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Abstract. We calculate the effects of hyperons and resonance particles on the vibrations of neutron
stars. Vibrating neutron stars can store large amounts of energy in their vibrations; the interaction of
the vibrations with the atmosphere would produce electromagnetic radiation. If any process damps
out the vibrations rapidly on an astronomical time scale (~ 1000 years) then vibrating neutron stars
are not likely to be found. Previous work indicates that radiation by a neutrino URCA process
(N+N—+P+N+e~-+v5) does not rapidly damp many of the neutron star models. Some neutron
stars are predicted to contain massive baryons; here we study thermal damping by nonequilibrium
reactions involving these baryons.

During vibrations the thermodynamic equilibrium state is changed and particle reactions attempt
to restore equilibrium. If the reaction rates per particle are very rapid or slow compared to the fre-
quency of vibration the system follows almost the same pressure-volume curve through both parts
of the gas cycle, and very little work is done. In the intermediate case, when reaction rates are com-
parable to the frequency, damping is rapid.

We find that the reaction rates for weak interactions such as N+ N«P+ X~ (the 2~ is the ﬁrst
hyperon to appear with increasing density in degenerate neutron star matter) are of the right magnitude
to cause rapid damping. If there is a hyperon region in the star then it cannot sustain vibrations. We
also consider the much faster (and hence less important) process N+N—P+44-.

1. Introduction

Cameron (1959) suggested that hyperons would be components of very dense matter.
Subsequently, several people worked out the equation of state for a very dense gas
(nuclear densities) of elementary particles assuming an independent particle model
(Ambartsumyan and Saakyan, 1960). The next improvement was to introduce inter-
action potentials for the neutrons and protons. Tsuruta (1964) used such equations
of state to investigate the structure of neutron star models. Additional theoretical
support for the existence of neutron stars comes from work on supernovae (Arnett,
1966) in which the remnant has neutron star properties.

It has also been suggested that vibrating neutron stars could act as energy sources
with the vibrations interacting with the atmosphere to produce the stars’ observable
spectrum (X-ray, optical). Cameron (1965) has suggested that much of the X-ray
spectrum results from synchrotron or bremsstrahlung processes which arise in the
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magnetosphere of a vibrating star. The large number of recently discovered X-ray
sources has lent new interest to the vibrating neutron star problem.

Large amounts of energy can be stored in vibrations of the star. However, vibrations
would raise and lower the Fermi levels of the constituents of the gas allowing various
particle reactions, such as

N+N->N+e +7, (1)

to release the energy and damp the vibrations. If neutrino processes, gravitational
radiation, or external shock waves do not dissipate the energy too rapidly (on the
order of thousands of years), then the stars should be observable. Calculations (Han-
sen, 1966) indicated that for many cases stars could vibrate for thousands of years
retaining an energy reservoir sufficient to provide the energy output measured for
some X-ray Sources.

The modern period of study of neutron star matter began with Ambartsumyan and
Saakyan (1960). They constructed an equation of state for a degenerate gas composed
of leptons, pions, neutrons, protons and the low lying hyperons based on an indepen-
dent particle model.

The next improvement to the model was to introduce an interaction potential for
the neutrons and protons. Tsuruta (1964) used the V}; and V, potentials of Levinger
and Simmons (1961) to write a better equation of state near and above nuclear den-
sities. With the equation of state Tsuruta integrated the relativistic hydrostatic equa-
tions to obtain stellar models, and in this way determined which models gave stable
neutron stars. Here we will extend the study of the neutron star properties by including
the effects of some hyperon reactions on the damping of vibrations.

Bahcall and Wolf (1965) studied neutrino producing reactions, such as Equation (1),
to determine how long it would take a neutron star to cool down to temperatures at
which the surface would emit X-rays too soft for observation. Hansen (1966) and
Hansen and Tsuruta (1967) studied these reactions for the general case of a vibrating
neutron star with thermal feedback from the reactions. And, as previously mentioned,
their conclusion was that vibrating neutron stars could not be ruled out as energy
storage sources for X-ray emission. Some models vibrated long enough, and could
store enough energy, to correspond to the energy output of some present day X-ray
sources.

In the independent particle model the hyperons begin to appear in significant num-
bers when there is sufficient energy to create them. Each hyperon appears at a different
threshold value of the neutron number density and the first to appear is the 2.
Next follows the A° and then the first resonance particle, the 4~ (also called N /2
(1236)).

There are numerous reactions which produce the various hyperons and resonances,
and, without some physical insight, the task of investigating them would be formidable.
The physics behind our choice lies in a knowledge of the interaction coupling constants,
and a more subtle understanding of the role of phase space in a degenerate gas.

In a degenerate Fermi gas the lowest lying states are filled up and if a particle is
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produced it must have sufficient energy to occupy one of the unfilled states. The
particle which participate in the reactions come from the top of the Fermi sea; very
few particles will be above the Fermi level. A strangeness conserving strong interaction,
such as

N+N->P+3 +K°, ()

is strongly inhibited because the nucleons must have enough energy to create a K*
rest mass ~494 MeV) plus the energy difference between P+2~ and the two N’s.
In a neutron star Ex(N) (the total neutron Fermi energy) is typically ~10° MeV,
the number of neutrons with sufficient energy (i.e. ~1400 MeV) for the reaction is
proportional to e ETEFM/AT (from the Fermi distribution), and is an insignificant
number (here we consider 7< 10'°K).

Similar problems occur for reactions such as

e+ NI 4, (3)

because momentum conservation requires large E(e~), which are > Er(e”). We soon
learn to look for weak interactions, which do not have to produce particles such as
K mesons, because they violate strangeness. In addition, the reactions should involve
massive baryons so that energy and momentum conservation can be satisfied with the
Fermi level values (available states at the top of the Fermi sea). From these considera-
tions the first reaction important for the damping process is,

N+NeP+3, 4

which is predicted, and can be studied, from the coupling of the hadronic terms of
Cabibbo’s (1963) vector-axial vector currents in weak interactions (similarly for the
other weak hyperon interactions). Reaction rates for the resonances, such as the 4~
(the next particle to appear after the ™), can be studied in strong interactions with a
modified one pion exchange.

Under non-vibrational conditions the forward and reverse rates for a reaction keep
the particles in equilibrium. When the star vibrates, the reaction rates will go out of
equilibrium (for a discussion of equilibrium see Tsuruta and Cameron, 1966) and it
becomes possible to transfer vibrational energy into thermal energy.

To understand why the reactions are no longer in equilibrium, let us look at what
the vibrations do to the dense matter. In a degenerate gas the Fermi momentum P (F)
is

P(F)oc N; 7, (5

where N, is the number density for particle i, and the Fermi energy is
E,(F) = [P (F) C* + M/C*]"2. (6)

When the system is vibrating the number densities change ; hence the Fermi momentum
and energy change, but not such that the sum of the in and out Fermi energies for a
reaction are equal (i.e. if Ep(N)=E(P)+ Ez(e~) the neutrons, protons and electrons
are in equilibrium with each other). With the forward and reverse rates unequal,
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the reactions proceed to restore equilibrium, and in the process vibrational energy
can be transferred to thermal energy.

To find the amount of energy lost through damping we calculate the work that a
volume of gas does in a cycle. If we study a PV diagram during a cycle we can evaluate
how much work is done on the gas. In this way we can measure the rate at which
vibrational (mechanical) energy is converted to thermal (heat) energy.

For no reactions the system stays in equilibrium and no work is done (providing
T=constant). When the reaction rates are very low compared to the vibrational
frequency the system never deviates much from equilibrium and there is very little
work done per cycle. For very fast rates (orders of magnitude faster than the vibra-
tional frequency) the system effectively stays in equilibrium and again very little work
is done. This case is like that of an adiabatic system. In the intermediate case damping
is rapid, here there is a large difference between the equilibrium state and the actual
state.

In this work we found that where the neutron stars had cores dense enough to
contain hyperons, there are reactions which can rapidly damp vibrations. The non-
equilibrium rates for reactions like (4) are, for large amplitudes of vibration, com-
parable to the vibrational frequency. Hence rapid damping occurs in the core, and
only very small amplitudes can survive for periods of time long on an astronomical
time scale; small amplitude oscillations cannot store meaningful amounts of energy.

Very fast reactions, such as

N+ NoP+ A7 (7N

proceed via a strong interaction, and can occur at the top of the Fermi sea. These
reactions are so fast as to restore equilibrium (with respect to these particles) through-
out the cycle, and do not affect damping.

