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ABSTRACT

We consider a steady axisymmetric flow out of the galactic center, neglecting magnetic and turbulent
stresses and the self-gravitation of the gas. The flow is in a disk and possesses angular momentum, but
otherwise the problem is like solar-wind theory, and we assume that initial conditions are specified at
the edge of the nuclear disk. The equations of motion are then quite simple, and their solution indicates
that the flow must contain a nearly discontinuous transition from supersonic to subsonic conditions. We
argue that this transition must be a compressible hydraulic jump, or bore, which generates intense
turbulence and gives rise to H 11 on the downstream edge of the bore. The bore causes radial deceleration
of the gas and hence density enhancement, and we suggest that this phenomenon is associated with the
expanding arm.

I, INTRODUCTION

The discovery that gas flows from the galactic center (van Woerden, Rougoor, and
Oort 1957) has led to a number of interesting studies of the kinematics of interstellar gas
in the inner Galaxy (Rougoor and Oort 1960; Rougoor 1960; Kerr and Westerhout 1965;
Kerr 1967). The salient features of the flow are: (1) a central nuclear disk of radius
~800 pc, which rotates rapidly but does not expand appreciably; (2) a relatively dense
(in H 1) region at about 4 kpc from the galactic center which has an outward velocity of
53 km sec™! superposed on its galactic rotation—the expanding arm; (3) an irregular
distribution of less dense gas between 800 pc and 4 kpc which exhibits outward velocities
of as much as 200 km sec™.

These aspects of the flow seem relatively clear on our side of the galactic center; the
observations relating to H 1 on the other side are much harder to interpret. It seems
established that there is outflow there, too, but it is likely that the flow is not axisym-
metric, and the possibility of inflow from certain directions is not excluded. It is also
worth noting that radio observations indicate H 11 outside the expanding arm, but no-
where inside it (Mezger and Hoglund 1967).

Theoretical discussions of the flow have mainly been concerned with the driving
mechanisms (Wentzel 1961; Burbidge and Hoyle 1963; Woltjer 1965; Oort 1966). The
question that has seemed uppermost is whether the flow is reasonably steady or is the
result of an explosion in the galactic center. In the former case, the difficulty seems to be
to provide a source of gas, since even if the flow produced a mass flux as low as 0.1
Mo/yr, the gas in the central disk would be quickly depleted. On the other hand, if the
flow resulted from a recent explosion, it seems difficult to explain the presence of a rela-
tively quiescent nuclear disk.

In the present work, we attempt to clarify the assumption of a maintained flow by
considering the dynamics of the expansion between 800 pc and 4 kpc. Our approach is
closely akin to that of solar-wind theory, and assumes, as known, the properties of the
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gas at the edge of the nuclear disk. Given these properties, we show in § IT how a form
of shock is to be expected in our simple model, and in § IIT we indicate that this shock
is like a hydraulic jump, or bore, which ionizes the gas and generates turbulence.

II. THE UNDERLYING FLOW PATTERN

a) The Equations of the Model

We consider in this section axisymmetric flow of perfect gas which is confined to a
thin sheet by the vertical! component of the gravitational field of the stars. We neglect
the self-gravitation of the gas, and we regard the gravitational field of the stars as given.
We allow the stars to influence the gas motion only through their mean gravitational
field, and we neglect the drag exerted on the gas by individual stars or star clusters. We
neglect viscosity since the Reynolds numbers are O(10%), at least, but we assume the mo-
tion is laminar, Further, we assume that the process of heat exchange between the gas
and its environment maintains its temperature constant at a temperature 7" of about
100° K, just as for an H 1 region at rest. At the speeds we contemplate, the gas would
travel only ~10? pc before readjusting its temperature, so that, since for the moment we
are interested in a flow structure on a scale of 1 kpc, the isothermal assumption seems
reasonable.

