced by x derivatives from the basic
differential equations

U+ fo =0, (A93)

If Equations (A92) and (A93) are used to set up a difference analogue, some dissipa-
tion seems to be implied so that variables are differentiable across what otherwise
would be jump discontinuities, such as can occur in the solutions when the system
represented by Equation (A93) is hyperbolic. Moreover, differencing must be con-
sistent with the differential equations. Numerical solutions obtained in this way have
an important property described by the following theorem (Lax and Wendroff, 1960):
If as Ax and At tend to zero the resulting difference solution converges boundedly
almost everywhere to some function, the function must be a weak solution of the
differential system.

We shall first show that discretization errors in values of the principal dependent
variables (g, ou, ow, and P) calculated according to our difference scheme have the
form of Equation (A85). Then, we shall extend these considerations to the discretiza-
tion errors in the values of volatile mass.

Errors in Density and Other Principal Dependent Variables — In the current program,
based on the Lax-Wendroff method, the density at an arbitrary netpoint i, j is cal-
culated cumulatively according to the formula

Atk+1/2
(4
(i-1)n (

k=1

nt+1

1 k+1/2 k+1/2 k+1/2 k+1/2
Qi,;j =0Qij;— i+1/2,j i—1//2,j + Bi,j+1/2 - Bi,j—1/2) (A94)

where the quantities 4}){/5 ; and BF% 1/}, have been defined by Equations (A33),
(A36), and (A37); note, certain modifications are made in Equation (A94) for i=1,
I'and j=1, J (cf. Section 4 of Appendix).

n+l

The error in the calculated density g?f}l may be expressed by the deviation g;

l’j
k+1/2 k+1/2

—o(r;, 2 i t"“), where the lateral correction terms appearingin 4; /5, j and B; ;.'),,
e.g.,

h* (eu)iiifs o1 — 2(eu)itifs ; + (eu)iiifs -

24 h? ’

make the difference operator more correct; while, the flow-bias and the artificial
viscosity are considered part of the numerical error. Significant properties of Q?’-;-l -
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—o(ry zj, t"*1) are demonstrated below by an argument which combines induction
with observed behavior of the numerical calculations.

Starting with the induction argument, suppose that at time ¢" the components g,
ou, ow, and P of the vector function X satisfy the relation

X' =X (ryz, N+ a(ry, zj, ") h> + O (h") (A95)

where X' ; is the value calculated by the difference scheme using mesh width #; and,
X (r;, z;, t") denotes the solution of the difference scheme as /# and 4t approach zero.
In the spirit of the aforementioned theorem of Lax and Wendroff, X(r,z,t) is
conjectured to be very nearly a correct solution (or correct weak solution) of the
basic system of equations.

Denoting the difference operator corresponding to our numerical program by
S (X[ s h, A1), we proceed to advance o(r;, zj, t"), the ¢ component of the correct
solution, compensating for errors in the difference operator by means of Taylor
expansions like Equation (A91) as well as similar expansions with respect to 4¢. An
essential property of these expansions is that, since they are based strictly on the
ideal solution X(r, z,t) and its derivatives, the resulting correction terms are in-
dependent of both & and A4z. Thus, the following expression is obtained:

Q(ri: Zj: t"+1) = Q (ri: Zja tn) _I' f(X (7'1, Zm> tn)’ ha At) -
Atn+1/2
Y {G— %) & i [(eu)itifs ; — (eu)i ;] —
— (i = 3) el s [(eu)ififs; = (eu)e, ] + (i = 1) &,

x [(ew)i 5+ — (ew)i,] = (i — 1) &by [(@w)i 727 — (ew)iy 1} —

5 At"+1/2 . 1 [u?+1,j - u:’,]l (Q?+1,f - Q?’j)
—h Ko —— <+ (1_7) 7 B
(i—1)h h h
B (i _%)|u?’j — u;',l,j[ (Q'il’j - Q?—l,i) + (i _ 1) ILV?’JH—_W’"’]_' X