2. Reaction Rates
A. INTRODUCTION

Before calculating any reaction rates we will outline some results of quantum field
theory (QFT). Many excellent texts develop this subject in detail; here we present
only the results which will be of use in this paper.

When we solve the Schroedinger equation in quantum mechanics, H# H(t) and

iai—ft)=H*P(t)A (8)

In QFT we work in the interaction representation where both H and ¥ are functions
of 1. Here we satisfy the equation

% (1)
ot

i

=H(1) ¥ () ©)
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with a solution of the form
¥ (t,) = Ul(ts, o) ¥(to)- (10)

Equation 9 can be solved by an iterative procedure, so that

t t

U (1, to) = i(_ i)njdtl ”'J‘dt" T(H (t,) - H(t,)), (11)

n!
to to

where 7 is the time ordering operator and has the following property
T{H(1,) H(t,)} = H(t,) H(1) © (t; — 1) + H(t;) H(t,) © (12 — 11) (12)
and 6 is a step function. In this picture H can be written as a free plus interaction term
H = H;,.. + H,,. (13)

Now

Ut to) = T{exp[— i f im0 1) AT} (14)

to

where 5 is a hamiltonian density, and the ¢, and y; are boson and fermion wave
function solutions to a free equation with

Psen (x) €™ (15)

From U one defines the scattering operator

iHot

@ (ta X) e

S=U(w, —0)=T{exp[—i f H iy d¥x]} (16)

with the integral extending over all four space.

If it does not contain derivative couplings S is a Lorentz invariant. S is evaluated
between states which are free particles at 1— + oo, (|oc(— 0));=incoming state and
Ioc(oo)> ;= outgoing state). The terms <oz| S | B> will contain only free fields; this points
out the obvious advantage of the S matrix approach, that of working with free fields.

There is a connection between this S matrix formulation and Feynman diagrams.
Each order in the expansion of Equation (16) generates sets of terms which can be
interpreted as Feynman diagrams. Before developing this approach we must discuss
normal products, propagators and Wick’s theorem.

A normal product of operators in QFT, denoted as: 4AB...:, is a product of annihil-
ation and creation operators in which all annihilation operators are placed to the
right of all creation operators. Thus the expectation of the normal product between
vacuum states is zero.

Consider ¢, and ¢,, two Hermitian fields which are independent but create and
destroy particles with the same mass. From them we can construct nonhermitian
linear combinations with the properties:
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") (x)  annihilates a particle
(¢ (x))! creates a particle

@7 (x)  creates an antiparticle
(¢*7) (x))' annihilates an antiparticle.

So terms like <O ¢ (x) @ (y) |0) will appear but not <0| ¢(x) ¢(¥) |0> (¢ asum of
@' ") and '~ annihilates on the vacuum). We can interpret surviving terms, such as,
<0| o (x) (¢ )M |0> as a particle created as a spacetime point y, propagating
to x where it is annihilated.

This suggests a graphical technique. If time flows from left to right - — = (¢
(x)"|0) and - - =<0 ¢ (»). It was Feynman who identified an antiparticle travelling
forward in time with a negative energy particle travelling backwards in time.

Now our propagators also are solutions of a Green’s function equation

Ap(x — y) = i<0] T{p(x) ¢ (»)} 10> (17)

is a Green’s function solution to

(+)

(i—a——/f)AF(x—xl):—é(x—xl), (18)

where u is the mass of the particle and F refers to the Feynman contour. If we Fourier
transform to work with G (k) this contour in the k° plane is shown in Figure la (it is
usually simpler to solve for G(k)).

If x°>y° A.(x—») represents a particle created at (y°, y) and travelling forward
in time to (x°, x) where it is annihilated. If y° > x° it represents an antiparticle created
at (x°, x) and travelling forward in time to (y°, y) where it is annihilated (see Figure
ib).

Ay is also called a contraction, and this notation appears in the last point in our

ko, Plane
(a) —»—U—>—m+

y Y

(b)

xo>yo x0<y0

Fig. 1. (a) Green’s function contour in the k plane. — (b) Schematic representation
for the Green’s function,
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digression, Wick’s theorem. Wick’s theorem rewrites a time ordered product as a sum
of normal ordered terms and contractions as follows:

T{o(1) ¢(2)...om} =:0(1)...0(n):
+ <01 T(9 (1) ¢(2)) 10>:¢(3) - ¢ (n):
+ all permutations of one contraction
+ 3 (all permutations of two contractions)
+ s
5 { (all permutations of N/2 contractions (N even)).

. 19
(all permutations of (N — 1)/2) contractions (N odd)). (19)

Now the vacuum expectation value of a normal product vanishes so that for »
even
O T(p (1) ... ¢ (n)) 10
=2.6,<0 T(¢(1) ¢(2)) 10> - O] T(¢(N — 1) @(N)) 10> (20)

where the sum is over all the permutations and J,, is the sign of the permutation of

the Fermi fields (each permutation for a Fermi field introduces a—1). For n odd the

vacuum expectation value is zero. We will now be able to express the S matrix in

terms of the Feynman propagators for free particles using their physical masses.

There are other contractions for the Dirac and electromagnetic field, for the Dirac
field it is

<0 T('pm (x) % (y)) 10> = iSF(x =Y m)a:ﬁ
[ d'p eI (p 4+ m)
-t @n)t* pP—-m?+is

1) .

In the expansion of the S matrix some terms correspond to renormalization and
some to vacuum bubbles. We will not, within this limited review, discuss these in
detail; an example should clarify what we have done.

Consider the interaction of two charged fermion fields with a noncharged scalar
boson field

Hin (%) = g ¥ (x) ¥ (x) 0 (x). , (22

In the second order we have (the first order term is zero between the vacuum states)

s =g f 0, T W () ¥ (x) ¢ (x,):

x 1 T (xy) ¥ (x;) @ (x2):} (23)

There are nine terms generated by the 7" operator, we will look at four of these
=: P (x)) ¥ (x;) @(x;) PT(x;) ¥(x,) @ (x,): (24a)
+:¥(xy) o (x1) PT(x,) 0(x,): Sk (1 = 2) (24b)
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F W (x) P (x2):Sp(2 = 1) 4,2 - 1) (24c)
+Ap(2—1)Sp(2—1)Sp(2— 1) +--. (24d)

The Feynman diagrams for these terms are shown in Figure 2a-d. As in S the
vacuum expectation of disconnected graphs like Figure 2a (Equation 24a) is zero.
Figure 2b is called a Compton graph and corresponds to a scattering process. Figure
2c s called a self energy diagram and it changes the mass of a particle. It is interpreted
that part of the time a charged particle is a superposition of a charged particle and a
neutral particle. The change in the mass from self energy diagrams is infinite; when
we can add a finite number of infinite mass counter terms to H;,, to cancel the self
energy infinities and leave a finite observable, the theory is renormalizable. Figure 2d
is a vacuum fluctuation and only affects the phase of S.

(a) (b)

(c) (d)

Fig. 2. Some Feynman diagrams for the second order term of a noncharged scalar field interacting
with two charged fermion fields.

For the S matrix expansion to have a meaning g <1 and it must be renormalizable;
these conditions hold for quantum electrodynamics. In strong interactions g ~15; in
weak interactions g < 1, but the theories constructed are not renormalizable (however
we will see that this type of theory will give excellent results at low energies).

In the weak interactions we will have a product of four {’s as well as y matrices.
We take the y/’s as plane waves in the following form

mi —ipi-x
Pi(x)= \/E V” (ps> Si) e Y, (25)

1

where iy has been normalized in a box of volume V, m is the mass, E the energy and
u the spinor (a function of momentum p and spin s) of particle i. When {/; Oy 43 0",
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(where O is an operator) is put into S and we integrate over d*x we get

. 4 4 m. i/2
S =— L%) 6*(py + ps — P2 — Pa) l;[[l Fj]
x {a(l)ou(2)a(3) 0'u(4)} (26)

denoting { } by M (see Figure 3 for the $‘ Feynman diagram).
In general, in momentum space we can write .S as

4 g 2
S =067 — 2n)* 6*(p, — p) [H EJ ] My, (27

= J

© @ -

P

® " ® "

Fig. 3. Feynman diagram for the first order interaction of the coupled weak hadronic currents
for the reaction N+ N—P+ X~

P3+P,

P, P,

Fig. 4. A momentum diagram for N+ N—P+ X~ where the momentum values are taken at the top
of the fermi sea. 1 and 2 are the neutrons, 3 the proton and 4 the X,
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where f, i refer to the final and initial states respectively, and M ; is the transition
matrix. Here we have set V=1 as ¥ does not appear in the final results of the observ-
ables which are measured (cross sections, etc.) Following Bjorken and Drell (1964)
we can derive the transition rate W,; unit volume

|2

IS
Wy = {"T = (21*) 5* (p, — p),nl £ M2, (28)
where we have used
[2n)* 6% (p; — P)]* = T(2m)* 6*(p, — py) (29)

and take the limit of the observation time T going to infinity.