We use cylindrical polar coordinates (r,8,2) with velocity components (#,9,w), where
z = 0 1is the galactic plane and r = 0 is the galactic center. The gravitational field of the
starsis[g,(r),0, — B2], where g,(r) need not be more precisely specified at present and where
B 1is a constant. The neglect of the s-dependence of g, is justified, since the sheet of gas is
reasonably thin compared with the distribution of the stellar component. The form of the
vertical component is chosen to simplify the analysis, and in reality it will depend on 7.
As will be clear from the calculation, it is not difficult to incorporate a more realistic
vertical component into the model, though at this exploratory stage the extra complica-
tion is not warranted.

We are now in a position to verify that there is a steady solution of the equations
with w = 0 and in which # and v depend only on the radial coordinate ». With this form
of the velocity field, the equations for steady motion are

ou  1? __0p

PuE“;>— ar‘l‘Pgr, 1)
0v uY

gy, 9P
2 (oru) = 0 @

ar pr - b

and

_k r )

p—me y

the last equation being the equation of state of neutral hydrogen in the standard nota-
tion. (We neglect the presence of other elements and the possibility of molecular
hydrogen.)

1 By “vertical” we mean the direction perpendicular to the galactic plane.
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Equations (3) and (5) have the solutions
22
o) = 1) exp (= o) ©)
and
t 2
p02) = #'0) exp (- 5) 7

where the dagger denotes values in the galactic plane and where the scale height H is
given by
m? = kT /Bmx . (8)

The equation of continuity (4) now shows that
pTru = Q ’ (9)

where Q is a constant. Provided that Q is not zero, so that there is some radial motion,
equation (2) forces us to take

v=A/r, (10)

where 4 is a constant. This equation is simply a consequence of the fact that no processes
for transferring angular momentum other than convection by fluid particles have been
included in our model. This dependence of v on 7 cannot be reconciled with the usually
accepted rotation curve (Kerr and Westerhout 1965). There are, of course, uncertainties
in the determination of the range 800 pc to 4 kpc, but the values of v at the ends of this
range are well determined and cannot be fitted to equation (10) by any choice of 4. This
discrepancy points to existence of angular-momentum transfer, and as reported else-
where (Moore and Spiegel, reported in Spiegel 1966; also Mestel, Moore, and Spiegel,
to be published) the effect of a magnetic field on this flow has been examined. However,
our present interest is in the over-all structure of the flow and, in particular, in the bore
to be discussed in § ITI, and the present simplified model is adequate when only such
gross features are being studied.
We can now easily find an equation for the radial velocity %, which is

u ET ou kT A?
Or  mmu or er+7+g'(') ) (11)

b) The Nature of the Flow

We must now decide what physical quantities have to be specified to make the solution
of equation (1) unique. Suppose %, v, and pt have prescribed values u,, 7o, and p,f at some
initial radius 7 = 7,. Then A4 = 7, and equation (11) contains only known constants.
Furthermore, since it is first order, the condition # = #, at = r, enables us to inte-
grate forward in 7 to obtain a unique solution, as long as the equation remains regular,
Now Q = ropolug, and from equation (9) the density in the galactic plane follows.

Next we use equation (6) to determine the density at points out of the galactic plane;
finally, the pressure follows from the equation of state. We shall in fact identify r, with
the radius 800 pc at which there is a large observed v, of 270 km sec™’. We will adopt
small but slightly supersonic values for #, and take a value of po' corresponding to
1 cm—3, which values are consistent with a mass flux ~0.1 M o/yr. Before proceeding
to the solution, we wish to stress that once #,, v, and po! are chosen, every feature of the
flow for > 7 is uniquely determined. It might well be objected that we ought really
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to match our flow to conditions at the outer edge of the Galaxy, but we shall see below
why this is not a suitable procedure. We assume now that

g(r) = —GM/7*, (12)

so that we are attributing all the gravitational field to the galactic nucleus, of mass 9.
This is clearly not reasonable in the outer parts of the Galaxy, and Schmidt (1965) has
given a more realistic form for the gravitational field as a sum of terms of the form
— g~ However, Schmidt’s values for the constants g, are calculated on the assumption
that the dynamical effect of the radial motion is negligible, and we believe that this is
not the case in the range 800 pc < r < 4 kpc. Thus it does not appear possible to give
a precise specification of g, in the range of greatest interest to us, and the simple form
we adopt must serve for the present.
We now introduce dimensionless variables

