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Abstract. Using an equation of state for cold degenerate matter which takes nuclear forces and
nuclear clustering into account, neutron star models are constructed. Stable models were obtained
in the mass range above 0.065 M, and density range 101498 to 10%5-4 gm/cm3. All of these models
were found to be bound. The outer crystalline layer of the star was found to have a thickness of
200 m or more depending on the mass of the model.

1. Introduction

In a recent paper (Cameron and Cohen, 1969), it was shown that stellar models inter-
mediate between white dwarfs and neutron stars are dynamically unstable. In partic-
ular, it was found that stellar models beyond the white dwarf peak (~10'°-3 gm/cm?
for a white dwarf composed of pure carbon) and below 10'* gm/cm?® are dynamically
unstable. These calculations were carried out using an equation of state which takes
nuclear clustering into account.

The nuclear clustering problem can be stated as follows: if a box is filled with free
neutrons, protons, and electrons of a given density and zero net charge, what will
be the final equilibrium composition? Will the box remain filled with free particles
or will clusters (nuclei) form? At typical white dwarf density (~10° gm/cm?), the final
equilibrium composition is: clusters (nuclei) and electrons if the temperature is
sufficiently low. In fact, if 7<10° K, the nuclei form a crystalline lattice (Van Horn,
1968). The lattice forces alter the equation of state from that of a degenerate electron
gas (Salpeter, 1961) which in turn alters the equilibrium white dwarf models (Hamada
and Salpeter, 1961) from those of Chandrasekhar (1935) and lowers the pulsation
frequency (Cohen ez al., 1969). In the latter calculations the contribution of the
lattice structure to both the energy density and pressure was included. On the other
hand, at typical neutron star densities (~10'> gm/cm?), the equilibrium composition
is: neutrons, protons, electrons, muons, and hyperons. At 104 gm/cm?, only neutrons,
protons, and electrons are present at low temperatures.

In the region intermediate between white dwarf and neutron star densities (~ 10*?
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gm/cm?), the equilibrium composition is (Cameron and Cohen, 1969): electrons,
neutrons, and clusters (nuclei). The clusters become more and more neutron rich as
the density rises. The existence of the clusters drastically alters the equation of state
from that of a free neutron, proton, and electron gas. Whereas, neutron stars composed
of such a gas are dynamically stable, the stellar structures beyond the white dwarf
peak and below 10'* gm/cm?® were found to be dynamically unstable (Cameron and
Cohen, 1969) when clustering was taken into account. This instability is because
clusters, electrons, and neutrons supply less pressure at low temperatures than a free
Fermi gas of neutrons, protons, and electrons.

In the calculations of Cameron and Cohen (1969) the nuclear potential energy
between the nucleons in the cluster was taken into account via a semi-empirical mass
formula but nuclear interactions in the neutron gas were neglected. In this paper, we
include these interactions using the velocity dependent V, potential of Levinger and
Simmons (1961) in the manner described by Weiss and Cameron (1969). In a previous
paper, the equation of state was given in the region between 3 x 10'* gm/cm?® and
10'* gm/cm? (Langer et al., 1969). Here we extend the equation of state up to 10'¢
gm/cm?, including muon production but neglecting hyperon production; the equation
of state is then used to construct general relativistic neutron star models. The numerical
method used to construct general relativistic equilibrium models and to determine
their stability is discussed elsewhere (Cohen ef al., 1969).

2. Equation of State

For degenerate matter, the equation of state takes the simple form p=p(g) where p
is the pressure and g is the energy density. This pressure can be obtained from the
thermodynamic relation (Landau and Lifshitz, 1958; Chiu, 1968).

