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Abstract. An equation of state for cold matter above white dwarf densities is evaluated. The gas is
considered to be a mixture of degenerate neutrons, protons and electrons combined with nuclei of one
type (that is only one 4 and Z value). We derive the equilibrium equations for the mixture and cal-
culate the number densities as well as the 4 and Z of the nucleus. Finally we calculate an equation of
state, which smoothly goes over to that of a neutron, proton electron gas mixture at a density of
~ 5 x 1013 g/cm3.

1. Introduction

It has only been recently that attempts have been made at developing an equation of
state for matter denser than white dwarf matter (¢ ~3 x 10" g/cm?) and less dense
than nuclear matter. At high densities a mixture of degenerate elementary particles
is assumed to exist, and at lower densities heavy nuclei are in equilibrium with a
degenerate electron gas. Salpeter (1961) calculated the nuclear species which would
be in equilibrium with the electron gas (which prevents the nuclei from breaking up
by beta decay because of the high energy required of the electron to fill an unoccupied
state in the fermi sea). Cameron and Cohen (1969) extended this region by considering
also the equilibrium with a degenerate neutron gas when the electron fermi level,
E;(e™), is greater than 23 MeV. The high fermi level of the neutron gas prevents the
neutron-rich nuclei from decaying via neutron emission. The degenerate neutron gas
has shifted the ground state of the medium surrounding the nucleus permitting posi-
tive energy neutrons to exist in the nucleus. These nuclei would be unbound in a
vacuum. :

In previous equations of state, (Tsuruta and Cameron, 1966) the electron level was
held constant in the region 3.7 x 10'* <p <4 x 10'* and the nuclei were allowed to
break up slowly until at nuclear densities only neutrons, protons, and electrons
existed. In the scheme of Cameron and Cohen (1969) the electron fermi level increases
to 94 MeV and the neutron level (including rest mass) to about 948 MeV. The nuclei
are expected to grow larger and more neutron-rich until they merge with the outside
gas at nuclear densities.
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In this paper we treat the problem in detail, deriving Cameron and Cohen’s equa-
tions from both an equilibrium relation and from a thermodynamic potential. We also
derive an additional relationship such that the full set of equations may be solved as
a function of a single parameter.

The second important addition has been the inclusion of a two-body interaction
between the nucleons in the degenerate gas. This interaction makes it possible for
protons to exist in the gas outside the nucleus.

As the density increases the protons in the degenerate gas become numerous and
the nuclei decrease in number density. At g=~5x 10'® g/cm® the protons in the gas
balance the electrons (charge neutrality) and no nuclei are present. We have con-
sidered our system to be a cold degenerate, T=0°K, gas.

It should be emphasized that without the nucleon interaction no protons would
appear and nuclei would be present until the entire system was at nuclear densities.

2. Nuclear Equilibrium at Zero Temperature

Previous calculations of the nuclei which exist in equilibrium at zero temperature
in a dense gas have employed the minimization of the following function (Salpeter,
1961; Tsuruta, 1964):

b= B(4,Z) - ZE,(e), (1)

B(A, Z) is the binding energy of the nucleus with mass number A and charge Z, and
E(e”)is the fermi energy less the neutron-proton mass difference of the gas of elec-
trons surrounding the nucleus. To find the minimum energy nucleus at a given fermi
level of the electron, one first substitutes into Equation (1) the binding energy,
B(A, Z), from the mass formula and then minimizes the total function b with respect
to 4 and to Z. This method yields nuclei which become more and more neutron-rich,
until at densities of approximately 3 x 10'* gm/cm?, corresponding to a fermi level of
about 23 MeV, the function b turns negative, so that as a result of electron capture the
nucleus breaks up into A4 free neutrons.

The function b represents the binding energy of a nucleus with respect to A4 free
non-degenerate, non-interacting neutrons. It may be derived from the electron cap-
ture reaction equation, considering only the effects of the degenerate electrons,

(A, Z)+ Ze” 2 AN + Zv,. : (2)

However, as pointed out by Cameron and Cohen (1969), the effect of the degenerate
sea of neutrons will be to suppress the ejection of neutrons from a neutron-rich nucleus
because of the reduced phase space allowed to the emitted neutron.