m = u/(RT)'"*, x=r1/n. (13)
Then equation (11) for # takes the form

m?— 1dm> /1 g a
m? %__2 P S

, (14)

where

§= Ggﬁ/(rORTO) ’ a = A2/(70RT0) ’ (15)

and R is the gas constant. The equation of motion (14) is to be solved with the initial
condition m = my at x = 1, where m, > 1. This type of equation is well known in
classical gas dynamics and in stellar-wind theory (Limber 1967), and we have previously
discussed its solutions (reported in Spiegel 1966), so it is not necessary for us to elabo-
rate on its properties.

With the values we have adopted for ro and v, we have, roughly, a ~ 7 X 104 and
if there are n X 10° Mo in the galactic nucleus, g = » X 10% Thus g and @ are very large
numbers. This means that the first term on the right in equation (14) has a negligible
effect on the flow, except at very large distances. In fact, for ¥ < 104, i.e., r K 102 kpc,
it can be neglected altogether, and a very simple discussion of the equation results. As
we are interested in r = O(10 kpc) at most, we will make this approximation. Then we
find that there are two cases: (1) If g > a, the flow decelerates rapidly. Thus there will
be a sonic line near x = 1, This means that the gas has not enough energy to escape, and
in this case the actual flow pattern must either contain a shock or depart from the
galactic plane. At all events, it cannot possess large radial velocities at » ~ 4 kpc in
contradiction to observation, and we will not consider this case further. (2) If g < q, the
flow accelerates and rapidly achieves large velocities with m = O(10?). The velocity
reaches a maximum at x = a/g, and for larger x the flow is decelerated. The velocity at
any position is practically independent of the initial Mach number m, provided it is
O(1), as can be seen from the integral of equation (14):

m? — log m? = m¢® — log me* + 2g/x — a/x* +a — 2¢g. (16)

Moreover, neglecting the terms in mo?, we see that if g < a/2 the flow has m > 1 every-
where, whereas if g > a/2 there will be a sonic point at = 2a/(g — 2a). Thus if ¢/2 <
g < a, the flow cannot everywhere be of the form we have postulated, and it is likely
that a shock will form. Indeed, even when g < 4/2 and our assumed form is self-con-
sistent, the flow is likely to contain a shock to enable the flow to adjust to conditions far
from the galactic center, We can see from equation (16) that for x>>1 we have m ~(a —
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2¢)Y2) so that the flow would have radial velocities ~10? km sec™? even in the solar
neighborhood if there were no shock. This is not observed, and we conclude that a shock
must occur and discuss its nature in § III.

III. A GALACTIC BORE

We have just seen that there are reasons to expect a shock to form in the outflow of
gas from the galactic center. Let us consider what happens if we insert a normal shock
at some radius using the usual strong shock conditions. If subscripts 1 and 2 denote
values just ahead of and behind the shock, the usual jump conditions are

1O = pE2ME, w6 = no) (L),

v — 1) M2

(17)
1) = 1y LML

where M, = Uy(yRTy)2
In the gas ahead of the shock p; and p, satisfy equation (3), and if we introduce condi-
tions (17) this becomes

Ops _ vy = DM
= | L] (18)

This indicates that behind the shock the medium is out of hydrostatic equilibrium by a
factor T3/ Ti. Now this breakdown of hydrostatics can be modified by three effects. First,
radiative losses will tend to reduce the temperature jump; however, for strong shocks,
one-dimensional theory, assuming LTE and a gray medium, indicates that the main
effect of radiation is to smear out the jump in temperature rather than to diminish its
amplitude. Second, ionization can absorb energy and thus reduce the temperature jump
appreciably for M ~ 50. Finally, the shock may be curved, and this conceivably could
help preserve hydrostatic equilibrium. But as we are contemplating M, = 0(10?), it
seems unlikely that these effects can alter the qualitative conclusion that the shock wave
causes a breakdown of hydrostatic equilibrium behind the shock. The excessive vertical
pressure gradient will then drive the gas behind the shock away from the galactic plane
with violent acceleration, producing turbulence and distorting the shock.