TdS =dE + pdV — Y y; dN;, (1)

where 7 is the temperature, S the entropy, E the energy of the system, V' the volume,
u; the chemical potential of the ith particle, and N, the number of particles i. The
chemical potential is given by

0E do
"= — =T > (2)
aM S,V aNl p, T
where ¢ is the thermodynamic potential (or Gibbs free energy) defined by
o=E—~TS+pV. (3)
At first sight it seems as if the pressure p is given by
O0E @
 Wlsw,

however, it can be shown that it is not necessary to hold the particle numbers N;
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constant. This follows from the requirement that, for an equilibrium configuration,
the thermodynamic potential ¢ takes its minimum value for fixed p and 7, given by

dN; d¢
-~ =0 5)
dN; ON,

ip, T

i

The derivative of the thermodynamic potential with respect to each type of particle
J vanishes. Substitution of the definition of the chemical potential y; (Equation (2))
into Equation (5) yields the relation

Y dN; =0 (6)

after multiplying by the arbitrary quantity dN;. Because of Equation (6), Equation (1)
takes the familiar form

T dS = dE + pdV, (7)

and the expression for the pressure becomes likewise

P=—ﬁ/s- (3

|

Although the Expression (8) for the pressure is the same as that when particle numbers
are constant, the contribution of created or captured particles is automatically taken
into account via their contribution to the energy E.

The Expression (8) can be brought into a simple form containing only the baryon
number density n= N/V and the energy density ¢ = E/V by substituting these expres-
sions into Equation (8) and observing that baryons are conserved:

|
p=n ;9_@‘ —0. 9)
ns

Since we have considered elsewhere (Langer et al., 1969) the region where neutrons,
nuclei and electrons are the equilibrium composition, we will restrict ourselves here to
the region above 6x 10'* gm/cm® where the equilibrium composition is neutrons,
protons and electrons with muons appearing when their threshold is exceeded.
Hyperon production will be considered elsewhere.

The equilibrium composition can be obtained by minimizing the energy density o
of the system of particles (keeping S and ¥V constant) subject to the constraints that
baryons and charge be conserved:

5IIS,V=0> (10)
where
I=¢+a(n,—n,—n,)+ p(n,+n,). (11)

Here « and f are the Lagrange multipliers associated with charge equality and baryon
conservation, respectively.
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*In the region below the muon threshold, n, vanishes and there is no muon contribu-
tion to ¢; consequently, differentiation of Equation (11) yields

O=ypu,—a, (12a)
O=u,+a+p, (12b)
O=upu,+8, (12c)

where the u; are the chemical potentials defined in Equation (2). Elimination of the
Lagrange multipliers yields

Mo = Py + He (13)

while charge conservation yields the requirement that there be the same number of
protons and electrons

=n,. (14)

If one of the three quantities n,, n,, n, is chosen, the other two can be determined from
Equations (13) and (14).

Above the muon threshold, muons will be present and their number density as well
as their threshold can be determined from Equations (10) and (11) giving the relations

O=ypy,—a, (15a)

O=yp,+a+p, (15b)

O=upu,+§B, (15¢)

O=up,—a. (15d)
Elimination of the Lagrange multipliers yields

ln = Mp + He> (16a)

Hy = He> (16b)

and charge equality yields
n,=mn,+n,. (16c)

Although the muon chemical potential goes from zero to a finite value of 105.7 MeV
when the electron Fermi level reaches this value, the muon number density » increases
smoothly with electron Fermi level E,,. This is because the muon number density

n,= 87rp3/3h3 17)
and
pp = (s — my)'"%. (18)

Consequently, at the muon threshold, the muon number density is zero.

In Table I, the number densities of the different particles are given in the density
range above 10'* gm/cm3. The effect of hyperons has been neglected here and will
be treated elsewhere. The equation of state will be affected by the presence of hyperons
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above densities in the vicinity of 3 x 10'* gm/cm?>. The numbers in the table above
the hyperon threshold are used in this paper, but since hyperons are not included,
points above the hyperon threshold are of provisional interest since they are used in
the construction of the models given in this paper.