One may derive a new function to be minimized from Equation (2) which includes
now the effects of the fermi levels of the electron and neutron gases,

g=B(A,Z) - ZE;(e”) + Au,(n), (3)

where pi;(n) is the fermi energy of the neutron gas (usually written E (rn) when no
binding effects are included).
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Minimization of the function g with respect to first Z and then A4 yields

0B(A,
Ej(e) = % @
0B(A, Z
py(n) = — —(67—) Q)

In discrete form, dB(A, Z)/0Z and dB(A, Z)[0A are the beta decay energy and the
binding energy per last neutron, respectively, of the (4, Z) nucleus. It is interesting
to note that we arrive at the same results as did Cameron and Cohen (1969), but that
Equations (4) and (5) were derived by a different technique.

The binding energy of the nucleus, B(4, Z), used in these calculations is found from
the mass formula of Green (1954).

A —27\* 2
B(A,Z):ocA-{-B( Y )A+yA2/3+—— (6)
where

a=—15.756 MeV.
= 23.694 MeV.
y= 17.794 MeV.
o= 0.710 MeV.

It should be noted that nuclear shell effects have not been included in these considera-
tions. Inclusion of an asymmetry surface term in the mass formula will yield a more
neutron rich equilibrium nuclei at a given density but will not significantly change the
equation of state.

3. Statistical Equilibrium

Minimizing the equilibrium equation determines which nucleus (4 and Z numbers)
will be in equilibrium with a given set of fermi levels for a degenerate neutron and
electron gas. To solve the equation of state of the gas we must determine what the
number densities of the constituents are.

To find the conditions necessary for equilibrium of a gas of degenerate neutrons,
protons and electrons and a single species of nuclei we minimize the thermodynamic
potential @ =& (P, T, N;) where T is the temperature, P the pressure and N; the num-
ber density of particle i. For fixed T (here taken as zero) and P, @ is a minimum when
d®=0, or

0® 09 ON,

4__{.._._7-’-..:0. 7
N, " &N, N, M

The chemical potential is defined as

0P
“f=(m>T,P' ®
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As constraints on the gas we also require charge neutrality

Z g;n; =0, i = all particles )

and baryon conservation

Y. | n = constant, k = all baryons, (10)
P

where n; is the number density and g, the charge of particle type i. We now have to
minimize ¢’ =@ + constraints where @ will be the total energy density of the system
as a function of number density. @' can be written,

P = zlf(El(”) + Bi(n)) dn; + E(nuc.) N + «(ZN + n(p) — n(e"))
+ B(n(p) + n(n) + AN), (11)

where ) ; is a sum over all the degenerate elementary particles in the gas neutrons,
protons and electrons.

The first term in @’ is an integral over the energy of the degenerate particles in the
gas, where the energy is a function of number density n. E;(n) is the free energy of a
particle (rest mass +kinetic energy) as a function of n, and B;(n) is the binding energy
due to the nucleon—nucleon interactions in the free gas. The derivation of the binding
energy from a nucleon potential is described in the next section. We use here the
results for the average value of the binding energy per particle <B;>. Now

f By(n) dn; = n (i) (B, (12)

n (i) is the number of nuclei of species i and E(nuc.) is the total energy of the nucleus
in the gas. The third and fourth terms in (11) are charge neutrality and baryon con-
servation respectively. Setting

0P’

5—’% =0, (13)
we have

o=E;(e”), (14)

0<{(B(i

ﬁ:_(Ef(n)+<B(n)>+Zni <an(z)>= —/lf(n), (15)
and

tr(n) = u;(p)+ pp(e),
or

E;(n) + {(B(n)) + Zniw

a<B(i)y

=E;(p) + CB(p)> + Lm—on, + Ep(e7). (16)

© Kluwer Academic Publishers ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1969Ap%26SS...5..259L&amp;db_key=AST