If we accept these qualitative conclusions, we are led to a picture in which the transi-
tion from supersonic to subsonic flow more closely resembles a hydraulic jump, or bore,
than a plane shock wave, Though we have indicated how the bore may be initiated by a
breakdown of hydrostatic equilibrium through a shock, it may well be that the bore de-
velops more along the lines seen in the laboratory for the incompressible case. There, the
bore develops through the steepening and breaking of gravity waves. In the case of a
strong bore, the wave has large amplitude in the upper regions of the fluid; it breaks
there first and becomes turbulent. The turbulence then entrains the flow at lower levels,
and the result is a turbulent wall across which the flow changes from shooting to stream-
ing. (Shooting flows have speeds greater than the gravity-wave speed; streaming flows
have speeds which are less. In a perfect gas in hydrostatic equilibrium the sound speed
and gravity-wave speed are comparable, and the transition from shooting to streaming
flow can normally be accomplished simultaneously with the transition from supersonic
to subsonic flow.)

In the galactic case we can envision a similar behavior. The gravity wave breaks
above the plane, giving rise to supersonic turbulence which rapidly heats the gas. Even
with radiative losses, the kinetic energy available should cause this gas to move away
from the plane, causing the wave _closer to the plane to steepen. In this way the break-
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down of the mean flow spreads toward the plane, the turbulent stresses slowing the out-
ward flow and causing the local density to rise. But the turbulence rapidly heats the gas,
causing it both to radiate and to leave the plane, thus lowering its density to a value
possibly lower than its upstream value, depending on the relative importance of radia-
tive losses.

Unfortunately, we cannot compute these processes in detail because we have no way
of knowing the rates of turbulent instability and its consequent heating of the gas. In-
deed, no theory of the structure of strong bores exists even for the laboratory case with
incompressible, non-radiating flows. Nevertheless, some interesting results are suggested
by the jump conditions, which are independent of the detailed structure of the bore. We
shall therefore derive these, leaving out of account radiative losses.

We treat the bore as a sharp, almost discontinuous transition. We imagine that the
turbulence in the bore dissipates its energy quickly, so that the emerging flow, though
heated, is laminar and can be reasonably expected to satisfy the general assumptions
applied in § IT, though we shall admit the possibility of ionization behind the bore. We
stress that these assumptions will break down almost immediately because of radiation
and recombination, but we apply them just to the downstream edge of the bore to get
some idea of its effects. We may add that, since the bore is thin in the radial direction, we
can neglect curvature and treat g as constant through the bore.

Now, denoting conditions ahead of and behind the bore with subscripts 1 and 2 as
before, we find the conservation equations

4w + o
S prmds = S paeds (19)
for mass;
+oo + o
_[ (pr + pus®)dz = r (P2 + pou?)dz (20)

for momentum; and, for energy,
+ 622 + o0 522
SO+ e+ otz = S (i + ot + %) pnds (21)

where % is the specific enthalpy. These conditions differ from those for a plane shock
wave in two evident respects. First, because of the turbulence in the bore, the conserva-
tion conditions apply, not to individual parcels of fluid, but globally to the fluid passing
through a cylindrical surface. Second, as in the normal hydraulic jump theory, there is
a gravitational contribution to the energy which here is quadratic in 5 and therefore
plays the role of a classical degree of freedom.

If the gas is perfect, monatomic, and of pure hydrogen, we have, on neglecting the
excitation energy,

h=5R(1 + &)T + oI /mu , (22)

where a is the fraction of hydrogen that is ionized. We have already assumed that ahead
of the bore there is no ionization (a; = 0), but the degree of ionization behind the bore,
as, 1S a very important parameter.