h h h

n

« (Q?,j+1 - Q?,j)_ (i— l)l}'}’i,j - W2j~1] (Q?,j - Q;l,ij) 4
h h h

hZ n Atn+ 1/2)3 . hZ
+ ZA)T"H/2 [ (rou),s + (QW)zs:l. ‘ + (—g— losli; — = x
y (Atn+1/2)2 E
h

i 48

1
r
i _% n l——% n " H
1 Ci+1/2,j*‘i_*1 i-1/2,; F Dijjera = Dijjoypp | +
(Atn+1/2 4 B 12 1 "
+ " Joulf  + —— A" - (rou),s + (ow),s +
(Atn+1/2)5 .
330 Leskij+- (A%6)

where y,.=0"y/0x" and

i J

+
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n

1
Cliiaj = [; (rou?),s + 3 (Quw),2; + 4 (ouw),s + Poa — 0P, — 3Q,z<15,] (A97)

i+1/2,j

D?’j+ 12 = [4 (QW“),-:& + 3 (QWH),ZZ + (QW2)23 + Pz3 - Q¢z3 - 3sz¢z]g,j+ 1/2 - (A98)

Note that in Equation (A96) the correct solution X (r;, z,, t") is subject to the dif-
ference operator rather than the numerical solution X} ,. Moreover, the terms in-
volving &} ;, €& ;, etc. originate from the flow-bias; while, the factor k, identifies the
artificial viscosity defined by Equations (A69). The quantity

h2

1
< A2 l:; (rou), + (QW),{I

n

i, J

is one of the principal error terms arising from Taylor expansions about the correct
solution; when written out more carefully it becomes

h* 2 (11 +1/2
n At (— [; (rou),s + (Qw)z{l (riz;, 1" %) +

3
1 i—% n i-—% n
oy Lemed (ivsgz 2 1) = [(eu)e] (riz1/25 25 ) +

+ [(Qw)z2] (s Zj+1/2s t") — [(Qw)z2] (7ss Zj-1/2s tn)}>’

where evaluation at ”*1/2 implies use of one or more of the Equations (A56) through
(A61).

The relationship between At"*1/2 and Ar=Az=h remains as before [cf. Equation
(A70)], viz.,

A2 = §hj(5) (A99)
where

()" = {max [(uf ;) -+ (wi,;)* + Pi/e} 13" (A100)

ij

and f is usually either 0.2, 0.25, or 0.5. In practice it turns out that

A2 < p /5 (A101)
where

5" = {ave [(ui )* + (Wi ;)* + Pisfei 132 (A102)

L, J
The above condition suggests that, as the error terms of Equation (A96) accumulate
cycle after cycle, those with higher powers of 4¢t"*1/2 contribute relatively little to
the overall error.

Empirical evidence verifies the conjecture that terms containing (4¢)™, where m>1,
make up only a small part of the total error. For, if such terms were important, the
numerical results would exhibit a dependence upon the sizes of the time steps; i.e.,
on n, the number of cycles needed to bring a calculation up to a certain point in
time; moreover, this effect would be particularly apparent when other factors are
held constant. However, calculations on the same initial-value problem are found
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to be sensibly independent of # (e.g., Table AIl), although their results do vary with
the spatial increment 4. Consequently, we neglect terms containing Az raised to a
power greater than one.