N&SS. —. 5. ZZ59L T

R

rTI69A

AN EQUATION OF STATE AT SUBNUCLEAR DENSITIES 263
Finally, from 0®'/ON=0,
E(nuc) = Au,(n) — ZE;(e”), 17

where E,(n)=(p7(n) ¢* +m?(n) ¢*)'/? is the fermi level of the neutron gas without
binding, similarly for p the proton and e~ the electron, and m is the mass of each par-
ticle. p,(n) is the fermi momentum of the neutron gas and its relationship to the
number density in a completely degenerate gas (7=0°K) is
n(iy = EF D ), 18)
m2_

where ao =87 (m,-c*/hc)®*=1.76 x 10°® cm™? and (25 +1) is the spin multiplicity.

We have rederived the standard results for an n, p, e~ gas in equilibrium, but with
two important differences. Equation (17) is a new result, allowing us to determine
which nucleus will be in equilibrium with the gas. Remembering that our energies are
relativistic (i.e. include the rest mass) we rewrite E(nuc.) in terms of the nuclear bind-
ing energy per particle b(4, Z) (=B(4, Z)/A4)

(A—Z)ym(n)+ Zm(p) — Ab(4, Z)

= A(E, () + B + TnE »)

— ZE (7). (19)

Rewriting this in terms of the kinetic energy Fermi level, K, we have

(l)) L b4 Z)>

+ (m(n) —m(p)). (20)

Ey(e) = (K, + B0 +

Looking at Equation (17) we note that we have
E(nuc) — Au;(n) + ZE;(e”) =0, 21

and that this is the equilibrium equation which was minimized in Section 2 to find A
and Z. Not only must g be a minimum with respect to 4 and Z, but it must also equal
zero. If g <0 then the system is unstable and the nuclei will break up. It now appears
that the neutron-rich nuclei in equilibrium with the gas are quasi stable, just existing
in equilibrium. These quasi nuclei should be continually breaking and forming in the
gas.

The results of section two can be derived from minimizing the thermodynamic
potential. The equations will result from considering the addition to Equation (11) of
two more species of nuclei, instead of E(nuc.) N we would have

E(N(4, Z)) N(4,Z) + E(N(A+ 1, Z)) N(4 + 1, Z)
+E(N(A,Z-1))N(4,Z—1), (22)

plus the appropriate additions to the « and f term. If we minimize the thermodynamic
potential with respect to the two new nuclei, we have two more equilibrium relations
which, with Equation (17), can be rewritten to give Equations (4) and (5) in finite
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difference form. These are
E(A,2)—E(A,Z—1)=—Ej(e") (23)
E(A+1,Z)— E(A, Z) = pu,(n). (24)

The second important difference in our result is the inclusion of potential effects in
Equation (16). Without it no protons would be present until nuclear densities. With
it protons in the degenerate gas can be present in number larges enough to insure
charge equality and a reduction of nuclear number density with increased density.
In this way the nuclei go away, leaving a neutron, proton, electron gas, and the equa-
tion of state is continuous (i.e. pressure and energy) during the transition from nuclei
to no nuclei.

4. Nucleon Binding

To determine correctly the last state filled for the neutron gas the effects of nucleon-
nucleon interactions must be included in the chemical potential (top of the fermi sea).
When binding is included many more neutrons will be present for a given Fermi level
than if binding were neglected. Without binding, protons would not be present in the

neutron-electron mixture. Typically E,(e”)>24 MeV and the following condition
would hold

E;(n)—E;(e”) <m(p). (25)

With a potential the relatively few protons interact with many neutrons, producing
a large binding, allowing Equation (25) to be satisfied.

To calculate the binding we have used the results of Weiss and Cameron (1969).
Here we briefly outline their procedure for determining the binding energy of a
neutron-proton mixture.

Weiss and Cameron (1969) based their work on the V, and V, nucleon potentials of
Levinger and Simmons (1961). We use only the results for the V, potential (for the
density region considered in this paper, the V,, V; and V, potentials yield the same
results within a few percent); this velocity dependent potential has the following form
in each of the four possible interaction states

A
Ve=—VoJ; (r)—MP'Jz(V)P (26)
1,r<b
Ji()=J(r)=%r=0>
0,r>0b

P=irvV, V,=169MeV.,, A1=-021 and b=24F.

