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ABSTRACT

A formal scale analysis of the equations of motion in a plane parallel atmosphere is made, assuming condi-
tions to be such that relative fluctuations in density and temperature are small. It is found that an ener-
getically consistent set of approximate equations can be derived which preclude the existence of acoustic
motions. Such equations can be used to describe subsonic convection or internal gravity waves. Under certain
conditions the analysis can be generalized to include vertical pulsations of the atmosphere.

1. Introduction

In theoretical studies of thermal convection it is
usual to apply some simplifying approximations to the
equations of motion. Perhaps the most widely used are
those attributed to Boussinesq (1903), and which
Rayleigh (1916) used to study the onset of convective
instability, Similar approximations had been used
previously by Oberbeck (1879), and their applicability
to flow in a thin layer of compressible fluid has been
discussed by Jefireys (1930), for infinitesimal steady
motions, and by Spiegel and Veronis (1960). However,
since the convective reigons in, for example, stars or the
earth’s atmosphere are generally not thin, a set of
less restrictive assumptions must be sought. To this end
Ogura and Charney (1962) approximated the equations
governing adiabatic motions of an inviscid fluid by
filtering out sound waves, which are not of great
meteorological interest and whose presence would
require the use of very small time steps in a numerical
integration. The resulting equations, which Charney
has named “‘anelastic,” had previously been obtained
by Batchelor (1953) in a discussion of dymamical
similarity. Ogura and Phillips (1962) have derived
them by a formal scale analysis and have shown that
they result from assuming that the relative range of
potential temperature in the convective region is small,
and that the time scale of the motions is solely that
associated with gravity-driven advection.

In order to study a convective region in its entirety,
one must also consider the molecular and radiative
transport processes which necessarily occur and which
are important at least at the edges of the region. It is
the purpose of this investigation to derive equations in
anelastic approximation which take these processes
into account, and to ascertain under what conditions
they are valid. It will be found that the approximate
equations can be used to describe convection or internal
gravity waves for which the Mach number is small.

The strict elimination of acoustic motions to describe
circumstances in which their effect is small consider-
ably simplifies both analytical and numerical studies,
and thus provides some of the justification for this
discussion. In addition, it is hoped that the analysis
sheds some light on the balance of the dominant
physical processes in a convecting fluid.

The equations are first derived for a plane parallel
atmosphere which is static in the mean by a formal
scale analysis modeled on that by Ogura and Phillips
and a derivation of the Boussinesq equations by
Malkus (1964), who draws on techmiques used by
Mihaljan (1962) for Boussinesq liquids. The analysis
is then extended to treat cases in which the mean
properties of the atmosphere vary in time, with a view
to describing the interaction between convection and
radial pulsations in stars.

2. Basic equations

For simplicity, we shall first consider a plane strati-
fied atmosphere, infinite in horizontal extent, with
no mean shear, and for which all horizontally averaged
quantities are independent of time. It will be assumed
that deviations from local thermodynamic equilibrium
are sufficiently small so that a temperature T can be
defined which is a function of pressure p and density p
alone. The equation of state can thus take the form

P=P(?1T)i (2-1)
and the values of all thermodynamic functions are
determined by any two state variables. Fluctuations
in the gravitational acceleration g arising from the
motions will be neglected, so that g is a function only
of height. With respect to inertial rectangular co-
ordinates (x1,%2,%3) with x; vertical, the equations of
motion are:
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M= pii; (2.5)

is the momentum density, #; being the velocity, U is
the internal energy per unmit mass, Q an internal heat
source, and F; the combined heat flux by conduction
and radiation. The operator D/Dt is the material time
derivative and 8 is the Kronecker delta. The viscous
stress tensor is given by

(2.6)

where u is the coefficient of shear viscosity. It will be
assumed that the coordinates are chosen so that there
is no net mass flux across any stationary plane, i.e.,

2.7)

where the overbar denotes a horizontal average. With
the help of the thermodynamic relations

=0,

de—-gdp=pdh— dp=pCpdT—8dp, (2.8)

P

where % is the specific enthalpy, Eq. (2.4) may be
rewritten as
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Different substitutions in the time derivatives and the
advection terms are made merely for convenience. In
these equations C, is the specific heat at constant
pressure and

2.9

T i (2.10)
55T = _( ) . .
dInT/,
Tt will also be convenient to define
d Inp
a(p,T)=< ) . (2.11)
a lnp 7