Consider first the case where we admit no ionization behind the bore, a; = 0. Then,
since # and T are assumed independent of z, outside the bore, the conservation equations
are readily integrated. It is easy to show that they reduce to the jump conditions for a
plane shock wave in a ‘“‘gas’” with ¥ = §, velocity #, a temperature T, and a density
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aptT'2, This value of v is to be expected from the usual relation between vy and the num-
ber of degrees of freedom, and from the fact that potential energy is a quadratic term
in z. We need not write down these jump conditions as they are well known, but we note
that in the strong shock limit (3/; >> 1) they become

ofuy =L, To/Ti=2M:?, pt/pt=5vV(E)/ M. (23)

Thus the density in the galactic plane, pt, is greatly reduced behind the bore since the
heating of the gas raises the scale height and, for strong bores, this effect outweighs the
compression due to the decrease in #. It is the change in scale height which is most
reminiscent of the classical bore.

For the galactic case with Ty ~ 100° K and M; ~ 10? these conditions imply 7 ~
108 ° K, which is inconsistent with the neglect of ionization and radiation. If we then
turn to the other extreme, that the gas is completely ionized behind the bore, as = 1,
the picture changes completely. The jump conditions are still simple to work out, and
we can solve them to find

o = 1= {30t + RT) = 2[(u — SRT) + ST/ me} 24)
U

where I is the ionization energy per atom. Here we have selected that root of the quad-
ratic equation arising for #, which reduces to the solution for the non-ionized case
where I — 0.

In cases of interest here, %2 >> RT3, and equation (24) can be replaced by

SI, 2
Uy ™~ :_53.’141 - .g_ul(l + W) y (25)
while the jump condition in temperature becomes
I_z ~ 1 ( 2 g2 2r
7 GRT A\ T T o) (26)

Thus the absorption of energy by ionization can result in smaller velocities and tempera-
ture behind the bore, and hence the bore can raise the density of the gas. If

wy > u, = (2I/mu)? = 51 km sec™?, (27)

the effect is small, but, at the other extreme, when #; = #u,, %, and T are both zero and
pt: must be infinite. The gas would then be brought to rest and completely refrigerated
as a result of the conversion of kinetic energy into ionization energy. Of course, this state
is inconsistent with the assumption of complete ionization behind the bore, and what is
really called for is a consistent calculation of a; rather than its treatment as a free
parameter. Indeed, in the absence of radiative losses and at the low densities we contem-
plate, large values of T result when #, is only moderately in excess of u.. Nevertheless,
the singular behavior at #, suggests that when the gas flows into the bore near the critical
velocity #. it will emerge slowly and with high density, especially if radiative losses
play a role.

To get a qualitative idea of the intermediate case where as need not be 0 or 1, we
study the jump conditions using the Saha formula for a. Clearly this cannot give precise
information for the interstellar gas, but it serves as a simple interpolation device in the
absence of a more precise theory. In the Appendix we calculate the jump conditions
using the Saha formula, taking into account the consequent variation of a with z. We
need not go into the algebra here but rather will display some of the main results.
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The nature of the jump across the bore depends sensitively on #;, the speed with
which the gas flows into the bore, but only weakly on the incoming density, p;'. Accord-
ingly, we show results for a typical density, ot = 1072 g cm™3 for different #;; we adopt
Ty = 102 ° K as the upstream temperature.

The results are shown in the figures. Figure 1 gives the temperature on the down-
stream side of the bore, T, as a function of the velocity on the upstream edge, #;, for
T; = 100° and p;t = 1072 g cm™3. The plateau occurs when the jonization soaks up
the bulk of the kinetic energy. For #; in excess of 53 km sec™, the downstream tempera-
ture rises steeply as a function of #;. Of course, this rise would not occur if the radiative
losses had been included; rather, it is likely that the plateau would just continue
beyond #; = 53 km sec™2, It is, however, difficult to calculate this temperature precisely,

10°

T (°K)

i S i " 1 " 1 2 L "

0 20 40 60 80 100 120

u, (km/sec)

F16. 1.—Temperature on the downstream edge of the bore as a function of velocity component into
the bore on the upstream edge. Results for gt = 10724 g cm™3, 77 = 100° K,

since the kinetic energy is dissipated gradually throughout the bore. But if the assump-
tion is made that the kinetic energy is converted discontinuously into thermal energy,
it is easy to see that for these high temperatures the gas would be cooled before it travels
a parsec. It does seem reasonable, though, to anticipate an ionized region just outside
the bore with 7'~ 3000° K.