The physics in the problem is located in |M |*. |M |? is a product of spinors which
we will sum over final states and average over initial states; for this procedure we will
need the energy projection operators

Z uﬂ (pia Sl) ﬁl(pi’ Sl) = (pl i mi) b (30)
S: 2m; /s
where we use the Feynman slash notation £ =y,f". |M |* will reduce to a trace (or
product of traces) and can be evaluated through the trace theorems (Bjorken and
Drell, 1964).
Using Equation (28) and summing over the available phase space we have the
reaction rate per unit volume

=J"‘JS(P1)S(P2)(1 - S(Ps)) (1~ S(pa))
x (2n)* 6% (py ~ p)) IM)? G )12 H P (31)

where S(P) is the Fermi distribution function

S(p) =[1 + exp(B(E — E(F)))] (32)

(the Fermi distribution must be used because the reactions occur in a degenerate gas)
and f=1/kT, k is Boltzmann’s constant, 7" is the temperature in degrees Kelvin and
E(F) is the Fermi energy. S(P) represents the available states for the initial particles
(occupied states), while (1 —S(P)) represents the unoccupied states available to the
final particles. For the inverse reaction we need only replace the Fermi phase space
factors by

S(ps) S(pa) (1 — S(p2)) (1 = S(py)) (33)

as |M|? is an invariant quantity. |M |* does not vary much over a small region of
phase space, it can thus be taken out of the integral for a situation where, as will
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later be shown to be the case for the reactions considered here, only a small part of
phase space contributes to the reactions.
Specifically the reaction

N+N->P+2" (34)

will be discussed, but much of what is said can be applied to other reactions of interest.
We write Equation (31) as

d
M7 P, (35)
ds

where

p= Q%)Sf--JS(mS(pz) (5690 =56
x 6% (py + P2 — P3 — pa) *1:[1 % d3Pj- (36)

B. PHASE SPACE

In evaluating the phase space part of dn/dz we can make use of some simplifications.
Most of the reactions involve particles from a narrow band at the top of the Fermi
sea. In the region of interest the neutron Fermi momentum is greater than that of
either the proton or sigma minus (typically Pg(n) ~5 x 10> MeV/c, Pp(P) and P (27)
~1.5x10%* MeV/c), momentum conservation is shown in Figure 4, where 1 and 2
are the neutrons, 3 the proton and 4 the sigma minus momenta.

Conservation of energy and momentum, and the distribution factors S(P), restrict
most of the reactions to a small part of phase space and greatly simplify the calculation
(Bahcall and Wolf, 1965, and Hansen, 1966). It should be noted that in these calcula-
tions z=c=1, and in the final results we evaluate in the appropriate units. Rewriting P

P égf..j@(}gf — E)S(py) S(p) (1 — S(ps)) (1 — S(pa))

4 m )
x I E] pjdp;A,  (37)
i=1 E;

J

where
4
A=f53(Pf_Pi) H d‘Qj- (38)
j=2
Equation 38 can be evaluated to yield
__ Un (39)
21pyl Ip2l Ipsl”

where we have used the momentum condition in a neutron star 0¢ | P,+P;- [2|Py |
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Substituting Equation (39) into Equation (37), using p dp = EdE and then canceling
with ; 1/E; we have

4
p @Tff"'JS(pl) S(p2) (1 — S(ps)) (1 — S(ps))

4
j=1
Now,

(1—=S(p)=[1+ e FPEEEL (41)
and this suggests a change variables. Setting

X1 = ﬁ(E1 —E,; (F)),
Xy = ﬁ(Ez - Ez(F))>

x3 = — B(Es — Es (F)), (42)
Xq4 = — B(Ea, - E4(F))>

and
P+ -N+N, 43)

3+44-1+2,

for the reverse reaction we let x;— — Xx;.
Using the substitution (42), integrating over dx, and using the delta function we

have,
4 1 :
P= (27)5 E J\ dxl J dX3 J de [1 + e—()fxi+d)]

— — —(x1+x3+4)

3 2 12 3
x[(;xiﬁ—é) —ﬂzmi:l Ill(1+e"“)"1, (44)
where
A= B(E,(F) + E;(F) — E5(F) — E,(F))
and
6 = B(E, (F) + E,(F) — E5(F)).

The inverse reaction’s equation has the same form but with 4 replaced by — 4.
At equilibrium 4=0 and the forward and inverse rates are equal.
As M ;< E;(F) the limit on X ; can be extended to + oo with very little error. In the

@

E integrations we have [ dE, [  in our calculations we can set E,(F)~M,.
my E3z+m4—Ey
In E; we can replace M; by —oo and the lower limit in {dE, comes from

E,+E,>E;+M,. In the x; representation

x2|min = ﬁ(EZ - EZ (F))lmin = (xl + X3 + A) (45)
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Equation 44 can be reduced to a single dimensionless integral 7(4). This solution
is straightforward, but tedious, and is relegated to Appendix A. The result is

1@ = [ [0+ = Pmi] 660 + 1)
—A4
x(1+e) ' A +e ") dy, (46)
where £ is the Reimann zeta function, y a dummy variable, and now

41(4) @)
"B

The evaluation of phase space for a four particle reaction (two in, two out) of
fermions in a degenerate gas is applicable to any of the reactions that we are interested
in, and is quite general as to forward or reverse reactions.

C. TRANSITION MATRIX FOR N+ N->P+2"~

The theory which has met with the most success for weak interactions is based on
constructing an interaction Hamiltonian from currents

G
H. = [j,i* +iti*. 48
CRENG Li* +720"] (48)

This interaction is an extrapolation from quantum electrodynamics (QED), but
unlike QED the currents are not coupled to a field associated with a propagator.
The currents, like those in QED, are binomial in the y’s, so that H;, is a product of
four fermion wave functions. In the lowest order this represents four fermions inter-
acting at a point with G, the coupling constant, a measure of the strength of the inter-
action (as « does for QED). It would seem that since G, like «, is <1, the perturbation
~expansion of Section 2-A would be valid. However, a point interaction with four
fermion lines in the first order perturbation violates unitarity (i.e. the probability
for a transition exceeds one) at high energies (hundreds of GeV). Yet phenomenologi-
cally this interaction in the first order perturbation provides excellent agreement with
experiment at relatively low energies.

Historically, the near equality of the experimentally determined coupling constants
in beta decay, involving hadronic and leptonic elements, and muon decay, a purely
leptonic interaction, suggested that a universal coupling existed for weak interactions.
The adjoint leptonic (L) current is

jﬁf = ipe?l (1 - '})5) l//ve + Jp'yl(l - ‘YS) l[’v,,,' (49)

The 7,75 term, not found in QED, generates an axial vector current which violates
parity, quite admissible in weak interactions which are known to violate parity. The
sign in front of the ys is different in the various texts, and depends on the authors
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.. 0 .
definition of y5; here we use ys= (1 (1)) The hadronic (H) current for beta decay 1s

JI):I = ll_/-p})l(l - r’yS) lpn . (50)

The factor r represents the effects of the strong interactions on the axial vector part
of the current. The explanation of why this occurs was provided by Feynman and Gell-
Mann (1958) and independently by Gershtein and Zeldovich (1955). They pointed
out that a similar effect occurs in QED ; an electron and a proton have the same charge
despite the presence of the pion interaction of the proton, this is a direct result of the
conservation of electromagnetic current. For example a proton emitting a neutron
and n* conserves charge. That is, the strong interactions, which conserve charge,
will not affect the electromagnetic interaction. Said in another way, A,, the vector
potential, will couple with the conserved charge current which is the sum of the proton
and n* currents.

The weak interaction current j; ) changes charge by one and it can be related to
I™ the isospin raising operator (which also changes charge by one). Feynman and
Gell-Mann’s hypothesis was that /5" is also a conserved vector current (CVC), and
I is the weak interaction conserved quantity corresponding to the conservation of
charge in electrodynamics (which corresponds to I5). The close relationship between
these two currents is also emphasized by noting that the part of /a5 will be related
to j5*) by a rotation in isotopic (1) spin space.

The axial vector current is not a conserved quantity (much attention has been
focused on the concept of a partially conserved axial current, PCAC, where the diver-
gence of the current is proportional to the pion current) and hence the pions will
renormalize the strength of the interaction relative to the vector current.