3. Anelastic scaling

To obtain the anelastic approximation the equations
of motion will first be expressed in nondimensional
form. An expansion to first order in a small dimension-
less parameter then yields the desired equations.
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Pedagogically, it would be preferable to express this
parameter directly in terms of imposed constraints on
the system (the boundary conditions, for example) and
to expand about a known reference atmosphere. Ogura
and Phillips (1962) and Malkus (1964) have shown that
this can be done either if the fluid layer is thin or if
motions are adiabatic (using the adiabatic atmosphere
in hydrostatic equilibrium as the reference atmosphere),
but if both these restrictions are simultaneously
relaxed it no longer seems possible. Instead, each
variable f will be expressed as the sum of a horizontal
average and a fluctuation, i.e.,

@)= f(as)+ fr(x:0). 3.1)

The anelastic approximation results when relative
fluctuations in the thermodynamic variables are small.
The mean (horizontally averaged) variables can then
serve to define the reference atmosphere. The obvious
disadvantage of this approach is that one may not
know whether the approximation is consistent, for any
particular case, until the equations have been solved.
Before one can construct useful nondimensional
equations it is necessary to discuss the physical processes
one wishes to represent, and to estimate the magnitude
of their effects. The situation of interest here is one
in which buoyancy provides the main force to drive
or inhibit eddy motions with a characteristic velocity
w. Consider, therefore, a horizontal layer of the atmo-
sphere of depth &, within which the motions are confined.
We shall anticipate that since these motions are sub-
sonic the deviation from hydrostatic equilibrium will
not be great; the spatial scale of variation of the mean
pressure will therefore be H=5/{gp), the pressure scale
height, and 5 and 7 will vary over a similar distance.!
Fluctuation quantities and gradients of p, 5 and T, on
the other hand, are intimately associated with the
motions, and their scale of variation is at most the
shorter of 4 and H. Fluctuations change due to advec-
tion typically in the time 7. taken to travel this length
scale with vertical velocity w. It will be assumed that
more rapid variations do not occur. If pressure fluctua-
tions and viscous stresses are ignored, the characteristic
velocity can be obtained by equating the associated
kinetic energy to the work done by the buoyancy
forces. Since, in general, the relative density and
temperature fluctuations are similar, one would expect

ng 1
T
The pressure fluctuations extract energy from the
vertical motions to drive the horizontal flow; the work

they do across the eddy, therefore,. must balance the
kinetic energy and

W

(3.2)

Pl ﬁw2

3.3)
p B

i In the jonization zone of an abundant element the scale height
of temperature can be somewhat smaller.
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Provided d/H is not large these estimates are consistent,
but when &>H the pressure fluctuations are very
efficient at inhibiting the flow and the estimate (3.2)
is no longer valid. In general, the resulting relative pres-
sure fluctuation is of the same order as the relative
temperature and density fluctuations, the estimate (3.3)
still stands, and so

(3.5)

If thermal diffusion ‘arising directly from the tempera-
ture fluctuations is temporarily disregarded, the tem-
perature fluctuations can be estimated by the relative
range of potential temperature across the layer:

d d
- [ plds~ [
0 0

where 8 is the superadiabatic temperature gradient of
the mean atmosphere,

§ dp dT

— dxs,
pCpdxs dxs

(3.6)

—1/dh 1dp
/32—__(—“”'_—>: (3.7
Cp dxs p dxs
and the convective heat flux would be
F. =~ pCyul. (3.8)

This exceeds the actual heat flux F. by the lateral
flux of heat tending to smooth out the temperature
fluctuations, so

. KT, -
KIVTI| %“Ech‘zd_Fczﬁpr(o_ Ty, (3.9
A

where K is the thermal conductivity and
1, if d>H,
A_.

- (3.10)
d/H, if d<H.

This provides a second relation between 7T: and w.
Finally, in view of Egs. (2.5) and (2.7), we notice that
the horizontally averaged velocity is of order pi/p of
the fluctuations; the same is true of the viscous stress
tensor.