In Figure 2 we show the density jump across the bore. The lower curve gives p.t/pif,
which is the ratio of the actual densities in the plane z = 0. The initial conditions are,
again, T = 100° K and p;t = 1072 g cm™3, The density enhancement has a broad maxi-
mum at #; ~ 50 km sec”), with a maximum enhancement factor ~6. For #u; > 53
km sec™?, the density actually diminishes across the bore, because the scale height be-
hind the bore increases. We stress that this particular feature is exaggerated because of
the neglect of radiative losses. The upper curve in Figure 2 shows the ratio p,s/p,1, where

p. = S pdz = (2r)'2Hp! (28)
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is the integrated density. Mass conservation requires that p,s/p,1 = #1/us, so that this
curve also indicates the slowing down of the flow by the bore. For #; >> . the result is
close to that obtained on the assumption of complete ionization. But in the neighbor-
hood of 53 km sec™® where partial ionization occurs, a maximum enhancement of
matter accumulation is found, corresponding to a slowing down of the outflow by a
factor 50. Radiation will cause this enhancement factor to increase, but the qualitative
nature of the curve should remain unaltered. Also, we have found that these curves are
reasonably insensitive to Ty and p,f.

IV. CONCLUDING REMARKS

In § IT we have seen how the initially supersonic outflow should give rise to a rapid
transition to subsonic outflow. In § ITI we have argued that the transition takes place
in a strong bore which produces intense turbulence, ionization, and radiation. What
remains to be specified is the location of the bore.

L L Il . Iy i e 1

0 10 20 30 40 50 60 70 80 90 100
u, {(km/sec)

F1c. 2.—Density enhancement across the bore as a function of incoming velocity. Upper curve, ratio
of integrated densities p,o/p,1; lower curve, ratio of densities in the plane pot/pit.

The normal procedure would be to place the bore so that the flow matches onto some
specified downstream conditions, but this cannot be done here. For example, if the bore
occurred at 4 kpc from the galactic center and the mass in the galactic center is 7 X 10°
Mo, the escape velocity is ~10% km sec™™. Reference to the curve for u1/us = p,2/p,1
in Figure 2 then shows that no reasonable upstream conditions will permit the gas to
pass appreciably beyond 4 kpc once it has been decelerated in the bore. Thus, it is not
possible to locate the bore by using conditions for downstream flow, and in our present
model its position remains undetermined. The question of what physics determines the
location of the bore remains open. But it appears that wherever the bore occurs, the
matter will likely be trapped and the gas density will build up. If star formation occurs
in the high-density region, a steady state can nevertheless be achieved. We can also con-
sider the possibility that some of the gas departs sufficiently from the plane to be able
to flow back into the center and continue circulating.

These qualitative considerations suggest that we associate the bore with the expand-
ing arm. This is in line with the idea that spiral arms represent some kind of wave phe-
nomenon, and indeed we suggest that the non-linear form of the waves thought to be
associated with spiral arms are bores. At any rate, we wish to explain the expanding
arm in this way, and we postulate that the bore occurs at a velocity which gives rise to
the largest possible density in the bore. We have seen that this occurs at #; ~ 53 km
sec™!, which accords with the observed outward velocity in the expanding arm.
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Clearly, the model discussed here is far too schematic to be of value in predicting
details of the flow, but we believe that the following general properties may be of
relevance:

1. If the outflow is axisymmetric and steady and if no turbulent or magnetic stresses
exist, then, irrespective of the mass distribution in the central regions, the circular
velocity is given by equation (10). Thus, it does not seem possible to use observed
velocities of rotation near the galactic center to infer the mass distribution there, though
this may become possible if account is taken of non-radial forces.