We would now write the total current as

Ja=J+ . (51)

The coupling of the currents would give the various weak interaction processes, i.e.
neutron (beta) decay, electron and muon capture, etc.

The currents as we have written them suffice for reactions which involve the small
momentum transfers typical of beta decay; at higher momentum transfers form
factors become important (Brene et al., 1964). The CVC postulate links the weak
interactions to the electromagnetic and the electromagnetic interactions require form
factors. These form factors represent the deviation of the actual particle from a point
source (Wu, 1964). Experimentally it was found that a straightforward extending of
the above concepts to the hyperons gave results often off by orders of magnitude.
A successful extension of this technique to strange particles is due to Cabibbo (1963)
and is based on SU (3). The hadronic current is now written in terms of a strangeness
conserving (45=0) and a strangeness violating (|4S|=1) term coupled universally

jE=cos©j? +sinojP. (52)

Cabibbo’s model also contains the following assumptions:
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1) The total current j behaves as a sum of octet members under SU (3) transforma-
tions. We can use the members of the pseudoscalar meson octet to illustrate the trans-
formation properties, so that: j© transforms like a charged pion with strangeness
zero, and j* will transform like the K+ which is the only $=1 meson in the pseudo-
scalar octet (a review of the SU (3) structure and properties is in Appendix B):

2) Assuming the conserved vector current (CVC) hypothesis, j*(°) is proportional
to the isospin current I*). This assumption can be extended, and it is assumed j*(*
and j°*) are proportional to an octet of currents containing 7¢*:

3) No symmetry breaking is included and SU (3) is held to be exact.

The matrix elements are written as

(B|j'®|By and <(B|j*|B)

where B and B represent the baryon states. From the results in Appendix B for D
and F-type couplings which correspond to =™ transformations for j© and K* for
j1, we have four couplings

2) D@ =Pn+E°27 + /327 4+ /3 Az

b) F(O)_Pn EE —\/22 ZO \/EFZ—,

5 Dm:p(_lgo_i,i +<i -LA>.: +AET 4+ 275, (53)
NN 276 ’

1 — _
FO — _p 3 A S 171)
d) <¢ +\/%> (\/2 +./3 B
g —nx  +27E°.

Now D® can be discarded because terms like £*A are not matrix elements of
I, The strength of the F(° coupling in j} is determined by letting Pn represent the
Fermi transitions in beta decay (hence the coupling is unity). From experiments on
hyperon decays the three unknown parameters 6, f, and d, can be determined, where
f.4 and d, are the F and D coupling strengths for the axial vector coupling (the set of
values used here, Frazer 1966, are © =0.254 radians, f,=0.437 and d,=0.742).

We now write

(B|j¥ By = cos © <B| j{? |B) + sin© (B| j{" |B), (54)
where
(i) (i)

<BU£11) |B) = Yu¥s [dADBB + f4Fsp
and i=0,1.

For the reactions of interest in this work, the momentum transfers are larger than
those involved in ordinary beta decay, and form factors are needed for each vertex
(Brene, et al., 1964). Following BHR we introduce an F(g?) where ¢*=(Pz— Pp)*
is the momentum transfer. Their result is

F(g*)=FO)(1 — 3> ¢%), (56)

(@)

] + quBB (55)
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where ¢(r2>"/*=0.79 F in (Fermis) and ¢? is expressed in Fermis. They assume
(ri>={r%>, and F,=F, for lack of any experimental information.

One set of values for the unknown quantities, which were derived from least squares
fits from available data (Frazer, 1966) is

© = 0.254 radians, f,=0437, d,6=0.742.

In Table T are listed the matrix j* that are of interest here (from Frazer 1966,

Table 8.3).
Now
Hip, = je0jA 0T 4 j DT 4 W A0t 4 (complex conjugate)
_ jg'O)HjA(l)HT I (57)
TABLE I
V-A matrix elements B
|4 A

Pn cost (fa+da) cosf

A°P —V3sin6 —V3(fa+1da)sind
Xz n —siné —(fa —da) sinf
Z-A0 0 V% da cost

For the reaction
N+N->P+2ZX
we get from the coupling of the hadronic currents

Hiy o =— % F(qz) sin© Cos@wph(l - ’”?’5) lpzvl/—/):-“)’/l (1 - 5?5) Yy, (58)

J

r:fA+dA:1.179,
s=f,—d,=—.305.

where

We can now write M in terms of the spinors in momentum space

M—— % F(q?)sin© cos© [, (1 — r75) ]
x [ds- Yl(l —sys)uy].  (59)

We now evaluate |M |* by summing over final spins and averaging over the initial
spins

G? )
IM|* = o IF (¢%)|* sin® © cos> ©%

x 3. ity (1= rys) untiz-y* (L = 575) uyitny* (L = 575)

S

X Up- ﬁN’})u(l - ?‘))5) Up- (60)

© Kluwer Academic Publishers ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1969Ap%26SS...5..213L&amp;db_key=AST

&S, —. 5. TZ13L T

R

rTI69A

EFFECTS OF HYPERONS ON THE VIBRATIONS OF NEUTRON STARS 229

The evaluation of |M|? is straightforward but tedious and is left to Appendix C.
Using r=1.179, s= —.305, m,=1197 and m; =m, =m3;=940, Equation C-10 be-
comes
|IM|* = 2.34P, - P,P; P, + 8.10P, - P,P,- P,
—9.81 x 10'! + 2.46 x 10°P, - P; — 3.77 x 10°P,-P,. (61)

We can simplify the evaluation of |M|* by noting the following restrictions on
Fermi momentum and energy in a degenerate gas.

Now |P;| |P,4|/E;E, $.04, |Py| |P4|/E E, <.1, and the angle between the neutrons
is restricted to a small range ~160° to 170° (i.e. |Py- —P,|<[P,+P,| S|Ps-+P,).

Also using

Ey = E;, [Py =[Py
P3'P4=P3'P4—E3E4£—E3E4

(62)
PI'P4=P2'P4ﬁ—E1E4
Pl'P3 =P2'P3 ﬁ‘—EzE:;
and
q* = (P, — P,)* ~ — m? — m? + 2E,E,
P,-P,=P,-P, — EE, =— (97|P,|* + E}).
we can simplify Equation (61)
IM|*> = 2.34(97|P,|* + E3) E;E, + 8.10E3E,E,
—9.81 x 10'! —2.44 x 10°E,E, + 3.77 x 10°EE,. (63)
We can now write out an expression for the reaction rate
dn  Gsin’© cos’© ¢
— = kT)*|F (¢*))* I(4
x {2.34(.97|P,|*> + E?) + 8.10E{E,E, — 9.81 x 10!
— 2.44 x 10°E,E; + 3.77 x 10°E,E,} cm ™ *-sec™ ! (64)

where we introduce ¢/(fic)* to put dn/dt in the proper units (hic=1.97 x 10~ *! MeV-cm),
and we evaluate E and P at the top of the Fermi sea. Now G=10"°/M f, and sin © =.26,
hence for the net reaction rate (forward-reverse) dn/dt=4.15x 10%° (kT)*

IF(g®)I?(I(4) —I(— 4)) x {...} em™>-sec™ " . (65)
Later we will see how to use the reaction rates with a vibrating neutron star.

D. A~ REACTION RATES

The model we use for the reaction N+ N—->P+ A~ is a modified one pion exchange,
and is represented diagramatically in Figure 5.
We can again start from the S matrix and perform the same phase space calculation
as in the X~ reactions, it, therefore, remains only to solve for the transition matrix M.
In recent years, the one pion exchange peripheral model has received much atten-
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tion in studying resonances. Work by Selleri (1961) and Jackson and Pilkuhn (1964)
has led to analytic expressions for M and cross sections, for resonance scattering
mediated by various meson types. A one pion exchange (OPE) gives too large a result
at large momentum transfers, and form factors are introduced to correct for this
(Jackson and Pilkuhn discuss other possible approaches besides form factors to correct
the OPE model).