Guided by these remarks, we propose the introduc-
tion of the following dimensionless variables and
operators in terms of a dimensionless parameter e
which measures the relative temperature and density
fluctuations and which will be assumed small:

g=g3, B=04"B, T=T(T+eT"), po=p.(s+eo’),
p=2gsp:H: P+ exp’), Cr= Cps(€p+ C5'),
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(and similar expressions for %, o, 8, ¢ and Q), and

- Tegs
m;=p.Neg NHm,/, Tik=us\/—‘——(67"ik+nk'),
\H,
Ts
F;= (\Fi+€Fy)
d - -
H— operating on p, p, T,
a dxi’
axi 6
NH,'— otherwise
axi’

) d \/ g, 0

== —

a¢ at’ AH, o’
where the subscript s denotes a constant characteristic
value, the tilde labels horizontally averaged dimension-
less variables and the prime labels fluctuations. The
parameter \ is now regarded as a constant, defined as in
Eq. (3.10) but with H replaced by H,. The flux F; has
been scaled assuming it to be proportional to the tem-

perature gradient. From Egs. (3.9), and (3.2) or (3.5),
whichever applies, ¢ can be defined in terms of 6 by

0 7}
e=y(S)—=1S1(VASFI—1) —,  (3.11)
T T,
where
s(1/THONH B
=ig_(/—)__ (3.12)
[KS/ (Pscps):lz

In addition to ¢, S and \, we can construct the follow-
ing independent dimensionless parameters which charac-
terize the atmosphere:

PscpaTs hsps Qs"c
= ) = » 9=

= , © .
33173 bs Pscps Ts K,

I‘scpx

The first, C, is a dimensionless specific heat, D measures
the resilience of the gas [and is equal to v/ (y—1) for a
perfect single-phase gas], ¢ measures the heat source
and o is the Prandtl number. The parameter S is the
product of the Prandtl number and a Rayleigh number
based on the shorter of d and H,. We notice from Eqgs.
(3.2) and (3.5) that e also estimates an upper bound to
the square of the Mach number of the flow.

In terms of these dimensionless quantities, the
equations of motion (2.2), (2.3), (2.9) become

om;’ aJ /mi’mk’ d _
[t Z) |~ )2+
' oxy\ j e’ ./

0x;

d
+50'(¢S)—% (‘Efik‘i'Tik/), (313)

xk'
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F9(Q+Q)= WS — (Tt ). (3.15)
Xr
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The equation of state may be expanded about the

mean pressure and temperature to yield

_ . —"y

bte’=p(p,T) 1+e:\a(i>,T)E

~ A T[
~S(I)=+0@)|. (10
T .

Similar expansions can be made for the other thermo-

dynamic functions. It follows from Eq. (3.13) that

1 dp 17dp
(——+€§p’>+0(€2).

(Z.’JC;;’

ptep’ dxs’ p
Eq. (3.15) can thus be rewritten as
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+9(0+ Q) — @Sy —(\Fetel's)+0(&).
X
* (3.17)
4. The anelastic approximation

The anelastic approximation results from expanding
the mean and fluctuating parts of Egs. (3.13), (3.14),
(3.16) and (3.17) in powers of e and retaining terms up
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to the first order. For the mean equations we set for
each variable f

J=Jotefrtefet -, (4.1)
f'=fd+efi+ef+- - (4.2)

The zero- and first-order momentum and energy equa-~
tions are then

dpo
= —gﬁ 3 (4'3)
dxg' ‘
_ dﬁo:{
Qo +AYS)+——=0, (4.4)
xa’
d /mos'mo
——(— >= 0, (4.5)
dxs' Po
d . m03’2
@ﬁ-,>=—ﬁh (4.6)
dxy’ Po
po'mos’ ohe' N 3Py
-\ (6,C) g + (8:C) 'y’ (D —_ ——)
Po dxx” po Oxx’
9 /mo ~
=g\ {(6,C)! (%S)“*’roik'—-<—~*>+ g
oxi’\ po
dFy,
—\@S)? . @n
d:’C3’
The equation of state may be written
ﬁ:p@’f), (48)

to this order, and the other thermodynamic functions
may be similarly evaluated. The zero-order viscous
stress tensor is

9 /my’ a [mo
Toir' = Ho —'—< >+ (*)
9xi'\ po dxx'\ po

a /mo’
— %51‘1;—-“(——)]. (4.9)
ax'\ po

Fluctuating quantities appear in these equations
only in zero order. Equations determining them can be
obtained by subtracting from the full nondimensional
equations their horizontal averages, introducing the
expansion (4.2) for the fluctuations and retaining only
terms of leading order in e. There results

Omo’ 0 fmoSmor d (Mg
A
at’ Bxk’ ﬁ dx:;' [3

apy O7oi’
= *a—;—zpo’aia-l-a(ybs)_* =

X axk

(4.10)
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Imor’
=0, (4.11)
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The equation of state is
p U o ? 7’ L T !
2B s~ (413)
p p T

and fluctuations in the other thermodynamic variables
satisfy similar equations. The zero-order velocity is
given by
Mo,"= "lmm’ (4.14)

in obvious units.