TABLE I
Equation of State Variables
0 P x 10% r No N(p) Ne) NGO
g/cm? dyne/cm? 1030 cm—3 1030 ¢cm—3 1030 cm-—3 1030 ¢m—3

1.01 x 1014 4.27 x 102 292 5.93 x107 9.81 x 105 9.81 x 105 0.0

1.51 x 1014 1.41 x 103 298 B8.75 x 107 2.40 x 108 2.40 x 108 0.0

2.00 x 1014 3.17 X 108 296 1.14x108 4.38 x 108 4.38 x 106 0.0

2.19 x 1014 4,18 x 103 295 1.25x108 5.38 x 108 5.37 x 106 1.16 x 104
2.51 x 1014 6.19 x 10® 294 1.41x108 7.59 x 108 7.05 x 108 5.39 x 105
3.02 x 1014 1.05 x 104 293 1.67 x 108 1.21 x 107 1.00 x 107 2.10 x 108
4.00 x 1014 2.29 x 104 291 212x108 2.36 x 107 1.69 x 107 6.74 x 108
5.03 x 1014 4.24 x 104 2.89 2.55x108 3.88 x 107 2.54 x 107 1.34 x 107
6.02 x 1014 6.75 x 104 2.88 292 x108 5.55 x 107 3.46 x 107 2.09 x 107
7.00 x 1014 9.87 x 104 2.87 3.26 x 108 7.36 x 107 4.43 x 107 2.93 x 107
8.06 x 1014 1.40 x 105 2.87 3.59 x 108 9.43 x 107 5.53 x 107 3.90 x 107
9.04 x 1014 1.83 x 103 2.87 3.87 x108 1.13 x 108 6.54 x 107 4.81 x 107
1.00 x 1015 2.32 X 10° 2.87 4.14 x 108 1.33 x 108 7.57 X 107 5.74 X 107
1.50 x 1015 5.56 x 105 2.89 5.27 x 108 2.28 x 108 1.25 x 108 1.03 x 108
2.00 x 1015 9.89 X 105 2.89 6.18 x 108 3.12x 108 1.68 x 108 1.44 108
3.01 x 1015 2.00 x 106 2.87 7.56 x 108 4.48 x 108 2.38 x 108 2.10 x 108
4.01 x 1015 3.14 x 108 2.85 8.62x108 5.57 x 108 2.93 x 108 2.64 x 108
5.00 x 1018 4.35 x 108 2.83 9.50 x 108 6.47 < 108 3.39 x 108 3.08 x 108
5.35 x 1015 4.80 x 108 2.83 9.78 x 108 6.77 x 108 3.54 x 108 3.23 x 108

From Table I it can be seen that the muon threshold is about 2.2 x 10'* gm/cm?.
This is lower than the threshold obtained by Tsuruta (1964) who assumes a free Fermi
gas when computing the composition. The depressed muon threshold obtained here
may seem surprising since muons do not seem to participate in strong interactions.
However, the depression of the muon threshold is an indirect effect of nuclear inter-
actions. The number density of protons is higher when nuclear forces are taken into
account. Consequently, the electron number density and Fermi level, given in Table II
also increases because of charge equality. Thus the electron Fermi level reaches the
muon threshold 105.7 MeV at a lower mass density when nuclear forces are taken
into account.

The energy density of the system of particles is given by

Bri
0= 3 [ (m+ o ()" dn
nfi nfj (]‘9)

0
+%Z.IJB('I"’ n;) dn; dn;.
i J
0 0
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TABLE II

Particle energies
e Ki(m) ps(m)  Ki(p) wr(p) pr(e)
gm/cm3 MeV MeV MeV MeV MeV

1.01 x 1014 29.4 946.52 192 886.5 60.6
1.51 x 1014 28.3 952.6 3.50 871.0 81.7
2.00 x 1014 45.5 960.5 535 860.6 99.8
2.19 x 1014 48.3 964.3 6.02 8574 1069
2.51 x 1014 52.4 970.7 7.68 853.7 117.1
3.02 x 1014 58.3 982.1 104 8504 131.7
4.00 x 1014 68.0 1008 16.2 851.1 156.6
5.03 x 1014 76.6 1038 224 859.0 179.5
6.02 x 1014 83.6 1071 28.5 872.0 198.9
7.00 x 1014 89.6 1105 342 888.9 216.0
8.06 x 1014 954 1144 40.3 911.1 232.6
9.04 x 10+ 100.1 1180 45.4 933.9 2459
1.00 x 101> 1044 1218 50.4 959.4 258.2
1.50 x 10%5  121.5 1415 71.3 1110 305.0
2.01 x 1015 134.3 1621 87.4 1284 3371
3.01 x 1015 1507 2005 109.8 1627 378.1
4.01 x 1015 165.1 2362 1259 1956 4054
5.00 x 10%5  175.2 2691 138.4 2265  425.6
535 x 1015 1785 2806 142.3 2374 4319