The four possible spin—parity states are singlet-even (se), triplet-even (te), triplet-
odd (to) and singlet-odd (so); all four are present when unlike particles interact, but
when two like nucleons interact only the (se) and (to) are involved.

It was still necessary to adjust the various interaction strengths in each state. Weiss

© Kluwer Academic Publishers ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1969Ap%26SS...5..259L&amp;db_key=AST

N&SS. —. 5. ZZ59L T

R

rTI69A

AN EQUATION OF STATE AT SUBNUCLEAR DENSITIES 265

and Cameron (1969) set all of the strengths in the velocity part equal to the original
Levinger and Simmons value, as well as the static (se). The other static interaction
strengths were varied to agree with nuclear matter results, specifically to reproduce
the saturation density, and the volume and symmetry energy coefficients in mass
formulae for nuclet.

To lowest order the interaction part of the ground state energy is

V> =143 Kijl VIijy = <ijl V1jid}. @27)

The sum is over all single particle quantum numbers and V is the two-nucleon poten-
tial energy operator. The antisymmetric nature of the two body wave function for
fermions gives rise to the two terms; the first is called the normal term and the second
the exchange term. The i and j refer to the single particle wave function

Vi = @i, (7:) %, (0) A, (7)), (28)
where ¢, =Q7'/? exp (ik;'r;) is a plane wave orbital wavefunction, and « and 1 are

the spin and isospin factors respectively. For example, the exchange term appears as
follows

Gl Vjiy = Y 4 ) w5 (rp) W) ¥, (r) &r; &, (29)
and the sum is over the spin and isospin variables. Only two types of matrix elements

210 T T

190 - .
170 -
150 - _
130 - i
1o - -
90 |- .
70 - .
50 |- -

30 1 1

10" i0'? 10" 10

DENSITY (gm/cm?®)

Fig. 1. The mass number 4 and charge Z of the equilibrium nucleus as a function of energy density
in units of g/cm3.
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Fig. 2. Number density of nuclei as a function of energy density in units of g/cm?.
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Fig. 3. Number density of neutrons, N(n), electrons, N(e™), protons, N(p) and nuclei, N(4, Z) as
a function of energy density in units of g/cm3.
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are present: the normal term

<+|V|+>=Q—1JV(k,r)d3r (30)
and the exchange term
(+|V]=->=Q! fV(k, r)e ** T dr. (31)

To find the average interaction energy per particle in the gas, {|V|>, we evaluate the
following matrices

<+|V|¢>W=f<+1V|-_F>PW(k, k,) k. 32)

1/2 (ky+ky)

G Eow= | IV Pl b k) &, (33)

0
Equation (32) is for like particles u-u interacting, and Equation (33) 1s for unlike
particles v-u interacting. P is the normalized pair probability function (Brueckner,
1961; Tabakin, 1964) and it relates the distribution of states available to two inter-
acting fermions in a degenerate gas. For example, the distribution for like particles is

24 3k 1k°
P, (k,k)=—k*|1—--—+=-"]|. 34
we k=il 1-3 8 e 1] 64
IO33 T T
1032 -
E
0¥ | 4
s
(e
>
wn
w
e
T oL |
I029 ! 1
IOII IOIZ lol:’. IoI4

DENSITY (gm /cm3)

Fig. 4. Pressure versus energy density.
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3.0 ,

DENSITY (gm/cm? )

Fig. 5. The dependence of I"= (P -+ U)/P 0P/oU as a function of energy density in units of g/cm3.
The dashed line is drawn at I" = 4/3.

The binding energy is now the number of particles interacted with, times the sum over
the average interaction between that type of particle in all the states available.

Weiss and Cameron (1969) have analytic results for the binding energies of neutrons
and protons in a degenerate gas; it is these results which we have used here. Their
analytic forms are too long to be repeated here and we refer the interested reader to
their paper for the results as well as details of the calculation.