Restoring dimensions and combining the two orders
of the mean equations and the fluctuating equations
yields the desired anelastic equations:

om; O /mymg
)
at dx p
9 _ 0Ty
= ——@+p1)—g(B+pDdist—, (4.15)
ox; X
6mk
=0, (4.16)
axk
- 6T1 _apl _ le 1 8;01 g
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at ot Xr P Oxk p
9 /mi\ 9 _
= Tik—‘-(—)+Q+Q1—-—‘(Fk+F1k), (4.17)
Oxr\p 0xy
ﬁ=P@,T), etc., (4.18)
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Y LY | Rt
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where 1 /dh 1dp dT & dp
B=—— __"_>z_<’__‘T‘"—>, (4.20)
Co\dx; pdxs docs. pCp ducs
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Tik= ﬁ[—<—>+-—<——>— %6,~k——(—~>:|, (421)
dx:\ p dx:\ p Axi\ p

mi= pU;. (422)

The approximation may be summarized as follows:

(i) All thermodynamic quantities are expressed as the
sum of a mean and a fluctuating part, and the equa-
tions are linearized in the fluctuating parts; in
particular, the mean of thermodynamic functions can
be replaced by the corresponding function of the
mean state variables. The momentum density is not
regarded as small, and nonlinearities involving it are
retained.

(ii) The fluctuating continuity equation is replaced
by div(pu)=0.

It is of interest to note that the equations in anelastic
approximation governing marginal stability of an
atmosphere in hydrostatic equilibrium are identical to
the exact linear stability equations. Their solutions for
a polytrope are discussed by Spiegel (1965). Acoustic
modes are never present; this results from part
(i) of the approximation. It will be seen later, how-
ever, that anelastic motions can coexist with acoustic
oscillations on a larger scale.
If the layer is thin so that A1, one can set

fn=jn0+>\fn1+)\2f‘n2+ ]
fn,=fn01+>\fn1/+)\2fn2,_|- ]

and expand Egs. (4.3)-(4.13) in powers of \. It has
been shown by Malkus (1964) that if one retains terms
up to O(A) but neglects terms which are O(e\), re-
membering that all terms in the fluctuating equations
(4.10)-(4.13) are already O(e), the Boussinesq equa-
tions result.

It should be emphasized that this is a formal expan-
sion in powers of a single dimensionless parameter e,
which is assumed small, and no statement has been
made about the magnitudes of the other parameters.
But to assess the balance of the dominant physical
processes in any particular case the values of all the
parameters must be considered. Normally in stellar
and planetary conditions C and D are of order unity
(though Cmay rise to about 10 in an ionization zone of
an abundant element), ¢ cannot be large if the mean
atmosphere is to remain in equilibrium, and ¢ is about
unity for air and is usually very small (=107°) in
stars so that viscous stresses have little effect on motions
whose length scale is great enough for buoyancy to be
important. Had ¢ been very large, it would have been
necessary to take the viscous stresses into account
when estimating the magnitude of the convective
velocities, and a different scaling would have resulted.
The parameter S can take a wide range of values;
when it is small or of order unity Eq. (4.4) reflects the
principal thermal energy balance, but when it is large
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the terms in this equation must be individually small
and the terms of Eq. (4.7) are of comparable or greater
importance. Egs. (4.3) and (4.6) contain no parameters
and e thus measures the small departure from hydro-
static equilibrium, whereas it is S, whose magnitude is
not specified, which measures the departure from radia-
tive (or conductive) equilibrium. It is for this reason
that & known reference atmosphere cannot be estab-
lished for a one-parameter expansion.

5. Energetics of the anelastic equations

In this section it will be demonstrated that the
anelastic equations are at least energetically consistent
in the sense that the energy balance does not depend
on contributions from higher terms in the expansion
presented above. We first construct the exact total
energy equation by adding the kinetic energy equation,
obtained by taking the scalar product of Eq. (2.2)
with s;/p, to the thermal energy equation (2.4) and

D. 0. GOUGH

453

using Eq. (2.3); thus,

i) i
——(pU +——)+gms
i/ 2p
a MiTix MMM _
=:Q——(Fk+mkh— + ); (31)
% p 20

which, with the use of the relations (2.8), may be
rewritten as

T 9dp dp O /mm;
pCp———8——+h—+—~( >+gm3
a o at A\ 2
d MiTie MMMy
Ay I 2p?