Having worked out an expression for ¢(r;, z;, t"*'), viz. Equation (A96), consider
an analogous expression for the numerical quantity o7 ; *1 In the difference program,
the density is advanced by a formula such as

oyt =al; + S (Xl b, A1) (A103)
Subtracting Equation (A96) from the above yields
Q?J;l Q (ri’ Zj’ tn+1 = Q?,j — 0 (ri> Zj’ tn)

+ [ (X[ b, A1) = f(X (1, 2, 17), 1, A1)
+ flow-bias + artificial viscosity

+ Aa(ry, z;, ") B2 + At™ T2 0 (%) (A104)*
in which n
At"+ 1/2 1
da(ry, z;, ") =— ¢ [(TQH),a + (QW),.s:l . (A105)*
r
i, J

But, strong empirical evidence has already been presented to the effect that any
appreciable contribution due to flow-bias and artificial viscosity is of the form

a, (") i + O (i)

Moreover, if Equation (A95) is true at some time step #, then the group of terms
0r j—o(ry zj, ") +f (X[ s hy At)—f (X (r}, Z,p, "), h, At) must also be of the form

a, (") h? + 0 (h*)

Therefore, if Equation (A95) holds at some time step n, it follows from Equation
(A104) that at the next time step

ot =o(r,zp ) + a(ry, 2, 1) B2 4 O (BY) (A106)
and, similarly for other components of the vector function X. The argument is
completed by noting that Equation (A95) is true initially viz.,

X5 =X (rs 25, 0) (A107)

hence, by induction Equation (A95) holds for all time steps.

Discretization errors in volatile mass arise from (1) the cumulative effect of errors
in values of the density ¢} ; and (2) inaccuracies in determining the limits of summa-
tion [cf. Equation (A83)]. The first contribution must be of the form of Equation
(A85) since it has been shown that errors in the ¢} ; are of this form, any possible
exceptions due to flow-bias are ruled out by empirical evidence that the effects of
flow-bias are relatively small, at least in values of volatile mass.

* Explicit display of 4¢»+1/2 is consistent with the correspondence of Equation (A94) to a time
integral.
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The limits of summation in Equation (A83) are a finite-difference representation
of the boundaries of the volatile regions, and as such include all the volatile-mass
elements and no more, a mass element g; ;4V; ; being considered volatile or ener-
getically capable of escape from gravitational binding if

Fr ;= {[(ou) ;1> + [(ew)i ;1°}/265, ; + PL;/(y — 1) — @, ;@7 ; > 0,(A108)

where the (ou); ; and (ow); ; are set to zero unless both fluid velocity components
u and w are directed outwards. The present considerations concern late stages of
collision calculations, when the numerical values of volatile mass have largely leveled
off and there exists only one simply-connected region per quadrant of space which
contains all the volatile-mass elements of that quadrant. Then, the lower summation
limits in Equation (A83) definitely correspond to the inner boundary of the volatile
region, the upper limits to the outer boundary. At this stage of a stellar-collision
calculation, imagine the values of F} ; to be points on a surface F(r, z, t) in the three-
dimensional space r, z, F. The calculations place F below the r-z plane for small
values of r, z and above for large values. In any quadrant, the intersection of F and
the r-z plane determines the inner boundary of the volatile region; while, the outer
boundary of this region coincides with the moving surface of the stellar fluid itself.
In fact late in a collision calculation, the outer boundaries (the upper limits of
summation) for the volatile-mass sum are largely identical with those of the total-
mass sum, the only dissimilarity being that the upper limits for volatile mass do not
always include the entire outer surface. As in considerations involving flow-bias, the
fact that total mass remains highly constant during all numerical calculations implies
that effects due to the upper limits of summation must be negligible. For, if such
errors were appreciable, they certainly would have appeared sometime or somewhere
as a degradation in total-mass conservation. The effects of the lower limits, however,
remain to be investigated; and, an approximate formula will be derived for estimating
the errors due to small shifts in the lower boundary of the volatile region.