The first integral is the sum of the kinetic energies of the particles while the latter
given the sum of the nuclear potential energies assuming a two particle interaction.
For this energy density, the expression for the electron chemical potential x, becomes

He = (mg +p_?’e)1/2 = Ej‘a (20)

where p . is the Fermi momentum and E is the Fermi energy of the electron. Similarly
for the neutrons, we obtain

nfj

f
po = (mg +p7)'"% + Z f B(nsy, ny) dn;. (21)
J
0

Here the neutron chemical potential is given by the sum of the neutron kinetic energy
at the top of the neutron Fermi sea and the sum of the nuclear potential energies
between a neutron at the top of the neutron Fermi sea and all the other baryons in
the system.

The second term in Equation (19) can also be expressed as the average nuclear
potential energy per baryon of type i times the number of baryons of type i giving

¢= zt: f (mlz +Pi2(”i))1/2 dm; + Z n;<{B;. (22)
0
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Consequently, the neutron chemical potential also takes the form

o= (mZ + p3)"2 + (B, + X nd, (B (23)

For a detailed discussion of this see Langer et al. (1969).
Once the number densities of the constituents have been determined, the equation

of state can be obtained from Equation (9) and the expression for the energy density.
The equation of state is tabulated in Table 1.

3. Model Calculation

In this section we discuss the construction of equilibrium models and the determina-
tion of their stability. For equilibrium models, Einstein’s equations take the well-

25

GRAVITATIONAL MASS
L PROPER MASS -—-—-------

7 8 9 10 I te i3
LOG CENTRAL DENSITY

Fig. 1. Gravitational mass and proper mass vs. central density.

known form (Landau and Lifshitz, 1962; Cohen et al., 1969; Oppenheimer and

Volkoff, 1939)

d.m = 4nrio, (24)

¢?0,0 = G(m + 4nr’plc®) r~ (r — 2Gm/c?) ™!, (25)
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2y .2
8,p=— (e + p/c*) c“0,0. (26)

Here the radial coordinate r is defined (Cohen and Cohen, 1969) in such a way that
the surface area of a sphere of radius r is 4nr?, @ corresponds in the weak field limit
to the gravitational potential, and m is the gravitational mass. Machine integration
of these equations, using the equation of state described in the previous section, gives
the gravitational mass and radius of neutron star models as a function of central
density. This is shown in Table III and Figure 1.

The proper mass of a star is the sum of the masses of the particles in the star when
the star is broken up into particles and all the particles are given infinite separation.

TABLE I
Log mass/1033 gm  Proper Radius To Binding
central density mass/10%% gm  km ms energy/1033
gm/cm3 gm
16 4.10 4.85 9.39 U
15.8 4.35 5.30 9.84 U
15.6 4.62 5.77 10.49 U
15.4 4.83 6.11 11.36 (0]
15.3 4.87 6.14 11.87 505 1.27
15.2 4.82 6.02 12.41 0.83 1.20
i5 4.28 5.14 13.39 0.49 0.86
14.8 3.11 3.52 13.91 0.41 0.41
14.6 1.73 1.85 13.79 0.40 0.12
14.4 0.754 0.778 13.80 0.44 0.024
14.2 0.279 0.283 17.72 1.31 0.004
14.1 0.164 0.166 33.41 5.25 0.002
14.06 0.134 0.135 76.4 22.6 0.001
14.04 0.124 0.125 305.0 2222 0.001
14.02 1.45 1.45 2233 U
14 1.45 1.45 2233 U
13.8 1.46 1.46 661.4 U
13.6 1.41 1.41 566.4 U
13.4 1.39 1.39 564.1 U
13.2 1.39 1.39 563.5 U

When this is done many particles decay but the number of baryons remains constant.
The remaining particles are protons and an equal number of electrons. Consequently,
the proper mass can be found by adding the mass of the proton and the electron and
multiplying by the baryon number. The proper mass is given in column 3 of Table III.