The A~ reaction we study is mediated by a pseudoscalar meson (7 ~) and the transi-
tion matrix can be written (neglecting exchange terms)

F(t) G,

M = Gyi(ps) ysut (1) —5——— —

u(p,), (66)

7'[— T

Fig. 5. One pion exchange diagram for the 4~ reaction.

where G; and G, are the coupling constants at their respective vertices (they are not

necessarily equal), F(¢) is the form factor, (m*>—¢)~" is the pion propagator, and ¢

is the momentum transfer. Letting ) refer to a sum over the final spins and over the

initial spins, we can write

GiG; |F(1)*
my (mz —

The form factor can be written as

|M|* = e Y1 (p3) ysu (py)1> Y 1 (pa) payu (pa)l® - (67)

2 2
_mn

F(t) =~

) 68
2 (68)
where o> =0.13 x 10° (MeV/c)? is found from a fit to experimental data (Jackson and
Pilkuhn, 1964), u(P,) is the spinor representation for a spin $ particle.
Now
dn % c

o s T O

o’ — m= (mz— E3) ) )
<[] B - ) = o =) )
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For n~ emission at a nucleon-nucleon vertex G*/4n~30. We can estimate the
coupling constant at the resonance vertex by use of the decay width relation (Jackson
and Pilkuhn, 1966, page 911; Colleraine 1967, page 33)

2 G2 p?

Fc*aczgaﬁ’ (70)

where the decay is in the rest frame. Using (Rosenfeld, 1967) I'=120 MeV for
A~ > N+7~ we find G2/4n~22. Since m, =m; we have

dn o —m2 |

— = 2.42 x 10*° (kT)* 5t

dt (kT) o —t

o) B ) -1 4 an

E. A° REACTIONS

There are several reactions which can produce the A° particle in a neutron star.
These are

P+N->P+A°, (72)
S 4+P>A°+N, (73)
N+2Z 4" +4°. (74)

The first is a weak interaction, and the latter are strong interactions. For (72) we
can solve for the rate using the expression for the X~ except r =1.179, s=0.684 and
m 0=1.115x 10> MeV. The strong interactions can be estimated by our modified one
pion exchange model. These reactions all occur at the same threshold in the star.
Since the A° can be produced in a strong interaction it will proceed rapidly. As will
be discussed later such rapid reactions do not contribute to damping and we will
not pursue any exact calculations of the rates.

3. Vibrating Neutron Stars

Static solutions of neutron stars have been constructed by Tsuruta and Cameron
using a realistic equation of state. They include in the equation of state the effects of
nuclear forces by using the ¥ and V, Levinger and Simmons (1961) nuclear potentials.
In an independent particle model £~ particles will be present in large numbers at a
density threshold of 10'° g/cm?3. Some of the models constructed had densities high
enough to contain hyperons in the central region of the star. It is for these stars that
we can find damping due to hyperon reactions.

Hansen and Tsuruta studied six representative neutron star models including
vibrations and damping by URCA mechanisms. The density profiles of these stars
are shown in Figures 6 and 7, and their properties are summarized in Table II. M
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is the solar mass, M the neutron star mass, ¢° is the central density, t is the period and
a, is a coefficient in the vibrational energy expression E,=a>. ¢ is the fractional
perturbation at maximum amplitude of the radius in the n=0 mode (i.e. 5r =er ™).

4. Damping
A. INTRODUCTION

In the previous sections, we have evaluated non-equilibrium reaction rates for sample
weak hyperon and strong resonance reactions in a neutron star, and we mentioned

16

10 T T T 7 T T T T T T I ! I
M=1.8
R=1.2
lOl5 |
"
S
(8]
~
g
=
Q.
14
LOT
13
10

r{km)

Fig. 6. Density profiles for three ¥ neutron stars. M is mass in M and R is the radius in km.

the vibrational structural aspects of neutron stars. We now bring these topics together
to show how rapidly these reactions can damp the vibrations; we answer the question,
if we start a neutron star vibrating can it continue to vibrate for astronomical times?

When calculating neutrino damping one can consider the neutrinos to be escaping
from the star, or at least some fraction escaping, with the rest feeding back into the
star. This latter complication is not as severe as the one we face here. The reactions
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Fig. 7. Same as Figure 6 except that a V,, potential was used.

TABLE II
Neutron star properties
Potential MM R(km) 0°(gmfcm?3) (1073 sec) Logay (ergs)
Vy 1.801 11.22 1.364 x 1015 0.50 53.7689
vy 1.074 12.33 6.89 x 1014 0.375 53.5305
v, .3249 14.15 3.258 x 1014 0.50 52.4640
Vs .8874 5.733 6.194 x 1015 0.50 52.8518
Vs .5927 7.159 3.55 x 10 0.265 53.0055
Vg 3361 11.66 8.717 x 1014 0.625 52.1145

of interest to us do not radiate energy; rather they dissipate the vibrational energy
through thermal heating. Let us discuss this process in more detail.

Imagine a box containing a gas composed of one type of particle in which we vary
one dimension sinusoidally. This variation corresponds to increasing and decreasing
the volume by pulling out and pushing in one wall. If the temperature is held constant,
the work done in a cycle is zero. Through part of the cycle we do work on the box,
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and through the remainder of the cycle the box does the same amount of work on us.
Here the pressure is a simple function of the volume.
To study the work done in a cycle, we look at a pressure-volume (PV) diagram, with

W=§;PdV, (75)

where W is the work and P the pressure.

The area under a PV diagram tells how much work is done, and the direction of
the cycle tells us whether work is done on the system or if the system itself does work.

When we consider a gas composed of several particle types, with reactions between
them, we find that work can be performed in a cycle. Now as we displace the volume
of the box, the equilibrium configuration is different from the initial one. The reactions
between the particles now proceed in a direction to satisfy the new equilibrium state.
However, we are continuously varying the volume (equilibrium state) and the system
is always trying to adjust from its present state to the equilibrium state. Now the pres-
sure as the volume increases will not go through the same path as when the volume
decreased.

If there were no reactions between particles, we would expect the PV diagram
shown in Figure 8(a). With reactions, however, a dissipative PV cycle will look like
Figure 8(b).

The amount of work done on the system during a cycle is a sensitive function of
the reaction rates and the frequency of oscillation of the system. If the reaction rates
are very slow compared to the driving frequency, then the system will change very
little between compression and expansion, hence very little work will be done. When
comparing reaction rates to the driving frequency, we are actually concerned with the
frequency with which a particle undergoes a reaction. When the reaction rates are
very fast, the gas adjusts rapidly to equilibrium and the PV curve traces back close
to itself through the cycle and very little work is done. Obviously, the two extreme
cases of zero and infinite reaction rates represent ideal cases of no work.

In the intermediate case, where the particles can interact on the order of 1072 to
10? times per cycle, damping is rapid. To see what happens we follow a PV cycle from
equilibrium at wf=0. During compression the equilibrium state is that of a higher
density gas composed of more hyperons. The reactions proceed in the direction of
this higher pressure state (higher than the no reaction gas case). At full compression
(wt=m/2) the reaction rates have not been sufficient to restore equilibrium. As the
mechanical system returns to wt=n the thermodynamic equilibrium goes toward a
lower pressure. The actual system, however, is not yet at equilibrium and the reactions
keep increasing the actual pressure. At some point equilibrium is satisfied, but when
the system has returned to wt=mn there is an excess of pressure over the equilibrium
state (wt=0). The process from wt=n to wt=2n (expansion) is similar except that
the pressure is lower. The result is a PV diagram like that in Figure 8(b). For large
damping there is a significant lag between the equilibrium state and the actual state
over much of the cycle.
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We find the 4™ reaction rates to be very rapid (twenty orders of magnitude faster
than the 27 rates) and these reaction play no significant role in producing work.
Only reactions which involve a weak interaction can be important in thermal damping;
more will be said of this later.

An analog to the system we have here is a driven harmonic oscillator with damping.
We can imagine ourselves mechanically varying the volume of the box, with the
reactions, in the box damping out the vibrations through heating.

The equation for a driven damped harmonic oscillator is

F,
X4 9% 4+ 0’x = = cos (0t + 8,). (76)
m

The average power (the rate at which work is done) over a cycle for Equation (76) is

Fiw cos B
Fpp = 2 22 2 271/2° (77)
2m [(0* — wg)” + 4y“ 0]
where f is a phase
w2 — »?
B =tan"! OZya) (78)

Typical results are shown in diagram (9).

B. DAMPING

Finding the work done, when nonequilibrium reaction rates are present, is a nonlinear
problem. In order to calculate the work done during a cycle, we must know the pres-
sure, P, as a function of time, but

P = P(N,(1) 7

and we only need to know the number density as a function of time. But symbolically

d
N=N <t, —”) (80)
di
and from Equation (65) we know that
dn
— = F(E;(1)). 81
-, = F(E®) (81)
However,

and their relationships are nonlinear.