5. Results and Conclusions

The equation of state and composition of the subnuclear gas has been found by iter-
ating Equations (4, 5; 20) through the use of a computer. The results of Weiss and
Cameron (1969) have been applied to find the appropriate fermi levels of the particles
in the degenerate gas outside the nucleus. One finds the number density of the nuclei
N(A, Z) from charge conservation

N(A,Z)=(n(e”)—n(p)/Z. (35)
The equation of state then follows from the total energy
U=> u, =) nk,, (36)
p-%Y €0
av

The mass number and charge of the nucleus to be found at a given density is plotted
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in Figure 1. It may be noted that the equilibrium nuclei become more and more
neutron-rich as A/Z increases with increasing density due to the suppression of
neutron emission by the degenerate sea of neutrons outside the nuclei. The maximum
A and Z of the nucleus given by (204, 51) is reached at 5.1 x 10** g/cm?>. At this point
the number density of protons rapidly builds up as the number density of nuclei
drops. This effect may be seen in Figure 2 in which the number density of nuclei is
plotted as a function of density. After a density of approximately 5.1 x 10** g/cm?,
only a mixture of neutrons, electrons and protons exists. The number densities of the
neutrons, protons and electron are given for all densities considered in the work in
Figure 3. The pressure of the mixture of electrons, protons, neutrons and nuclei is
given as a function of density up to 1.0 x 10'* g/cm? in Figure 4. At the point of dis-
appearance of the nuclei at 5.0 x 10'3 g/cm?, the equation of state goes over contin-
uously to that of a gas of electrons, protons and neutrons. The dependence of
((P+U)/P)0P/oU=T on density is illustrated in Figure 5. The value of I'=4%, which
may represent the lower limit for stability of a stable star, is drawn as a dashed line.
The numerical values of the variables in Figures 1-5 and the relevant energies of the
particles and nuclei are given in Tables I and I1. The energies of the particles are given

TABLE 1I
Particle energies

e Kr(e) Ky (n) ur(n) Ks(p) us(p)
(g/cm?) MeV MeV MeV MeV MeV
3.03 x 1011 23.1 5.3 x 1004 9395
3.36 x 1011 23.4 1.04 x 1071 939.6
3.88 x 1011 23.7 22 939.7
4.41 x 1011 23.9 31 939.8
5.81 x 101 24.3 .50 939.9
7.56 x 1011 24.8 12 940.0
9.94 x 1011 25.3 .98 940.2
1.19 x 1012 25.6 1.17 940.3
1.69 x 1012 26.3 1.61 940.5
2.26 x 1012 26.9 2.04 940.7
3.31 x 1012 27.7 2.75 940.9
4.23 x 1012 28.2 3.32 941.1
5.32 x 1012 28.7 3.93 941.2
6.21 x 1012 29.0 4.40 941.3
8.30 x 1012 29.6 5.41 941.5
1.03 x 1013 30.1 6.30 941.6
1.55 x 1013 30.8 8.41 941.8
2.06 x 1013 314 10.2 942.0
4.00 x 1013 33.8 16.0 942.6 1.4 x 10-% 908.3
4,96 x 1013 35.5 18.4 943.0 2.0 x 1073 907.0
5.03 x 1013 35.7 18.6 943.1 5.5 x10-% 906.8
5.05 x 1013 35.75 18.7 943.1 8.0 x 10-8 906.8
5.10 x 1013 35.8 18.8 943.1 A1 906.7
6.03 x 1013 40.4 21.3 943.5 0.89 902.5
8.05 x 1013 51.1 25.6 944.9 1.39 893.8
1.01 x 1014 60.1 29.4 946.5 1.92 886.5
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in Table II as free fermi energies, Kr(n;)=./(P7 +m})—m, and as the chemical
potentials u ,(n;)=E [ (n;) + B(n;) where Py, and B(n;) represent the Fermi momentum
and binding energy at the top of the Fermi sea respectively for the ith component.
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