Consider the upper righthand quadrant of the r-z plane, and successively number
the netpoints composing the inner boundary of the volatile region in this quadrant
starting from a convenient initial point on the z-axis and proceeding clockwise around
the boundary. Let the index for this boundary sequence be 6 =1, 2, ---, where each
value of ¢ implies a netpoint i, j, and a pair of coordinates r,, z,. In the late stages
of a calculation the boundary sequence can be made to enclose the entire gravitative
non-volatile region, and the area S of this region is given by

S=t|zb+ T 200 - o). (A109)
o>1
while to a good approximation the corresponding volume of revolution is
€gn [Zlh2/4+ Z raza(ra+1 - ra—l)] (AllO)
c>1

which now embraces the upper half of the r-z space.
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Small variations in the inner boundary of the volatile region might be expressed
most simply by a change of coordinates r,, z,—r,, z, +9z,, the number of boundary
points and their r-coordinates being held fixed as a first approximation. Then, ac-
cording to Equation (A110), the corresponding variation in volume and in volatile
mass respectively would be approximately given by the following summations, where
from now on the upper summation limit is considered truncated at some o (max)
beyond which no variations in the r,, z, take place: namely,

8 ~ + 2nh? [521/8 + > (i, — 1) 525] (A111)
a>1
and for the full -z space
OM, ~ — 4nh? [Q1521/8 + Y (i, —1) Qdéza] . (A112)
c>1

The latter enables us to estimate the magnitude of the error due to uncertainties
in summation limits.

Let the first step involving Equation (A112) be an identification of the oz, with
the probable position errors of points determining the inner boundary of the volatile
region, as this exists in the later stages of head-on stellar-collision calculations. It
has been found empirically in such calculations that the location of the inner bound-
ary is generally insensitive to mesh width 4; e.g., upon comparing two runs identical
except that A=h; =R/20 in one and h=h,=R/40 in the other, the locations of
the inner boundaries agree within ~#,, at least, during later periods of the calcula-
tions. Such observations are interpreted to mean that

162, ~ h (A113)

and, hence, the corresponding error |¢,,| in volatile mass is estimated to be approxim-
ately
le,,| =~ 4nh® [% + Y (i, — 1)] 2, (A114)
a>1
where ¢ denotes a sort of weighted average density along the inner boundary of the
volatile region. Note however that, if the variation of g, with ¢ is appreciable, points
with larger i, would be favored.
For a pair of runs which represent a head-on stellar collision starting from zero
relative velocity at infinite separation (cf. Table AlIl), it turns out that

hy =Ry/20, M,=0.00530, |e,| < 0.0008
and
h, = Ry/40, M,=0.00700, le,| <0.00028.

Particularly in the case of 4,, the above values of |¢,| are much smaller than the
observed variations with A.

If it is not admissible to neglect the errors due to inaccurate summation limits,
a relationship can be set up between the dz, of Equation (A112) and variations in
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the surface F(r, z, t), whose intersection with the r-z plane determines the curve
which the variable part of the boundary sequence ¢ =1, 2, --- represents numerically.
A variation JF in the neighborhood of the curve of intersection would cause this
to shift by an amount

ds = 6F|(F? + F})'*, (A115)
or in terms of components along the r and z directions

or = — OF F,/(F? + F?)
and (A116)
8z =— 6F F,/(F? + F}).

The minus signs are appropriate because the shift is opposite the small displacement
which when multiplied by VF yields the change in F. A continuous variation JF near
the curve of intersection would generate a strip-like area which is a measure of the
change in the region of summation.

According to the defining equation for F [viz., Equation (A108)], a small variation
in Fis a function of the small variations in the variables g, ou, ow, and P. If variations
of these variables are associated with numerical errors, they should be of the form

SX!; = a(ry, z;, t") h* + O (h*), (A117)
Hence, we can write

OF = aph* + O (h*), (A118)
and then by Equations (A116)

0z = a,h* + 0 (h*), (A119)

where the above relations apply to a small shift in the curve of intersection between
the surface F and the r-z plane. Because of their origin, the coefficients of 4* in
Equations (A118) and (A119) are sensibly independent of both 4 and Az. Before
these values of, say, dz; ; can be identified with the dz, in Equation (A112) a certain
discretization must be performed; i.e.,

oz: .
6z, = h[——z"’”":l
h

=h[— F,0F, ; [h(F? + F)]; (A120)

the brackets denoting truncation down to the nearest integer. Given a fine enough
network of points so that the above considerations are statistically meaningful, the
combination of Equations (A112) and (A120) would imply that