The adiabatic index I'y = (¢™* + ¢/p) ,pl;, (27

is given in Table I. The pulsation period for small oscillations of a stellar model can
be obtained by perturbing the star and solving an eigenvalue equation for the perturba-
tions. The pulsation equation has been derived directly from Einstein’s equations
(Taub, 1962; Chandrasekhar, 1964; Cohen, 1969) and via variational principles
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(Chandrasekhar, 1964; Cocke, 1965; Harrison et al., 1965). A numerical method of
obtaining the pulsation periods, valid even for models with density discontinuities,
is given by Cohen et al. (1969). Since the age of the star is much larger than the
electron capture, beta decay, nuclear reaction, and elementary particle interactions,
these lifetimes can be assumed to be zero relative to the age of the star. Consequently,
by computing the stellar pulsation period assuming instantaneous electron capture,
etc., it can be determined whether or not the model exhibits secular instability. The
fundamental pulsation period is shown in Figure 2. If the fundamental pulsation

FUNDAMENTAL.
PERIOD |
IN

MILLISECONDS

FUNDAMENTAL PERIOD IN SECONDS

0 L 1 1 1 1 1 | | L
7 8 9 10 hl 12 13 14 15 16
LOG CENTRAL DENSITY

Fig. 2. Fundamental period vs. log central density.

period is imaginary, the star exhibits secular instability unless non-linear effects
stabilize the model for large pulsations. This can be determined using a full non-
linear hydrodynamic computer code (see, e.g. Cocke and Cohen, 1968, 1969, and the
references cited there). For a discussion of the effects of electron capture and beta
decay rates on stellar pulsation periods and on the stability of stellar models see,
e.g., Cohen et al., (1969) and Chiu and Cohen (1969).

The maximum mass of these neutron star models was found to be about 2.4 M,
while the minimum mass is about 0.065 M. Unlike some neutron star models given
by others (Meltzer and Thorne, 1966), all of the stable neutron star models given
here are bound including those with mass less than 0.15 M. The models intermediate
between white dwarf and nuclear density which were believed to be stable but unbound,
are found to be unstable when nuclear clustering is taken into account. These results
are in agreement with those obtained using an equation of state which neglected the
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nuclear interaction between the neutrons in the neutron gas between the clusters
(Cameron and Cohen, 1969). The gravitational mass and proper mass of the neutron
star models are plotted in Figure 1 as a function of central density.

TABLE IV TABLE V
Density distribution. Central
Muon Threshold 2.2 X 1014 gm/cm3 density = 10%4-5 gm/cm?

Nuclear Break-up 6.0 X 1013 gm/cm3

Proton Threshold 4.0 X 10*3 gm/cm3 DenSlt}; Mass 1}: adius

Neutron Threshold 3.0 X 101t gm/cm3 gm/cm gm m
3.16 x 1014 0 0
3.15 x 1014 1.37 x 103° 1.01
3.10 x 1014 1.10 x 1031 2.04
3.03 x 1014 3.33 x 103! 2.96
2,90 x 1014 8.67 x 1081 4.10
2.74 x 1014 1.70 x 1032 5.18
2,60 x 1014 2.51 x 1032 5.97
2.39 x 1014 3.80 x 1032 6.95
2.2 x 104 5.01 x 1082 7.72
2.15 x 1014 5.57 x 1032 8.06
1.82 x 1014 7.26 x 1032 9.00
1.45 x 1014 9.14 x 1082 10.0
9.64 x 1013 1.08 x 1033 11.0
6.0 x 1013 1.148 x 1033 11.52
4.0 x 1013 1.164 x 1033 11.70
1.94 x 1012 1.172 x 1033 12.0
2.85 x 1012 1.172 x 1033 12.18
1.49 x 1010 1.172 x 1038 13.0
2.97 x 108 1.172 x 1083 13.5
2.04 x 10* 1.172 x 1033 13.68

In Table IV, the density at the muon threshold, etc. is tabulated. In Tables V to VIII,
the mass and density distributions of various models are given. The difference between
the radius at the outer boundary of the neutron star model and that at the neutron
drip line gives the minimum size of the outer crystalline layer of the model.
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