Publication Abstracts

Russell et al. 1995

Russell, G.L., J.R. Miller, and D. Rind, 1995: A coupled atmosphere-ocean model for transient climate change studies. Atmos.-Ocean, 33, 683-730.

A new coupled atmosphere-ocean model has been developed for climate predictions at decade to century time scales. The atmospheric model is similar to that of Hansen et al. (1983) except that the atmospheric dynamic equations for mass and momentum are solved using Arakawa and Lamb's (1977) C grid scheme, and the advection of potential enthalpy and water vapor uses the linear upstream scheme (Russell and Lerner, 1981). The new global ocean model conserves mass, allows for divergent flow, has a free surface and uses the linear upstream scheme for the advection of potential enthalpy and salt. Both models run at 4°×5° resolution, with 9 vertical layers for the atmosphere and 13 layers for the ocean. Twelve straits are included, allowing for subgrid-scale water flow. Runoff from land is routed into appropriate ocean basins. Atmospheric and oceanic surface fluxes are of opposite sign and are applied synchronously. Flux adjustments are not used. Except for partial strength alternating binomial filters (Shapiro, 1970) which are applied to the momentum components in the atmosphere and oceans, there is no explicit horizontal diffusion.

A 120-year simulation of the coupled model starting from the oceanic initial conditions of Levitus (1982) is discussed. The model dynamics stabilize after several decades. The maximum northward ocean heat flux is 1.4×1015 W at 16°N. The model appears to maintain the vertical gradients characterizing the separation between the upper and deep ocean spheres. Inadequacies in the coupled model simulation lead to decreasing temperature and salinity in the high latitude North Atlantic and to a poor simulation of the northern North Atlantic thermohaline circulation. The mass transport of the Gulf Stream is about half of observed values, while the transports of the Kuroshio and Antarctic Circumpolar Currents are similar to observations. Additional deficiencies include a climate drift in the surface air temperature of 0.006°C /year due to a radiation imbalance of 7.4 W m-2 at the top of the atmosphere, and too warm temperatures in the eastern portions of tropical oceans. The coupled model should be useful for delineating modeling capabilities without the use of flux adjustments, and should serve as a benchmark for future model improvements.