&m = ay(f") h* + O (h*), (A121)

where ¢, denotes the error in volatile mass due to uncertainties in the limits of
summation. However, as illustrated by the estimates obtained using Equation (A112),
this component of error generally tends to be relatively small.
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The above discussion completes the argument that discretion errors in our cal-
culated values of volatile mass are of the form expressed by Equation (AS85).
Order of Magnitude of Discretization Errors. — Having justified the formula

M= M, (") + a(?) h* + O(h*), (A85)

where M| denotes the numerical value of volatile mass at time ¢” and M, (¢") the correct
value, consider an estimate of the error terms a(¢") #* and O (h*). Some appreciation
for these may be gained by fitting an expression of the form

X; = X + ah? + bh} (A122)

to the numerically-determined results listed in Table AII; i.e., results from stellar-
collision calculations using mesh widths #; =R /20, h, =R /40, and h; = R/60. This
procedure is valid to the extent that the coefficients of 4* and A* can be treated as
being independent of both /4 and the time steps Az. Incidentally, the run with A,
remains incomplete because of the large machine expense that would have been
necessary for its completion.

The variables whose A-variations were fitted to Equation (A122) are: (1) maximum
density at the center of impact, (2) maximum total internal energy, and (3) the
volatile mass prior to leveling off. The first two are evaluated at maximum compres-
sion; however, the justification that their numerical values satisfy an expression like
Equation (A85) may be less convincing than in the case of the leveling-off value of
volatile mass. The uncertainty arises because of the effects of flow-bias in certain
regions lying near the center of impact where incoming fluid is sharply decelerated
during compression. This process takes place for a time starting just after first contact
between the colliding objects and continues just beyond maximum compression, but
its duration is much less than the time required to achieve leveling-off in the volatile
mass. Each run is affected similarly regardless of mesh width 4 or A4¢.

Support for the view that cumulative flow-bias errors are generally small comes
from examining runs having zero or very little flow-bias, although the strength of
the evidence is compromised by a failure of these runs to satisfy the conservation
of energy. Certain details with and without flow-bias are shown in Table AV, where
it is seen that variations with respect to /# are much greater than changes resulting
from the different levels of flow-bias. It should be noted that, since the flow-bias
level is essentially controlled by the product of terms Yeolul ;|41 12 [h=%eof|us I/
(§)* [cf. Equations (A86) and (A87)], the largest change in flow-bias occurred when
¢o was dropped from 0.20 to 0.00 while holding #=R/20 and {=0.5.

If the three maximum densities obtained from Table AIl for A, =R/20, h, =%h,
and h;=1h, are substituted successively into Equation (A122), three simultaneous
equations result; i.e.,

3.07 = x + ah? + bhj,
3.56 = x + Lah? + {bh?,
3.93 = x + Lahi + §bht, (A123)
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which yield when solved for x, ahi, and bh}

x =+ 4.289,
ah? = —3.481,
bht =4 2.262; (A124)

the units being such that the initial central density of the solar-like stellar model is
unity. From a similar set of relations for maximum internal energy, one obtains the
following values expressed in terms of machine units:

x =+ 0.4499,
ah} = —0.2107,
bhT =+ 0.1248. (A125)

If E(max) is introduced to denote the maximum internal energy of the system and
the above numbers are transformed into ergs, the values of Equations (A125) become

E(max) =+ 1.884 x 10**° ergs,
ahi = —0.8824 x 10**° ergs,
bh{ =+ 0.5227 x 10**° ergs, (A126)

where the computational error in E(max), considered our best value for the maximum
internal energy in the course of a zero initial-velocity collision, is somewhat less than
ah’ +bh; = —0.092 x 10*4° ergs.