It will be shown that if this equation is approximated
in the same way as those in the previous section, the
result is the same as the total energy equation derived
from the anelastic equations (4.15)-(4.22).

In terms of the dimensionless variables introduced in Section 3, Eq. (5.2) is

’

f4 mi'mi’
[(p—i-ep’)(C,,—i—eCp')——>\C-1(6—|—ea')_+D(5 C)-l(k+eh')—]+e>\(6 C) 1——[—————
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The zero- and first-order mean equations are

_ Py,
- gQo—AYS)+——=0,

X3

(5.4)
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With the hélp of the mean of the momentum equation
(3.13) and Eq. (3.14), we can write

d -
A (5 SC)"gm s+D (63C)_L—T (Wlk/h)
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pteo’

If this relation is substituted into the fluctuating part
of Eq. (5.3), the resulting equation, to leading order

in ¢ is
OilmOi/>
25

o’ _0pd a /m
; al
o’

1 d
- A[——Cpﬁ—f- (6:C)7- ———(
¢ H

B dzxs

e

a -
= qQo’+;~,[ WS)tF o'+ D (8.C ) mor ho' —mor by )

Xk

—oA(B,C) L (YS) 451 (Moi’Toik'—;noi'Tm’k')
1 -
+A (&,C)_l;; (mos"moi" mor’— mo;"m()i'mok'):!- (5.7)
3

To obtain the total energy equation implied by the
anelastic equations, we first construct the kinetic
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energy equation from Eqs. (4.15) and (4.16):
0 <m,~m,~>+ a3 <m,-m,~mk> ms d (m—32>
N\ 2p oxy, 2p? p dxs\ p

v m; 8]51 P1 m; a

=— ——g——'rns+-— ~Tik-
p Ox; p p Oxx

(5.8)

The total energy equation results from adding this to
the anelastic thermal energy equation (4.17):

— 6T1 _Opl 0 min; 1 d
0 nfeo )
a! at AN\ 2p pdxs

_ ad _ ’ 1 MmNy,
=Q+Q1""_<Fk+F1k+mkhl__miTik+ >
0%k p 2p*

(5.9)

This equation is the dimensional form of Eqs. (5.4),
(5.5) and (5.7) combined.

6. Convection in a moving atmosphere

We shall now consider briefly the equations govern-
ing the flow when horizontally averaged quantities
depend also on time. This is necessary in order to
study, for example, the coupling between convection
and atmospheric pulsations. It will be shown that
under certain conditions a simple separation of the flow
into acoustic and anelastic parts is possible. The dis-
cussion will be limited to cases where the mean flow
is vertical and independent of horizontal coordinates,
so that the total velocity »; may be written

V= V6i3+ui, (61)

where
pv;=pV i, (6.2)
pu;=1;=0. (6~3)

So as not to complicate the algebra unnecessarily, the
atmosphere will still be regarded as being plane parallel.
It is convenient to introduce a new coordinate system
(¢:) defined by

a 3
—=p—, (6'4)
axi aq,'

which has the property that there is no mean mass flux
across any surface of constant ¢;, i.e.,

ax,-
< > =V5.'3.
ot/ a

In terms of these mixed Lagrangian-Eulerian co-
ordinates the continuity equation becomes

(6.5)

dp dp
—5p -*—+P—[P(V5ks+’uk)] 0,
at 6q3 Qk

(6.6)
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whose horizontal average is
‘ vV d1Inp
—= (6.7)
aq:; at '

With this equation to define V the ﬂuctuatmg part
of the continuity equation and the rernaining equations
of motion become

8mk

a/p A
—<—>+——=0, (6.8)
\p/  Oqx a
Im; 0 fmmy .
o ey
ot oqr\ p ‘
' g  dp 1 Oreu
= (mi+msbdis) ~p—- gpd; 3+p———, (6.9)
at q, ..' q/c
oT 9p oh 1 9p
L UL
at ot g, p Oqx
(V] n ah’lﬁ k
=;'>Tnk——<*—>—n33 +Q0—p—, (6.10)
BQk at aqk

where g is now the apparent gravitational acceleration
in the ¢ coordinate system, i.e.,

vV
g(93)=g(xa)+—al—, (6.11)

and
dinp
Toik= — §u——u+ T,
af

(6.12)

with 7, defined by Eq. (2.6).