The solution to this problem was generated on a computer for a range of amplitudes
and frequencies. Simultaneously with the solution for N(¢), we calculated P(¢) and
the work done in a cycle.
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The variations about the equilibrium radius are described by

E(r, 1) = &o(r) e, (83)
where &, (r)~dr/r,~ constant; hence,
r=(14¢&e*)r, (84)
and the density is
0(1)=0o(1 + & sinwt) ™2, (85)
Similarly, the local number densities for the different particle species are
N;(t) = N;(0) (1 + & sinawt) 2. (86)

3

When we include the reactions, where dn/dt is in units of cm ™ > sec™!, we have

t

Ni(f) = {Ni ©0) + J ‘L’i

0

}(1 + &o sinwt) ™. (87)

Once we know N,(t) we can calculate the Fermi momenta and energy, and then
the pressure as a function of time. We also know how the volume varies with time
and can calculate d¥V (¢)

dV(t) = dV(0) 3wé, cos wt. (88)

We can improve the accuracy of our solution if we expand about the equilibrium
value and consider only the variations. Subtracting off the constant part of the pres-
sure does not change the calculation of the work

W= 3§ AP (1) dV, (89)

but improves the accuracy when integrating around the PV diagram with a computer.
Expanding we have

+ N;(0) E (-1 '(; '+ 2)! (& sinwt) . (90)

Therefore,

dn.
AN;(t) = (1 + &, sinwt) ™ 4[ i e

+N(0)z(_ I)J'if D e, sinary (o1)
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where AN = N,(¢)— N;(0). We can use the series for ¢ <5x 1072 as it holds for £<1.
We must be careful to include enough terms in the series to correspond to the com-
puter’s accuracy.

For the Fermi momentum, p;

6N; (1) )“3’

ao(21; + 1) 2

pi(t) =m, <
where m, is the electron mass, I; the spin and N; the number density of particle i and
a,=1.76 x 10*° cm ™ >. We can now do a similar expansion for p, the Fermi energy
Ey and finally the pressure P.

P=Y P(), (93)

where P(i), the partial pressure of particle i is,

N m\*a, an® xup  Int up(2x® — 1)
P(l) = (2[ + 1) <me> ng—f(x) {1 =+ ﬁ—zf—(x_) + TSAB‘* T)xs—}, (94)
x = p/m,
up = (1 +x*)"2,
g (x) =upx(2x* + 1) — In(x + uy),
£(x) = 8x%up — 39 (%),

a;=1.44x10** ergs/cm® (or dyn/cm?) and x and u are the dimensionless Fermi
momentum and energy.

With Equation (91) and the reaction rate Equation (65) for the ¥~ reaction (4),
we solve for N;(¢) on a computer. Starting in equilibrium at =0, we can then iterate
in time, choosing iterations small enough so that 4N (z,) changes less than some frac-
tion of N(z,_,) (typically the fraction is <10~ %), simultaneously evaluating Equation
(89).

93)

C. RESULTS FOR 2~ DAMPING

The calculations were done for a sample volume in the core where X~ particles are
present, as only the X~ reaction was considered (this choice is explained in the next
section).

Since we are subtracting large values of the pressure which differ by small amounts,
we ran a check on the program. Simultaneously with the reaction case, we calculated
the work done by the no reaction case (dn;/ds=0); here we expect zero work. The
program was run in double precision on an IBM 7094. Because of roundoff errors,
the computer gave a non-zero answer for the work done in the no reaction case;
however, this value was ten to twelve orders of magnitude smaller than the work
done in the reaction case. We feel that the program works well, giving effectively zero
work during a cycle of the no reaction case.

There are several results and behavior patterns to look for if our explanation of
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the damping is an accurate one. The most important result is the behavior of the
system when the amplitude of vibration is fixed and the frequency is varied. If the
program is working and the problem has been correctly set up and described, then
the rate at which work is done per cycle should resemble the curves in Figure (9).
The answers are physical; that is, as outlined before, if reactions are slow compared
to w, the work done is small; similarly, if reactions are fast, the system stays in equilib-
rium and little work is done. At fixed amplitude and for varying w we expect a reson-
ance behavior with damping. In the intermediate case, when the reaction frequency
is comparable to the driving frequency, damping should be large.

Small Damping
————— Heavy Damping

av

—>

Fig. 9. Average power absorbed per cycle versus « for a damped driven harmonic oscillator.

The results of fixing ¢ and varying w are shown in Figures 10, 11, 12 for three
different values of £. We see that we do get a resonance effect as we vary w. We also
see that when we go to larger amplitudes the damping increases, and, as would be
expected, the curves broaden. At small amplitudes, the natural frequency of the neutron
star is far from the damping resonance frequency, and the system will damp slowly.
As we go to Jarger amplitudes, the damping resonance frequency increases, eventually
coinciding with the natural frequency of vibrations at é~2.5x 1072, and finally
shifting above it at larger amplitudes.
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Fig. 10. Work per cycle for a sample volume in a vibrating neutron star versus c, for a fixed
perturbation &. The damping is by the N--N=P+ X~ mechanism.

! [

W = Resonance Frequency
wpy = Neutron Star Frequency

£=3x102

40— -
12
£
: T
> Wy
°
) 20+ —
X
= 10— —]

oL L L |
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Fig. 11. Same as Figure 10.
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These results establish the nature of the damping and confirm the ability of the
program to reproduce physical results over a wide range of frequencies and amplitudes.

Next we fixed the frequency at that of the natural frequency of a neutron star (a
sample star with a hyperon core was chosen, the V,, M =1.8 M model, see Table II
herein, described by Hansen and Tsuruta, and the amplitude was varied to find Ae/e
versus &.

Initially the system is at equilibrium, as the volume increases the pressure decreases;
after wt=mn/2 the volume decreases and the pressure increases, but P is at a higher
value than the first quarter of the cycle. This system absorbs energy (i.e., damps the

B I I l

wg = Resonance Frequency
wp = Neutron Star Frequency
5.0 €=10"2 ]

w(x103° ergs/cma)

0 | 1 1 |

10 10 I02 IOEs IO4 IOs

w (x1.25 sec” ')

Fig. 12. Same as Figure 10.

mechanical energy) and converts it to thermal heat. Had the cycle gone in the other
direction in time, heat would have been converted into mechanical energy and an
instability would be achieved. As a check, the cycle was run 180° out of phase (at
t=0 we decrease the pressure) to see if the system gave a work cycle, where mechanical
energy is converted to thermal energy. We found this to be the case, and the answers
were the same as the original situation. Our program, corresponding to what we expect
physically, is insensitive to which way the system is driven.

Finally we applied these results to our sample star and followed its energy as a
function of time from some initial amplitude. As the energy stored decreases, &
decreases and the damping rate decreases, eventually going asymptotically to zero.
The results are shown in Figure 13 (one second equals 2 x 10 cycles). The calculations
include damping only in the hyperon core (region where hyperons are present), and
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¢ is the total energy of the star as a function of time. The hyperon core radius is
5x 10 m compared to the star radius of 1.1 x 10* m.

The calculations performed show that the £~ reaction (4) damps out the vibrational
energy of the neutron star in a short time. Only very small amplitudes, much less than
£=10"%, can survive for astronomical times. However, at <107 %, a typical V, star
would store less than ~6 x 1037 ergs, and the estimated rate (for example) of electro-

magnetic radiation from the Crab nebula is ~10°8% erg sec™.

52— ]

& (ergs)

a5 | | L
0 3
t (sec)

Fig. 13. Vibrational energy of the M'=1.8 MV, neutron star versus time when damping is present
(1 sec equals 2 X 103 cycles).

There is a final point about the role of temperature which should be mentioned.
Bahcall and Wolf (1965b) found that a neutron star’s atmosphere will cool to between
10¢ and 107K in less than 1072 years after formation. From the work of Tsuruta
(1964), the core temperature is two orders of magnitude higher. For all the calcula-
tions here, we chose the temperature at 10°K (k7=.086 MeV), which should be
typical of a neutron star interior.

During a cycle, we assumed that 7 remains constant; in fact this is not so, but the
change is so small as not to be a significant factor. We calculate the work done in a
cycle and then calculate the change in temperature due to the increase in the thermal
energy.
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For the V,, M=1.8 M neutron star,
E,; =155 x 10°°T? (96)

where E,, is the thermal energy in ergs and T is the temperature in K (Hansen and
Tsuruta, 1967). The variations of the pressure occur mostly in the =0 part of the
expansion for the pressure. The significant role of the temperature is in the amount of
phase space available for the nonequilibrium reactions.

Since it is possible to store up to five orders of magnitude more energy in vibrational
motion than in thermal heat, the temperature will change significantly after several
seconds of damping. When & =102 and T(0)=10°K, the temperature after damping
will be ~6x10°K.