For the case of the volatile mass at a certain time prior to leveling off, the solution
of the three simultaneous equations obtained by substituting values from Table AII
into Equation (A122) is

x =+ 0.006 16,
ah? =—0.01050,
bhi =+ 0.00554 : (A127)

here the units are such that 0.155 equals 2M,. Of the three, (1) maximum central
density, (2) maximum internal energy, or (3) early volatile mass, the latter is subject
to greatest uncertainties, perhaps because it falls on the rapidly rising part of the
curve of volatile mass vs. time where the program is being required to handle large
dynamic changes.

Convergence of the error terms is certainly poor for the coarse-zoned calculations
(viz., h=h; =R [20), suggesting that this mesh size does not include enough detail.
When h=h,=%h, or better still A=h3=1%h,, the error terms are more acceptable,
in the case of h; =3%h,, for maximum density

x =+ 4.289,
ah? = —0.387,
bh% =+ 0.028; (A128)
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and for maximum internal energy

x =+ 0.4499,
ah? =—0.0234,
bhs =+ 0.0015. (A129)

It would be convenient to be able to identify the above values of x with correct
values, but they still contain an unknown margin of error. Some measure of this
residual error might be obtained if it were possible to evaluate the terms x,, aoh?,
boht, and cyh? of the higher-order expansion

But, this would require results from a run at yet another mesh width; e.g., A, =%5;.
While such results are not available, an attempt has been made to locate the upper
and lower bounds for reasonable extrapolations of maximum central density and
maximum internal energy to the smaller mesh width A=2%A,. From bounds thus
estimated, together with the numerical results for 4, h,, and k5, a corresponding
range of values for x, has been calculated. Then assuming that x, (min) <x <x, (max),
we write for maximum density at center of impact

x=+429 +0.12 (A131)
and for maximum internal energy

x =+ 0.450 + 0.007
or (A132)
E(max) = + (1.88 + 0.03) x 10**° ergs.

Taking the above values of x as standard, consider the degree of improvement
obtainable by applying Richardson’s method (cf. Forsythe and Wasow, 1960;
Isaacson and Keller, 1966; et al.) to pairs of results from calculations with mesh
widths s, =R/20 and h, =1h,. This question is interesting because calculations of
the leveling-off values of volatile mass are only available for mesh widths 4; and #,,
and from these the best possible values should be obtained. Since the coefficient
a(t") in Equation (A85) is sensibly independent of both mesh width # and the time
steps 41, the error term a(¢”)Ah* can be eliminated using the results of two runs which
are identical except for mesh width; this is the essence of Richardson’s method for
deferred extrapolation to zero mesh width. When the error terms satisfy Equation
(A85), the formula for the improved value is

% = (4x, — x1)/3, (A133)

where x, denotes the result for mesh width 4, =%h; and x; for h=h,.

On the other hand in the case of the quantities which have been fitted to Equation
(A122), x is the best value available; moreover, a relationship exists between x and
the % defined above; i.e.,

% = (4x, — x,)/3 =x — bht/4. (A134)
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Let x be taken as a sort of standard; then the error in % is bhf/4, and the results
according to Richardson’s method are:

o(max) =+ 3.72%3:30  mach. units,

E(max) =+ 0.41913:355 mach. units;
or (A135)
E(max) = (1.75473:539) x 10**° ergs,

M, (early) = + 0.00481 39986 mach. units.

The errors quoted come directly from Equation (A134); and, the improvement
gained by Richardson’s method can be gauged by comparing bh?/4 in each case with
ah? +bhj, the latter being the error in x,. For the case of ¢(max), bh}/4=0.57 and
ah? +bhi=—0.73; for E(max), bh$/4=0.031 and ahj+bh;=—0.045; while for
M, (early), bh*/3 =0.0014 and ah} +bh; = —0.0023.

Thus, by analyzing the changes with respect to mesh width /4, we are able to acquire
some idea of the magnitudes of the discretization errors contained in our current
numerical results, which rely for the most part on calculations using only the two
mesh widths A=h, =R /20 and h=h, =R/40.
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