The procedure to follow is similar to that employed
above, except that now there are two time scales
associated with the system: the convective time 7. and
a time 7, characterizing the motion of the atmosphere
as a whole. We shall scale time on the smaller of these
two quantities. All other variables can be scaled as
before, and the resulting nondimensional equations
expanded in powers of ¢; the anelastic equations result
simply from retaining terms up to first order in ¢ in
the mean equations and terms of only leading order
i the fluctuating equations. Ifr,/7. is not small, these
are, after combining the mean and fluctuating equations,

om,;’ o /mi'm"
e e
ot gy’ p

p 9
- 53—, P+ ep)—E(5+€0")dis
i

d1n
= ep (M +m3'8:3)
o’

alnp aT.'k'
+ e (¥S)™ *pl:——)\q&——( )5.;'3+ ], (6.13)
3 ag/\ ar aqi’
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6mk’
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The stress tensor 744 1s defined as in Eq. (4.9), and

Te
—, i 2Ty,

=11, - (6.17)
1, if 7.&7p

The approximated thermodynamic equations are as
before.

1t is worth recording the Boussinesq approximation
in this case. From Eq. (4.13) we can see that pressure
fluctuations do not contribute to the fluctuating part
of the equation of state. The same is true in all the

other thermodynamic relations; in particular, the
fluctuating specific enthalpy satisfies
W =8,CD'C,T'+0(\)+0(e), (6.18)

and similar equations relate C,’ and & to the tempera-
ture fluctuation. Provided again that 7,/7. is not small,
the equations in Boussinesq approximation are, with
dimensions restored,

Om; d Inp a _
»—+——(m,mk) (m +ms§n) —ﬁ'—(i'H‘Pl)
a/ (')q;‘ Bq,
S a’r,‘k
~gﬁ<1"":T1>5is+fr——, (6.19)
T aqk
Omy, oy
—=0, or —=0, (6.20)
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ot o InT al

Bms a7, _ 9 Inéd Ty 8{3
{1
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a _
=0+01—p—(Fr+Fu),
aqk

and Eqs. (4.20)-(4.22) still correctly define B3, 7 and %..

It behooves us finally to inquire under what circum-
stances we might expect these approximations to be
valid. If the time variations of the mean variables
arise from a pulsation in the fundamental mode or a
low overtone, the period of pulsation is approximately
the free fall time through the depth D of the atmo-
sphere, i.e., 7,2 (D/g,)}, and so

e /AHN\?

Tp ( eD )
For this ratio not to be large, it is necessary either that
the atmosphere be at least as deep as the average scale
height of potential temperature or that the convection
be confined to a thin layer so that A=0(e). In the
latter case the Boussinesq approximation applies. If
neither of these conditions is satisfied, ¢=0(e %) and a
different expansion of the equations must be made.
In particular, the divergence of the momentum density
is no longer zero, and mixing of acoustic motions of

finite horizontal length scale with the convection seems
inevitable,

(6.21)

7. Summary

A scale analysis has been performed to derive
approximate equations governing the motion of an-
elastic convection or internal gravity waves by a one-
parameter expansion. The analysis is valid if the relative
density and temperature fluctuations produced by the
motion are small. This condition can be restated in
terms of the mean properties of the atmosphere alone,
and amounts to demanding that a dimensionless
quantity e, defined in terms of the total range of
potential temperature across the region within which
the convective motion is confined and the product of
the Prandtl number and a Rayleigh number, be small.
If the convective region extends over a pressure scale
height or more, this is equivalent to saying that the
square of the Mach number of the convective motions
is small; but if the region is thin, the condition is even
more restrictive. The analysis shows that advection
is the dominant nonlinearity in the equations, and
suggests that if the horizontal mean properties of the
atmosphere are static or vary in a time which is not
very much shorter than the convective time scale, the
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generation of acoustic motions with a horizontal length
scale comparable to that of the convection is slight and
may be suppressed entirely by removing the time
derivative of the density fluctuation from the continuity
equation. It is indicated how, for thin regions, a two-
parameter expansion yields the Boussinesq ap-
proximation.
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