5. Epilogue
A. COMPARISON TO URCA RATES

According to the independent particle model, the X~ is the first hyperon to appear
as the density increases in a neutron star. Reaction (4) is the most important damping
mechanism in stars with cores dense enough to contain hyperons. If the central density
is below the X~ threshold, the star damps by neutrino mechanisms (the URCA
process). We shall see that the other hyperons (in the independent particle model)
are not important for damping because of strong interactions.

In Hansen and Tsuruta (1967) five of the six models studies with neutrino damping
still had enough energy after 10 years to supply X-ray sources with energy to account
for their outputs. 2~ damping eliminates three of the five models, which have hyperon
cores (V,, M=18My; V3, M=89My;and V,, M=.59 M ).

For comparison, we have calculated the neutrino URCA rate from Hansen (1966)
and the X~ rate above threshold, when 4~20 (at k7=.086 MeV, AE=1.72 MeV).
(dn/dt)|yrea > 103°/cm3-sec. and (dn/dr)|5- =2 x 10°om3-sec.

Hansen’s original calculation using a one pion exchange (OPE) model, for the
strong interaction part of the matrix, was six times larger than the results of Bahcall
and Wolf (1965b). Bahcall and Wolf wrote the matrix elements in terms of the over-
lap between the initial and final state nucleon wave functions. The disagreement is due
to Hansen neglecting form factors at the vertices. Using the expression for F(¢) in
Equation (41), we find, at the momentum transfers involved in Hansen’s reactions,
that |F(z)|* ~¢. Since to some degree, OPE and nuclear potential solutions to scatter-
ing have degrees of freedom which are fitted to the data, it is not surprising that the
two methods yield similar results.

Why are the hyperon and URCA rates so different, when basically they are both
weak interactions? To answer this, we recall our discussion of phase space. It is the
fermions near the top of the degenerate sea which participate in inelastic scattering.
Only a small fraction of the fermions interact; an order of magnitude estimate of the
percentage of particles available is kT/(Ey—mc?). As kT<(Er—mc?), the fewer the
particles involved in a reaction process the faster it will go; the URCA reaction has
six particles, the 2~ only four. Secondly, the URCA process involves two interactions
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(strong and weak) and the rates are a product of two reaction probabilities. The 2~
reaction involves only a weak interaction.

B. STRONG INTERACTION REACTIONS

We have already stressed why the slow weak interaction 2~ rates for
N+NoP4+ 3™ (97)

are important in damping, and why the fast strong interaction 4~ rates are not. [t is
important to know whether there exist any strong interaction reactions for producing
hyperons. Wherever these strong reactions are available, the hyperons would interact
rapidly and would no longer contribute to damping.

The £~ particles are present in the core above g=1.05x10'° g/cm?, the next
particles to appear, at 9=1.90 x 10** g/cm?3, are the 4~ and A°.

Some possible strong (strangeness conserving) interactions involving these particles
are,

2" 4+ PoA’+ N, (98)

ST 4+ Neod + A°. (99

The threshold for reaction (65) is ¢=1.90 x 10'° g/cm?® (the A° threshold), and for
(66) at 0=2.2 x 10'° g/cm?.

Between the X~ threshold and that of the A° and 47, there is a slow hyperon reac-
tion N+ N==P+ X~ which rapidly damps vibrations. Once the A° threshold is reached,
there are strong interaction hyperon reactions which proceed rapidly. These reactions
are dominant and the system remains in equilibrium during vibrations, thus elimina-
ting damping.

For the V, (M=1.8 M) star, used as an example in the previous section, the A°
threshold is never reached. Thus damping occurs throughout the hyperon core up to
r=5 km; the central density, ¢, of this star, is 1.32 x 10*® g/cm? and the A° threshold
is at 0=1.90 x 10'® g/cm?>.

For the two V, stars with hyperon cores the A° threshold is reached, and the
density has a steeper rise in the X~ damping region than does the V, star. For Vj
(M=0.89 M) the damping layer, r, extends from 4.0 to 4.9 km, where the radius,
R=7.0 km; for V; (M=0.62 M) ris from 4.4 to 4.8 km, with R=5.7 km. Typically,
only 159 of the volume of the star contributes to the damping.

C. THRESHOLDS

From the previous discussion it is obvious that the thresholds for the appearance of
the hyperons play a role in determining which stars have their vibrations rapidly
damped. The calculation of the thresholds was based on an independent particle
model, yet, we know that an interaction energy exists between baryons due to strong
interactions.

From Wolf (1966), however, it seem likely that the threshold will be lower and the
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hyperons will appear at a lower density (possible as low as ¢ ~6x 10'* g/cm?3). If
the threshold is lower, hyperons will be present in more of the neutron star models.

If the A° and/or 4~ has a lower threshold than the X~ our conclusions will not
change. If the A° comes before the X~ particle then the damping reaction will be
N+P2A°+P. The calculation of the reaction rate will be similar to that of the X~.
When the X~ threshold is reached, the fast reactions (due to strong interactions)
dominate and there will be no damping beyond this density.

Basically, any vibrating neutron star with a hyperon core will damp rapidly, no
matter which hyperon first appears. The first hyperon type must be created by a
strangeness violating reaction and the rates for these reactions are of the right magni-
tude to cause rapid thermal damping.

The A~ has strangeness zero, and being created by a strong interaction, is not
important for damping. We calculated the 4™ rates to have an estimate of the rates
for strong interactions in a neutron star, as well as to determine if the resonance
particles could contribute to damping. No matter what its threshold the 4~ is not
important for damping.

E. CONCLUSION

In conclusion, any vibrating neutron star, with a hyperon core, rapidly damps down.
The mechanism for damping is thermal heating due to a weak interaction hyperon
reaction. In the independent particle model this hyperon is the £~ and the reaction is
N+N=22" +P. This work, as far as we know, is the first attempt to consider such
damping, and uses the VA theory and Cabibbo’s work.

Obviously, if neutron stars should be observed, then the results here may help
limit the possible models.

For the future, when more is understood about hyperon-nucleon potentials, as well
as nucleon-nucleon potentials, accurate neutron star models will be possible. The inter-
actions may significantly change the thresholds for hyperon production, altering our
view of dense matter, and possibly eliminating more vibrating models.

Appendix A: Evaluating /(A4)

o ) o 5
1(4) = f dx, f dx, f dx; J] (1 +e*)71
— o0 —~ 00 —(x2+x3+4) =1

X [1 + e_(%xi+"):| - [(i X; + 5)2 - ﬂzmi] . . (A-1)

We employ the following transformations, whose Jacobian is one:

Yi=X1 + X5+ x3 X1 =Y1— )2
Y2 = Xo+ X3 O Xp=Y,— Y3 . (A-2)
Y3 = X3 X3 = V3
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hence,

I(4) = f dys f dy, f dy; [(vy + 6> — B*m3] "2 (1 + )7}
;?1 - e;:i“)“—(dl F )T (1 F e O )T (A-3)
where the lower limit on y, comes from
Vilmin=— (%3 + x5 + 4) + x, + x3=— 4.

First we perform the y; integral

f (1+e?)7 (1 +e277) 1 dy,

— oo
oo

= (1 —e?)7? f dy; [+ ) —(1+e27) 71 (A4)

= o0

In this form divergences appear in each term, but cancel when combined; the solu-
tion 1s best achieved by the following expansions:

y3<0:(1+e?) =1+ (—1)e,
1
y3>0:(1+e?) ==Y (—1)ye ™,
1

i (A-5)
Vi < J’21(1 + eya—yz)—l =1+ Z(__ l)n g™ T2
1

3>yl +e277) =~ i (— 1)y e ™ e™,
The right-hand side of Equation (A-4) becomes equal to
(1= O+ X (- e
SN (eI =+ S (- I e,
T i (= 1) e ™2} (A-6)

—( =) B (- + (- =X ()

— Y2

()

t Yl =Y =2 (= 1)} = (A-7)
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Now,

1@ = [ dysl( +07 = Fmi]2 (15 e 0000
-4

< [ m—ey e ey @

— a0

and the y, integration can be carried out in an analogous manner as that of y; to
obtain

—(1+e)7 3R + 1), (A-9)

where &(2)=n?/6 is the Riemann zeta function. Now,

1@ = [ [0+ 07 - Fmi]' (6@ + 1)

x(L+&) ' (1+e ") 2dy (A-10)

and
a4

(1(4) — I(= 4)} o f (A-11)

-4

These equations are evaluated numerically.