2. The occurrence of a compressible hydraulic jump (galactic bore) in the outflow may
be the mechanism that forms the expanding arm. This is consistent with the occurrence
of H 11 regions only outside the arm,

3. We believe that the discussion indicates that waves in the interstellar gas in their
non-linear form generally take the form of bores. If the agreement between the speed of
outflow in the expanding arm and the preferred velocity in the jump conditions, %, ~ 51
km sec™!, is not coincidental, we may expect #. to play some role wherever bores occur
in the Galaxy. The criterion that seems indicated is that the velocity component normal
to the bore is #,, and for a given rotation velocity (and radial velocity) this fixes the pitch
angle of the bore; however, this last possibility is highly tentative.

In conclusion, we express our thanks to Professors P. Sweet and L. Woltjer for their
suggestions,

APPENDIX
The equation of state of partially ionized hydrogen is
K (T) ; [ 4p V2 )
= oRT (1 420 K(T)] 1§ , (A1)
where, in the usual notation,
_ M s (RT3 ( _ L
K(T) 7 2w me)*2(kT)3? exp i) (A2)

Our first task is to find the distribution of density and pressure with height in an isothermal
layer of gas obeying equation (A1) and in which the gravity varies linearly with height. The
condition for hydrostatic balance is equation (3), so that by using equation (A1), we get

1 4p -1/2 B
(1 +2) ] = -2 (A3)
Ky = K(To) (A4)

where

is a constant depending only on the uniform temperature T’y of the atmosphere. We can easily
integrate equation (A3) to give

= = 3fq exp 4RT 1f¢® exp 2RT (A5)

where
4 f = Ko/pt (A6)
- g=[(1+4/Nm—1]. (A7)

It is interesting that the density distribution is just a linear combination of the distributions for
a completely ionized and a completely non-ionized atmosphere, with weightings depending on
the degree of ionization at(=1%fg) in the galactic plane.
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With the distribution (AS) at hand, it is a straightforward matter to work out the integrals
in the jump conditions (19)—(21), and we get

S pdz = 251 (RTo/8)P (A8)
J ouds = 20/ (RT/HQ , (A9)
and ®
S oitds = 20" (RTo/B):S (A10)
where -
P= %x/vr(fq + %f@ : (A11)
0=, (a12)
and
= YT (4fy + 50 (A13)
The jump conditions are
[upt(RT/B)2P]i = O, (A14)
{o"(RT/B)12P{u? + RT(1 + Q/P)]}1 = O, (A15)
and
e L O
( +3 S)RT + ut + 28] o, (A16)

where [ f]} = f» — fi. Clearly T and p! change across the jump so that f and ¢ and hence P, Q,
and S change also. Thus equations (A14)-(A16) form a complicated transcendental system of
equations for the conditions behind the jump.

We have seen that the gas ahead of the jump is not ionized, so that f; = 0 and Qi/P, = 0,
Si/Py = 1. Then solving the jump conditions in the usual way for us, as if Q; and P, were known
constants, we get

"y = 51 {3(u12+RT1) — 2[(u1 — 3RTY)? + 92 - ]mg. (A17)

(The choice of the sign of the square root is discussed in the text.) Having found s we can
calculate T2 and p,t in terms of the upstream conditions p;t > #; and T, by means of the equa-
tions

Ty _ Ugthy ) ( Qz -1

Ty + ®T, rr)\1T3) > (A13)
;_)__ 'Ih T1>1/2 \/(21!’)
o T, 55, - (A19)

Suppose we guess a value of the degree of ionization, (ast),, say, in the galactic plane down-
stream of the jump. This fixes f» and ¢., and we can use equations (A17)-(A19) to calculate us,
T, and p;f. Then from equations (A2), (A6), and (A7) we can calculate a new downstream ion-

© American Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1968ApJ...154..863M&amp;db_key=AST

J. T CI547 Z863M

o]

rT9638A

874 D. W. MOORE AND E. A. SPIEGEL

ization, say (as!):, and compare it with (ast),. We can then improve our guess in some systematic
way and carry on until the process converges. In practice we took as our improved guess
(a2!)iS + (1 = S)(azt)y. The iteration was stable with small values of the constant .S, and
convergence was quite rapid.
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