Appendix B: F and D Couplings

Here we provide a brief review of some of the results of SU (3), with emphasis on the
types of baryon-baryon-meson couplings allowed in an invariant theory. The Eightfold
Way, Gell-Mann and Ne’eman (1964), is a collection of many reprints of the original
papers on SU (3), and provides the background for this discussion. In the construction
of the F and D couplings we follow the treatment of Frazer (1966) (a simplified and
general discussion, especially comprehensible to those with little background in SU
(3).

We use the eight hermitian generators of infinitesimal transformations

8
Q=I1+iY 46, (B-1)
=1
defined by Gell-Mann and Ne’eman (1964) as
11=I++I_, A4=V++V_, 16=U++U_,
A:Z = II_ - lI+ N 15 = iV+ - iV._ s 17 = iU_ - iU+ 5 (B'2)
2
Ay =2I3, Ag (Us - V3),

NE
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where the I’s, U’s and Vs are a set of 3 x 3 matrices, which act as raising and lowering
operators analogous to 7 spin in SU (2). The I, U; and V; commute and their eigen-
values can be used to label states. For reference we write down these eight 3 x 3
matrices from Gell-Mann and Ne’eman (1964) as

0 1 0 i —i 0
/11: 1 0 0 . 2‘2= i 0 O .
0 0O 0 0 0

1 0 0 0 0 1
/13':0—10,142000,
0 00 1 00
0 0 —i 0 00 (B-3)
As={0 0 0}, 2=(0 0 1],
i 0 0 01 0
(1 I
— 0 0

s

-

[
N
o O O
- O O

0 1
—i Py ;Lsz 0 = 0
0 V3

0 -
N V3

The simplest extension of SU (2) is to form a triplet q from the three unit vectors

1 0 0
)l -
0 0 1

and an arbitrary vector q can be written in terms of the three unit vectors. If we now
represent states in terms of the eigenvalues ]IS, U,, V5 > we have, (applying the opera-
tors (B-3) to (B-4)),

qlzl%,o’_%>, q2=|_%9%’0>> q3=‘0:_%-%>9 (B'S)
and the ¢* transform as
q,i = Qijqj- (B-6)

In SU(3) there exists another set of vectors in the triplet representation which are
complex to ¢; and are labeled g,. If we take the complex conjugate of Equation (B-6),
we have

g = 0}4; (B-7)

and the g4 transforms according to Q* as

8
Q* =1+ Z Zi@i (B'S)
1
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and

I=—A. (B-9)
From the matrices in (B-3) we find

I-3="13, U3=_ Us, I73=— Vi, (B-10)
so that

6 =1-%01%, @=13-40, @=101 - (B-11)

We can now use the g and 4 to form multiplets, such as
q'q; a singlet (0) (B-12)
T} =q'q; — $0%4"q, an octet (8). (B-13)

In Equation (B-13) T has nine terms, but since its trace is zero only eight are inde-
pendent. Gell-Mann and Ne’eman (1964) made the first successful assignments of the
baryons and mesons to the T J’ octet. Their results are summarized in Table I1I (taken
from Frazer, 1966)

TABLE III
State I3 Us Vs B M
To1 1 —3% —% 2t nt
T2 —1 3 3 - T
T3t % % —1 P K+
T3 —3 ¥ —1 - K-
Ty2 ~4 1 —1 N Ko
T3 3 —1 3 =0 Ko
X0 A° 70 n
Tl1 0 O 0 —0= + i —_— + =
V2 Ve V2 Ve
_ 30  C— n
Ts2 0 0 0 —_—t— — + —=
V2 Ve V2 Ve
s 0 0 0 — Vi —Vig
Ty matrix

Under SU(2) one assumed that for nucleons the NN interaction should be invariant
in I spin space. This assumption implies a coupling of the form N f+ TN, -m, which has
had much success in predicting branching ratios. For the baryon-baryon-meson
coupling in SU(3) one performs an analogous operation and forms invariants from
the matrices representing the octets. Our notation is such that P is a destruction
operator for a proton and a creation operator for an antiproton, while P is the reverse
of this. In SU(3) there are two ways to write an invariant coupling, Tr(BBM) and
Tr(BBM); as the trace is invariant under cyclic permutations all other invariants
can be transformed into these two. By convention one considers linear combinations
of these invariants and labels them as

D type: Tr[(BB + BB) M] (B-14)

© Kluwer Academic Publishers ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1969Ap%26SS...5..213L&amp;db_key=AST

&S, —. 5. TZ13L T

R

rTI69A

250 WILLIAM D.LANGER AND A.G.W.CAMERON
F type: Tr[(BB — BB) M] (B-15)
which can be written out (Frazer, 1966) as
D type
1 _ 2 2 — —
=—qa%PP—-ANN+ 34+ - A3°—5°2°+ 575"
N NERRRIVE )
1 _ _ _ — e
+:/,—6n(— P — NN —2AA +25°% 42273
+23°3° -~ E =7 — 5959
+ 7t (PN + 2°27 + /3457 + /227 A)
+a (NP +E 2%+ /324 + /3 45Y)
1 _ 1 _ 1 - [
+ K" ——=PA+ =P+ Nz —— A5~ +—32" + *5")
J6 J2 J2
- 1 - = = = I — 0, =0y+
J6 V2 J2
of py+ - = 37 0 L 1 30 ~0 1 =0
+ KO PXt 4T 5 - JENS - _NA——-3%5° - —_ AE
J2 /6
R (P+E s - LN iv- Loz 1 5y
- V2 6 J2© J6© )
(B-16)
F Type

+
g
TN
( —_
[x] |
|
M
(=)
+
<.
tofes |
53] |
I
N
+
lx]l
O
INg]
+
|
N
~
|
2
(=]
~
|
il
g
N—

It is these F and D couplings which are used in constructing the weak hadronic
currents in Section 2.
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Appendix C: Evaluating |M |? for X~ Reaction

From Equation (60), we have

G? , _
M = =~ IF (¢°))" sin® © cos* ©3 X, iy (1 = rys) uy

Sy
X ii}:"y}v (1 - s})S) unanyu(l - SYS) u}.“an'},u (1 - 7"))5) up . (C'l)
Now
sup o P M) (C-2)
2m

represents the positive energy projection operator (note P-P= —m?), where ui have
been normalized to unity. Using the subscripts 1 and 2 for the neutrons, 3 for the
proton and 4 for the X ~, then successive application of the projection operators leads
to the following trace form

2

G
IM[* = 7 [F (g*)f? sin® © cos* © Tf[?z(l — 175)

x M P (1 —rys) (*_—lj%—‘w] Tr [Vl(l — $75)

2m;, 2m;
—iP, +m —iPy+m
x ( 2 2) ‘)7”(1 _ S’}’s)( 4 4) . (C‘S)
2m2 2m4_

Using the trace theorems (Bjorken and Drell, 1965) we get

2 4

G 1
IMI* = F (@) sin® © cos® © [] —Tr[— (1 +7%)y
i=1mM;

X Py Ps + (L~ %) mymyyp, — 2rp, P17, Psys]
x Tr[— (1 4+ s2) y*Poy" P4 + (1 — %) mymuy™y* — 259" P,y"P.ays].
(C-4)
In multiplying the traces we need only retain products symmetric in the P variables,
therefore Equation (C-4) becomes,

2

G T4
IM[? = < |F (¢%)* sin’ © cos® © [] — [(L+ ) (1 +5?)
i=1 i

x Try, Py, Ps Try* Py P,

—(1+ rz) (1- Sz) mymy Try, Py, Py Tr "
—(1- rZ) myms (1 + S2) Tryy, Tr PPy P,
+ (1 — 7‘2) mymsy (1 - SZ) mymy Try;y, Trylyu

+ 4rs Try,Pyy,Pyys Try*Poy*Pays]. (C-5)
Now
Try;P1y,P3 Try*Pyy" Py = 32[P P, Py P, + PPy P, P3] (C-6)
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and
Tf%lpﬁupsys Tfylpzy’ui?ﬂs = 32[})1'1)2 Py-Py— PPy Pz'Ps]’ (C-7)

Try*y* = 4g**. (C-8)
Therefore,

Try™* Try, Py, P = 16P, - P, . (C-9)

Finally

G* Al
|M|? =7 [F(g*)|*sin> © cos’© [[ — [2(1 + )
i=1 i
X(l+s2)[P1'P2P3'P4+PI'P4P2'P3]
+SVS[PI'P2P3'P4_Pl'P4P2'P3]

4
+4 T] mi(1 = r¥) (1 = s*) + mymy(1 + ) (1 —5*) Py - Py

i=1

+ mms (1 —r?) (1 +s*) P,-P,]. (C-10)
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